import * as _ from 'lodash-es'; export { longestPath, slack }; /* * Initializes ranks for the input graph using the longest path algorithm. This * algorithm scales well and is fast in practice, it yields rather poor * solutions. Nodes are pushed to the lowest layer possible, leaving the bottom * ranks wide and leaving edges longer than necessary. However, due to its * speed, this algorithm is good for getting an initial ranking that can be fed * into other algorithms. * * This algorithm does not normalize layers because it will be used by other * algorithms in most cases. If using this algorithm directly, be sure to * run normalize at the end. * * Pre-conditions: * * 1. Input graph is a DAG. * 2. Input graph node labels can be assigned properties. * * Post-conditions: * * 1. Each node will be assign an (unnormalized) "rank" property. */ function longestPath(g) { var visited = {}; function dfs(v) { var label = g.node(v); if (Object.prototype.hasOwnProperty.call(visited, v)) { return label.rank; } visited[v] = true; var rank = _.min( _.map(g.outEdges(v), function (e) { return dfs(e.w) - g.edge(e).minlen; }), ); if ( rank === Number.POSITIVE_INFINITY || // return value of _.map([]) for Lodash 3 rank === undefined || // return value of _.map([]) for Lodash 4 rank === null ) { // return value of _.map([null]) rank = 0; } return (label.rank = rank); } _.forEach(g.sources(), dfs); } /* * Returns the amount of slack for the given edge. The slack is defined as the * difference between the length of the edge and its minimum length. */ function slack(g, e) { return g.node(e.w).rank - g.node(e.v).rank - g.edge(e).minlen; }