(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.dagre=f()}})(function(){var define,module,exports;return function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i0;--i){entry=buckets[i].dequeue();if(entry){results=results.concat(removeNode(g,buckets,zeroIdx,entry,true));break}}}}return results}function removeNode(g,buckets,zeroIdx,entry,collectPredecessors){var results=collectPredecessors?[]:undefined;_.forEach(g.inEdges(entry.v),function(edge){var weight=g.edge(edge);var uEntry=g.node(edge.v);if(collectPredecessors){results.push({v:edge.v,w:edge.w})}uEntry.out-=weight;assignBucket(buckets,zeroIdx,uEntry)});_.forEach(g.outEdges(entry.v),function(edge){var weight=g.edge(edge);var w=edge.w;var wEntry=g.node(w);wEntry["in"]-=weight;assignBucket(buckets,zeroIdx,wEntry)});g.removeNode(entry.v);return results}function buildState(g,weightFn){var fasGraph=new Graph;var maxIn=0;var maxOut=0;_.forEach(g.nodes(),function(v){fasGraph.setNode(v,{v:v,in:0,out:0})}); // Aggregate weights on nodes, but also sum the weights across multi-edges // into a single edge for the fasGraph. _.forEach(g.edges(),function(e){var prevWeight=fasGraph.edge(e.v,e.w)||0;var weight=weightFn(e);var edgeWeight=prevWeight+weight;fasGraph.setEdge(e.v,e.w,edgeWeight);maxOut=Math.max(maxOut,fasGraph.node(e.v).out+=weight);maxIn=Math.max(maxIn,fasGraph.node(e.w)["in"]+=weight)});var buckets=_.range(maxOut+maxIn+3).map(function(){return new List});var zeroIdx=maxIn+1;_.forEach(fasGraph.nodes(),function(v){assignBucket(buckets,zeroIdx,fasGraph.node(v))});return{graph:fasGraph,buckets:buckets,zeroIdx:zeroIdx}}function assignBucket(buckets,zeroIdx,entry){if(!entry.out){buckets[0].enqueue(entry)}else if(!entry["in"]){buckets[buckets.length-1].enqueue(entry)}else{buckets[entry.out-entry["in"]+zeroIdx].enqueue(entry)}}},{"./data/list":5,"./graphlib":7,"./lodash":10}],9:[function(require,module,exports){"use strict";var _=require("./lodash");var acyclic=require("./acyclic");var normalize=require("./normalize");var rank=require("./rank");var normalizeRanks=require("./util").normalizeRanks;var parentDummyChains=require("./parent-dummy-chains");var removeEmptyRanks=require("./util").removeEmptyRanks;var nestingGraph=require("./nesting-graph");var addBorderSegments=require("./add-border-segments");var coordinateSystem=require("./coordinate-system");var order=require("./order");var position=require("./position");var util=require("./util");var Graph=require("./graphlib").Graph;module.exports=layout;function layout(g,opts){var time=opts&&opts.debugTiming?util.time:util.notime;time("layout",function(){var layoutGraph=time(" buildLayoutGraph",function(){return buildLayoutGraph(g)});time(" runLayout",function(){runLayout(layoutGraph,time)});time(" updateInputGraph",function(){updateInputGraph(g,layoutGraph)})})}function runLayout(g,time){time(" makeSpaceForEdgeLabels",function(){makeSpaceForEdgeLabels(g)});time(" removeSelfEdges",function(){removeSelfEdges(g)});time(" acyclic",function(){acyclic.run(g)});time(" nestingGraph.run",function(){nestingGraph.run(g)});time(" rank",function(){rank(util.asNonCompoundGraph(g))});time(" injectEdgeLabelProxies",function(){injectEdgeLabelProxies(g)});time(" removeEmptyRanks",function(){removeEmptyRanks(g)});time(" nestingGraph.cleanup",function(){nestingGraph.cleanup(g)});time(" normalizeRanks",function(){normalizeRanks(g)});time(" assignRankMinMax",function(){assignRankMinMax(g)});time(" removeEdgeLabelProxies",function(){removeEdgeLabelProxies(g)});time(" normalize.run",function(){normalize.run(g)});time(" parentDummyChains",function(){parentDummyChains(g)});time(" addBorderSegments",function(){addBorderSegments(g)});time(" order",function(){order(g)});time(" insertSelfEdges",function(){insertSelfEdges(g)});time(" adjustCoordinateSystem",function(){coordinateSystem.adjust(g)});time(" position",function(){position(g)});time(" positionSelfEdges",function(){positionSelfEdges(g)});time(" removeBorderNodes",function(){removeBorderNodes(g)});time(" normalize.undo",function(){normalize.undo(g)});time(" fixupEdgeLabelCoords",function(){fixupEdgeLabelCoords(g)});time(" undoCoordinateSystem",function(){coordinateSystem.undo(g)});time(" translateGraph",function(){translateGraph(g)});time(" assignNodeIntersects",function(){assignNodeIntersects(g)});time(" reversePoints",function(){reversePointsForReversedEdges(g)});time(" acyclic.undo",function(){acyclic.undo(g)})} /* * Copies final layout information from the layout graph back to the input * graph. This process only copies whitelisted attributes from the layout graph * to the input graph, so it serves as a good place to determine what * attributes can influence layout. */function updateInputGraph(inputGraph,layoutGraph){_.forEach(inputGraph.nodes(),function(v){var inputLabel=inputGraph.node(v);var layoutLabel=layoutGraph.node(v);if(inputLabel){inputLabel.x=layoutLabel.x;inputLabel.y=layoutLabel.y;if(layoutGraph.children(v).length){inputLabel.width=layoutLabel.width;inputLabel.height=layoutLabel.height}}});_.forEach(inputGraph.edges(),function(e){var inputLabel=inputGraph.edge(e);var layoutLabel=layoutGraph.edge(e);inputLabel.points=layoutLabel.points;if(_.has(layoutLabel,"x")){inputLabel.x=layoutLabel.x;inputLabel.y=layoutLabel.y}});inputGraph.graph().width=layoutGraph.graph().width;inputGraph.graph().height=layoutGraph.graph().height}var graphNumAttrs=["nodesep","edgesep","ranksep","marginx","marginy"];var graphDefaults={ranksep:50,edgesep:20,nodesep:50,rankdir:"tb"};var graphAttrs=["acyclicer","ranker","rankdir","align"];var nodeNumAttrs=["width","height"];var nodeDefaults={width:0,height:0};var edgeNumAttrs=["minlen","weight","width","height","labeloffset"];var edgeDefaults={minlen:1,weight:1,width:0,height:0,labeloffset:10,labelpos:"r"};var edgeAttrs=["labelpos"]; /* * Constructs a new graph from the input graph, which can be used for layout. * This process copies only whitelisted attributes from the input graph to the * layout graph. Thus this function serves as a good place to determine what * attributes can influence layout. */function buildLayoutGraph(inputGraph){var g=new Graph({multigraph:true,compound:true});var graph=canonicalize(inputGraph.graph());g.setGraph(_.merge({},graphDefaults,selectNumberAttrs(graph,graphNumAttrs),_.pick(graph,graphAttrs)));_.forEach(inputGraph.nodes(),function(v){var node=canonicalize(inputGraph.node(v));g.setNode(v,_.defaults(selectNumberAttrs(node,nodeNumAttrs),nodeDefaults));g.setParent(v,inputGraph.parent(v))});_.forEach(inputGraph.edges(),function(e){var edge=canonicalize(inputGraph.edge(e));g.setEdge(e,_.merge({},edgeDefaults,selectNumberAttrs(edge,edgeNumAttrs),_.pick(edge,edgeAttrs)))});return g} /* * This idea comes from the Gansner paper: to account for edge labels in our * layout we split each rank in half by doubling minlen and halving ranksep. * Then we can place labels at these mid-points between nodes. * * We also add some minimal padding to the width to push the label for the edge * away from the edge itself a bit. */function makeSpaceForEdgeLabels(g){var graph=g.graph();graph.ranksep/=2;_.forEach(g.edges(),function(e){var edge=g.edge(e);edge.minlen*=2;if(edge.labelpos.toLowerCase()!=="c"){if(graph.rankdir==="TB"||graph.rankdir==="BT"){edge.width+=edge.labeloffset}else{edge.height+=edge.labeloffset}}})} /* * Creates temporary dummy nodes that capture the rank in which each edge's * label is going to, if it has one of non-zero width and height. We do this * so that we can safely remove empty ranks while preserving balance for the * label's position. */function injectEdgeLabelProxies(g){_.forEach(g.edges(),function(e){var edge=g.edge(e);if(edge.width&&edge.height){var v=g.node(e.v);var w=g.node(e.w);var label={rank:(w.rank-v.rank)/2+v.rank,e:e};util.addDummyNode(g,"edge-proxy",label,"_ep")}})}function assignRankMinMax(g){var maxRank=0;_.forEach(g.nodes(),function(v){var node=g.node(v);if(node.borderTop){node.minRank=g.node(node.borderTop).rank;node.maxRank=g.node(node.borderBottom).rank;maxRank=_.max(maxRank,node.maxRank)}});g.graph().maxRank=maxRank}function removeEdgeLabelProxies(g){_.forEach(g.nodes(),function(v){var node=g.node(v);if(node.dummy==="edge-proxy"){g.edge(node.e).labelRank=node.rank;g.removeNode(v)}})}function translateGraph(g){var minX=Number.POSITIVE_INFINITY;var maxX=0;var minY=Number.POSITIVE_INFINITY;var maxY=0;var graphLabel=g.graph();var marginX=graphLabel.marginx||0;var marginY=graphLabel.marginy||0;function getExtremes(attrs){var x=attrs.x;var y=attrs.y;var w=attrs.width;var h=attrs.height;minX=Math.min(minX,x-w/2);maxX=Math.max(maxX,x+w/2);minY=Math.min(minY,y-h/2);maxY=Math.max(maxY,y+h/2)}_.forEach(g.nodes(),function(v){getExtremes(g.node(v))});_.forEach(g.edges(),function(e){var edge=g.edge(e);if(_.has(edge,"x")){getExtremes(edge)}});minX-=marginX;minY-=marginY;_.forEach(g.nodes(),function(v){var node=g.node(v);node.x-=minX;node.y-=minY});_.forEach(g.edges(),function(e){var edge=g.edge(e);_.forEach(edge.points,function(p){p.x-=minX;p.y-=minY});if(_.has(edge,"x")){edge.x-=minX}if(_.has(edge,"y")){edge.y-=minY}});graphLabel.width=maxX-minX+marginX;graphLabel.height=maxY-minY+marginY}function assignNodeIntersects(g){_.forEach(g.edges(),function(e){var edge=g.edge(e);var nodeV=g.node(e.v);var nodeW=g.node(e.w);var p1,p2;if(!edge.points){edge.points=[];p1=nodeW;p2=nodeV}else{p1=edge.points[0];p2=edge.points[edge.points.length-1]}edge.points.unshift(util.intersectRect(nodeV,p1));edge.points.push(util.intersectRect(nodeW,p2))})}function fixupEdgeLabelCoords(g){_.forEach(g.edges(),function(e){var edge=g.edge(e);if(_.has(edge,"x")){if(edge.labelpos==="l"||edge.labelpos==="r"){edge.width-=edge.labeloffset}switch(edge.labelpos){case"l":edge.x-=edge.width/2+edge.labeloffset;break;case"r":edge.x+=edge.width/2+edge.labeloffset;break}}})}function reversePointsForReversedEdges(g){_.forEach(g.edges(),function(e){var edge=g.edge(e);if(edge.reversed){edge.points.reverse()}})}function removeBorderNodes(g){_.forEach(g.nodes(),function(v){if(g.children(v).length){var node=g.node(v);var t=g.node(node.borderTop);var b=g.node(node.borderBottom);var l=g.node(_.last(node.borderLeft));var r=g.node(_.last(node.borderRight));node.width=Math.abs(r.x-l.x);node.height=Math.abs(b.y-t.y);node.x=l.x+node.width/2;node.y=t.y+node.height/2}});_.forEach(g.nodes(),function(v){if(g.node(v).dummy==="border"){g.removeNode(v)}})}function removeSelfEdges(g){_.forEach(g.edges(),function(e){if(e.v===e.w){var node=g.node(e.v);if(!node.selfEdges){node.selfEdges=[]}node.selfEdges.push({e:e,label:g.edge(e)});g.removeEdge(e)}})}function insertSelfEdges(g){var layers=util.buildLayerMatrix(g);_.forEach(layers,function(layer){var orderShift=0;_.forEach(layer,function(v,i){var node=g.node(v);node.order=i+orderShift;_.forEach(node.selfEdges,function(selfEdge){util.addDummyNode(g,"selfedge",{width:selfEdge.label.width,height:selfEdge.label.height,rank:node.rank,order:i+ ++orderShift,e:selfEdge.e,label:selfEdge.label},"_se")});delete node.selfEdges})})}function positionSelfEdges(g){_.forEach(g.nodes(),function(v){var node=g.node(v);if(node.dummy==="selfedge"){var selfNode=g.node(node.e.v);var x=selfNode.x+selfNode.width/2;var y=selfNode.y;var dx=node.x-x;var dy=selfNode.height/2;g.setEdge(node.e,node.label);g.removeNode(v);node.label.points=[{x:x+2*dx/3,y:y-dy},{x:x+5*dx/6,y:y-dy},{x:x+dx,y:y},{x:x+5*dx/6,y:y+dy},{x:x+2*dx/3,y:y+dy}];node.label.x=node.x;node.label.y=node.y}})}function selectNumberAttrs(obj,attrs){return _.mapValues(_.pick(obj,attrs),Number)}function canonicalize(attrs){var newAttrs={};_.forEach(attrs,function(v,k){newAttrs[k.toLowerCase()]=v});return newAttrs}},{"./acyclic":2,"./add-border-segments":3,"./coordinate-system":4,"./graphlib":7,"./lodash":10,"./nesting-graph":11,"./normalize":12,"./order":17,"./parent-dummy-chains":22,"./position":24,"./rank":26,"./util":29}],10:[function(require,module,exports){ /* global window */ var lodash;if(typeof require==="function"){try{lodash={cloneDeep:require("lodash/cloneDeep"),constant:require("lodash/constant"),defaults:require("lodash/defaults"),each:require("lodash/each"),filter:require("lodash/filter"),find:require("lodash/find"),flatten:require("lodash/flatten"),forEach:require("lodash/forEach"),forIn:require("lodash/forIn"),has:require("lodash/has"),isUndefined:require("lodash/isUndefined"),last:require("lodash/last"),map:require("lodash/map"),mapValues:require("lodash/mapValues"),max:require("lodash/max"),merge:require("lodash/merge"),min:require("lodash/min"),minBy:require("lodash/minBy"),now:require("lodash/now"),pick:require("lodash/pick"),range:require("lodash/range"),reduce:require("lodash/reduce"),sortBy:require("lodash/sortBy"),uniqueId:require("lodash/uniqueId"),values:require("lodash/values"),zipObject:require("lodash/zipObject")}}catch(e){ // continue regardless of error }}if(!lodash){lodash=window._}module.exports=lodash},{"lodash/cloneDeep":undefined,"lodash/constant":undefined,"lodash/defaults":undefined,"lodash/each":undefined,"lodash/filter":undefined,"lodash/find":undefined,"lodash/flatten":undefined,"lodash/forEach":undefined,"lodash/forIn":undefined,"lodash/has":undefined,"lodash/isUndefined":undefined,"lodash/last":undefined,"lodash/map":undefined,"lodash/mapValues":undefined,"lodash/max":undefined,"lodash/merge":undefined,"lodash/min":undefined,"lodash/minBy":undefined,"lodash/now":undefined,"lodash/pick":undefined,"lodash/range":undefined,"lodash/reduce":undefined,"lodash/sortBy":undefined,"lodash/uniqueId":undefined,"lodash/values":undefined,"lodash/zipObject":undefined}],11:[function(require,module,exports){var _=require("./lodash");var util=require("./util");module.exports={run:run,cleanup:cleanup}; /* * A nesting graph creates dummy nodes for the tops and bottoms of subgraphs, * adds appropriate edges to ensure that all cluster nodes are placed between * these boundries, and ensures that the graph is connected. * * In addition we ensure, through the use of the minlen property, that nodes * and subgraph border nodes to not end up on the same rank. * * Preconditions: * * 1. Input graph is a DAG * 2. Nodes in the input graph has a minlen attribute * * Postconditions: * * 1. Input graph is connected. * 2. Dummy nodes are added for the tops and bottoms of subgraphs. * 3. The minlen attribute for nodes is adjusted to ensure nodes do not * get placed on the same rank as subgraph border nodes. * * The nesting graph idea comes from Sander, "Layout of Compound Directed * Graphs." */function run(g){var root=util.addDummyNode(g,"root",{},"_root");var depths=treeDepths(g);var height=_.max(_.values(depths))-1;// Note: depths is an Object not an array var nodeSep=2*height+1;g.graph().nestingRoot=root; // Multiply minlen by nodeSep to align nodes on non-border ranks. _.forEach(g.edges(),function(e){g.edge(e).minlen*=nodeSep}); // Calculate a weight that is sufficient to keep subgraphs vertically compact var weight=sumWeights(g)+1; // Create border nodes and link them up _.forEach(g.children(),function(child){dfs(g,root,nodeSep,weight,height,depths,child)}); // Save the multiplier for node layers for later removal of empty border // layers. g.graph().nodeRankFactor=nodeSep}function dfs(g,root,nodeSep,weight,height,depths,v){var children=g.children(v);if(!children.length){if(v!==root){g.setEdge(root,v,{weight:0,minlen:nodeSep})}return}var top=util.addBorderNode(g,"_bt");var bottom=util.addBorderNode(g,"_bb");var label=g.node(v);g.setParent(top,v);label.borderTop=top;g.setParent(bottom,v);label.borderBottom=bottom;_.forEach(children,function(child){dfs(g,root,nodeSep,weight,height,depths,child);var childNode=g.node(child);var childTop=childNode.borderTop?childNode.borderTop:child;var childBottom=childNode.borderBottom?childNode.borderBottom:child;var thisWeight=childNode.borderTop?weight:2*weight;var minlen=childTop!==childBottom?1:height-depths[v]+1;g.setEdge(top,childTop,{weight:thisWeight,minlen:minlen,nestingEdge:true});g.setEdge(childBottom,bottom,{weight:thisWeight,minlen:minlen,nestingEdge:true})});if(!g.parent(v)){g.setEdge(root,top,{weight:0,minlen:height+depths[v]})}}function treeDepths(g){var depths={};function dfs(v,depth){var children=g.children(v);if(children&&children.length){_.forEach(children,function(child){dfs(child,depth+1)})}depths[v]=depth}_.forEach(g.children(),function(v){dfs(v,1)});return depths}function sumWeights(g){return _.reduce(g.edges(),function(acc,e){return acc+g.edge(e).weight},0)}function cleanup(g){var graphLabel=g.graph();g.removeNode(graphLabel.nestingRoot);delete graphLabel.nestingRoot;_.forEach(g.edges(),function(e){var edge=g.edge(e);if(edge.nestingEdge){g.removeEdge(e)}})}},{"./lodash":10,"./util":29}],12:[function(require,module,exports){"use strict";var _=require("./lodash");var util=require("./util");module.exports={run:run,undo:undo}; /* * Breaks any long edges in the graph into short segments that span 1 layer * each. This operation is undoable with the denormalize function. * * Pre-conditions: * * 1. The input graph is a DAG. * 2. Each node in the graph has a "rank" property. * * Post-condition: * * 1. All edges in the graph have a length of 1. * 2. Dummy nodes are added where edges have been split into segments. * 3. The graph is augmented with a "dummyChains" attribute which contains * the first dummy in each chain of dummy nodes produced. */function run(g){g.graph().dummyChains=[];_.forEach(g.edges(),function(edge){normalizeEdge(g,edge)})}function normalizeEdge(g,e){var v=e.v;var vRank=g.node(v).rank;var w=e.w;var wRank=g.node(w).rank;var name=e.name;var edgeLabel=g.edge(e);var labelRank=edgeLabel.labelRank;if(wRank===vRank+1)return;g.removeEdge(e);var dummy,attrs,i;for(i=0,++vRank;vRank0){if(index%2){weightSum+=tree[index+1]}index=index-1>>1;tree[index]+=entry.weight}cc+=entry.weight*weightSum}));return cc}},{"../lodash":10}],17:[function(require,module,exports){"use strict";var _=require("../lodash");var initOrder=require("./init-order");var crossCount=require("./cross-count");var sortSubgraph=require("./sort-subgraph");var buildLayerGraph=require("./build-layer-graph");var addSubgraphConstraints=require("./add-subgraph-constraints");var Graph=require("../graphlib").Graph;var util=require("../util");module.exports=order; /* * Applies heuristics to minimize edge crossings in the graph and sets the best * order solution as an order attribute on each node. * * Pre-conditions: * * 1. Graph must be DAG * 2. Graph nodes must be objects with a "rank" attribute * 3. Graph edges must have the "weight" attribute * * Post-conditions: * * 1. Graph nodes will have an "order" attribute based on the results of the * algorithm. */function order(g){var maxRank=util.maxRank(g),downLayerGraphs=buildLayerGraphs(g,_.range(1,maxRank+1),"inEdges"),upLayerGraphs=buildLayerGraphs(g,_.range(maxRank-1,-1,-1),"outEdges");var layering=initOrder(g);assignOrder(g,layering);var bestCC=Number.POSITIVE_INFINITY,best;for(var i=0,lastBest=0;lastBest<4;++i,++lastBest){sweepLayerGraphs(i%2?downLayerGraphs:upLayerGraphs,i%4>=2);layering=util.buildLayerMatrix(g);var cc=crossCount(g,layering);if(cc=vEntry.barycenter){mergeEntries(vEntry,uEntry)}}}function handleOut(vEntry){return function(wEntry){wEntry["in"].push(vEntry);if(--wEntry.indegree===0){sourceSet.push(wEntry)}}}while(sourceSet.length){var entry=sourceSet.pop();entries.push(entry);_.forEach(entry["in"].reverse(),handleIn(entry));_.forEach(entry.out,handleOut(entry))}return _.map(_.filter(entries,function(entry){return!entry.merged}),function(entry){return _.pick(entry,["vs","i","barycenter","weight"])})}function mergeEntries(target,source){var sum=0;var weight=0;if(target.weight){sum+=target.barycenter*target.weight;weight+=target.weight}if(source.weight){sum+=source.barycenter*source.weight;weight+=source.weight}target.vs=source.vs.concat(target.vs);target.barycenter=sum/weight;target.weight=weight;target.i=Math.min(source.i,target.i);source.merged=true}},{"../lodash":10}],20:[function(require,module,exports){var _=require("../lodash");var barycenter=require("./barycenter");var resolveConflicts=require("./resolve-conflicts");var sort=require("./sort");module.exports=sortSubgraph;function sortSubgraph(g,v,cg,biasRight){var movable=g.children(v);var node=g.node(v);var bl=node?node.borderLeft:undefined;var br=node?node.borderRight:undefined;var subgraphs={};if(bl){movable=_.filter(movable,function(w){return w!==bl&&w!==br})}var barycenters=barycenter(g,movable);_.forEach(barycenters,function(entry){if(g.children(entry.v).length){var subgraphResult=sortSubgraph(g,entry.v,cg,biasRight);subgraphs[entry.v]=subgraphResult;if(_.has(subgraphResult,"barycenter")){mergeBarycenters(entry,subgraphResult)}}});var entries=resolveConflicts(barycenters,cg);expandSubgraphs(entries,subgraphs);var result=sort(entries,biasRight);if(bl){result.vs=_.flatten([bl,result.vs,br],true);if(g.predecessors(bl).length){var blPred=g.node(g.predecessors(bl)[0]),brPred=g.node(g.predecessors(br)[0]);if(!_.has(result,"barycenter")){result.barycenter=0;result.weight=0}result.barycenter=(result.barycenter*result.weight+blPred.order+brPred.order)/(result.weight+2);result.weight+=2}}return result}function expandSubgraphs(entries,subgraphs){_.forEach(entries,function(entry){entry.vs=_.flatten(entry.vs.map(function(v){if(subgraphs[v]){return subgraphs[v].vs}return v}),true)})}function mergeBarycenters(target,other){if(!_.isUndefined(target.barycenter)){target.barycenter=(target.barycenter*target.weight+other.barycenter*other.weight)/(target.weight+other.weight);target.weight+=other.weight}else{target.barycenter=other.barycenter;target.weight=other.weight}}},{"../lodash":10,"./barycenter":14,"./resolve-conflicts":19,"./sort":21}],21:[function(require,module,exports){var _=require("../lodash");var util=require("../util");module.exports=sort;function sort(entries,biasRight){var parts=util.partition(entries,function(entry){return _.has(entry,"barycenter")});var sortable=parts.lhs,unsortable=_.sortBy(parts.rhs,function(entry){return-entry.i}),vs=[],sum=0,weight=0,vsIndex=0;sortable.sort(compareWithBias(!!biasRight));vsIndex=consumeUnsortable(vs,unsortable,vsIndex);_.forEach(sortable,function(entry){vsIndex+=entry.vs.length;vs.push(entry.vs);sum+=entry.barycenter*entry.weight;weight+=entry.weight;vsIndex=consumeUnsortable(vs,unsortable,vsIndex)});var result={vs:_.flatten(vs,true)};if(weight){result.barycenter=sum/weight;result.weight=weight}return result}function consumeUnsortable(vs,unsortable,index){var last;while(unsortable.length&&(last=_.last(unsortable)).i<=index){unsortable.pop();vs.push(last.vs);index++}return index}function compareWithBias(bias){return function(entryV,entryW){if(entryV.barycenterentryW.barycenter){return 1}return!bias?entryV.i-entryW.i:entryW.i-entryV.i}}},{"../lodash":10,"../util":29}],22:[function(require,module,exports){var _=require("./lodash");module.exports=parentDummyChains;function parentDummyChains(g){var postorderNums=postorder(g);_.forEach(g.graph().dummyChains,function(v){var node=g.node(v);var edgeObj=node.edgeObj;var pathData=findPath(g,postorderNums,edgeObj.v,edgeObj.w);var path=pathData.path;var lca=pathData.lca;var pathIdx=0;var pathV=path[pathIdx];var ascending=true;while(v!==edgeObj.w){node=g.node(v);if(ascending){while((pathV=path[pathIdx])!==lca&&g.node(pathV).maxRanklow||lim>postorderNums[parent].lim));lca=parent; // Traverse from w to LCA parent=w;while((parent=g.parent(parent))!==lca){wPath.push(parent)}return{path:vPath.concat(wPath.reverse()),lca:lca}}function postorder(g){var result={};var lim=0;function dfs(v){var low=lim;_.forEach(g.children(v),dfs);result[v]={low:low,lim:lim++}}_.forEach(g.children(),dfs);return result}},{"./lodash":10}],23:[function(require,module,exports){"use strict";var _=require("../lodash");var Graph=require("../graphlib").Graph;var util=require("../util"); /* * This module provides coordinate assignment based on Brandes and Köpf, "Fast * and Simple Horizontal Coordinate Assignment." */module.exports={positionX:positionX,findType1Conflicts:findType1Conflicts,findType2Conflicts:findType2Conflicts,addConflict:addConflict,hasConflict:hasConflict,verticalAlignment:verticalAlignment,horizontalCompaction:horizontalCompaction,alignCoordinates:alignCoordinates,findSmallestWidthAlignment:findSmallestWidthAlignment,balance:balance}; /* * Marks all edges in the graph with a type-1 conflict with the "type1Conflict" * property. A type-1 conflict is one where a non-inner segment crosses an * inner segment. An inner segment is an edge with both incident nodes marked * with the "dummy" property. * * This algorithm scans layer by layer, starting with the second, for type-1 * conflicts between the current layer and the previous layer. For each layer * it scans the nodes from left to right until it reaches one that is incident * on an inner segment. It then scans predecessors to determine if they have * edges that cross that inner segment. At the end a final scan is done for all * nodes on the current rank to see if they cross the last visited inner * segment. * * This algorithm (safely) assumes that a dummy node will only be incident on a * single node in the layers being scanned. */function findType1Conflicts(g,layering){var conflicts={};function visitLayer(prevLayer,layer){var // last visited node in the previous layer that is incident on an inner // segment. k0=0, // Tracks the last node in this layer scanned for crossings with a type-1 // segment. scanPos=0,prevLayerLength=prevLayer.length,lastNode=_.last(layer);_.forEach(layer,function(v,i){var w=findOtherInnerSegmentNode(g,v),k1=w?g.node(w).order:prevLayerLength;if(w||v===lastNode){_.forEach(layer.slice(scanPos,i+1),function(scanNode){_.forEach(g.predecessors(scanNode),function(u){var uLabel=g.node(u),uPos=uLabel.order;if((uPosnextNorthBorder)){addConflict(conflicts,u,v)}})}})}function visitLayer(north,south){var prevNorthPos=-1,nextNorthPos,southPos=0;_.forEach(south,function(v,southLookahead){if(g.node(v).dummy==="border"){var predecessors=g.predecessors(v);if(predecessors.length){nextNorthPos=g.node(predecessors[0]).order;scan(south,southPos,southLookahead,prevNorthPos,nextNorthPos);southPos=southLookahead;prevNorthPos=nextNorthPos}}scan(south,southPos,south.length,nextNorthPos,north.length)});return south}_.reduce(layering,visitLayer);return conflicts}function findOtherInnerSegmentNode(g,v){if(g.node(v).dummy){return _.find(g.predecessors(v),function(u){return g.node(u).dummy})}}function addConflict(conflicts,v,w){if(v>w){var tmp=v;v=w;w=tmp}var conflictsV=conflicts[v];if(!conflictsV){conflicts[v]=conflictsV={}}conflictsV[w]=true}function hasConflict(conflicts,v,w){if(v>w){var tmp=v;v=w;w=tmp}return _.has(conflicts[v],w)} /* * Try to align nodes into vertical "blocks" where possible. This algorithm * attempts to align a node with one of its median neighbors. If the edge * connecting a neighbor is a type-1 conflict then we ignore that possibility. * If a previous node has already formed a block with a node after the node * we're trying to form a block with, we also ignore that possibility - our * blocks would be split in that scenario. */function verticalAlignment(g,layering,conflicts,neighborFn){var root={},align={},pos={}; // We cache the position here based on the layering because the graph and // layering may be out of sync. The layering matrix is manipulated to // generate different extreme alignments. _.forEach(layering,function(layer){_.forEach(layer,function(v,order){root[v]=v;align[v]=v;pos[v]=order})});_.forEach(layering,function(layer){var prevIdx=-1;_.forEach(layer,function(v){var ws=neighborFn(v);if(ws.length){ws=_.sortBy(ws,function(w){return pos[w]});var mp=(ws.length-1)/2;for(var i=Math.floor(mp),il=Math.ceil(mp);i<=il;++i){var w=ws[i];if(align[v]===v&&prevIdxwLabel.lim){tailLabel=wLabel;flip=true}var candidates=_.filter(g.edges(),function(edge){return flip===isDescendant(t,t.node(edge.v),tailLabel)&&flip!==isDescendant(t,t.node(edge.w),tailLabel)});return _.minBy(candidates,function(edge){return slack(g,edge)})}function exchangeEdges(t,g,e,f){var v=e.v;var w=e.w;t.removeEdge(v,w);t.setEdge(f.v,f.w,{});initLowLimValues(t);initCutValues(t,g);updateRanks(t,g)}function updateRanks(t,g){var root=_.find(t.nodes(),function(v){return!g.node(v).parent});var vs=preorder(t,root);vs=vs.slice(1);_.forEach(vs,function(v){var parent=t.node(v).parent,edge=g.edge(v,parent),flipped=false;if(!edge){edge=g.edge(parent,v);flipped=true}g.node(v).rank=g.node(parent).rank+(flipped?edge.minlen:-edge.minlen)})} /* * Returns true if the edge is in the tree. */function isTreeEdge(tree,u,v){return tree.hasEdge(u,v)} /* * Returns true if the specified node is descendant of the root node per the * assigned low and lim attributes in the tree. */function isDescendant(tree,vLabel,rootLabel){return rootLabel.low<=vLabel.lim&&vLabel.lim<=rootLabel.lim}},{"../graphlib":7,"../lodash":10,"../util":29,"./feasible-tree":25,"./util":28}],28:[function(require,module,exports){"use strict";var _=require("../lodash");module.exports={longestPath:longestPath,slack:slack}; /* * Initializes ranks for the input graph using the longest path algorithm. This * algorithm scales well and is fast in practice, it yields rather poor * solutions. Nodes are pushed to the lowest layer possible, leaving the bottom * ranks wide and leaving edges longer than necessary. However, due to its * speed, this algorithm is good for getting an initial ranking that can be fed * into other algorithms. * * This algorithm does not normalize layers because it will be used by other * algorithms in most cases. If using this algorithm directly, be sure to * run normalize at the end. * * Pre-conditions: * * 1. Input graph is a DAG. * 2. Input graph node labels can be assigned properties. * * Post-conditions: * * 1. Each node will be assign an (unnormalized) "rank" property. */function longestPath(g){var visited={};function dfs(v){var label=g.node(v);if(_.has(visited,v)){return label.rank}visited[v]=true;var rank=_.min(_.map(g.outEdges(v),function(e){return dfs(e.w)-g.edge(e).minlen}));if(rank===Number.POSITIVE_INFINITY||// return value of _.map([]) for Lodash 3 rank===undefined||// return value of _.map([]) for Lodash 4 rank===null){// return value of _.map([null]) rank=0}return label.rank=rank}_.forEach(g.sources(),dfs)} /* * Returns the amount of slack for the given edge. The slack is defined as the * difference between the length of the edge and its minimum length. */function slack(g,e){return g.node(e.w).rank-g.node(e.v).rank-g.edge(e).minlen}},{"../lodash":10}],29:[function(require,module,exports){ /* eslint "no-console": off */ "use strict";var _=require("./lodash");var Graph=require("./graphlib").Graph;module.exports={addDummyNode:addDummyNode,simplify:simplify,asNonCompoundGraph:asNonCompoundGraph,successorWeights:successorWeights,predecessorWeights:predecessorWeights,intersectRect:intersectRect,buildLayerMatrix:buildLayerMatrix,normalizeRanks:normalizeRanks,removeEmptyRanks:removeEmptyRanks,addBorderNode:addBorderNode,maxRank:maxRank,partition:partition,time:time,notime:notime}; /* * Adds a dummy node to the graph and return v. */function addDummyNode(g,type,attrs,name){var v;do{v=_.uniqueId(name)}while(g.hasNode(v));attrs.dummy=type;g.setNode(v,attrs);return v} /* * Returns a new graph with only simple edges. Handles aggregation of data * associated with multi-edges. */function simplify(g){var simplified=(new Graph).setGraph(g.graph());_.forEach(g.nodes(),function(v){simplified.setNode(v,g.node(v))});_.forEach(g.edges(),function(e){var simpleLabel=simplified.edge(e.v,e.w)||{weight:0,minlen:1};var label=g.edge(e);simplified.setEdge(e.v,e.w,{weight:simpleLabel.weight+label.weight,minlen:Math.max(simpleLabel.minlen,label.minlen)})});return simplified}function asNonCompoundGraph(g){var simplified=new Graph({multigraph:g.isMultigraph()}).setGraph(g.graph());_.forEach(g.nodes(),function(v){if(!g.children(v).length){simplified.setNode(v,g.node(v))}});_.forEach(g.edges(),function(e){simplified.setEdge(e,g.edge(e))});return simplified}function successorWeights(g){var weightMap=_.map(g.nodes(),function(v){var sucs={};_.forEach(g.outEdges(v),function(e){sucs[e.w]=(sucs[e.w]||0)+g.edge(e).weight});return sucs});return _.zipObject(g.nodes(),weightMap)}function predecessorWeights(g){var weightMap=_.map(g.nodes(),function(v){var preds={};_.forEach(g.inEdges(v),function(e){preds[e.v]=(preds[e.v]||0)+g.edge(e).weight});return preds});return _.zipObject(g.nodes(),weightMap)} /* * Finds where a line starting at point ({x, y}) would intersect a rectangle * ({x, y, width, height}) if it were pointing at the rectangle's center. */function intersectRect(rect,point){var x=rect.x;var y=rect.y; // Rectangle intersection algorithm from: // http://math.stackexchange.com/questions/108113/find-edge-between-two-boxes var dx=point.x-x;var dy=point.y-y;var w=rect.width/2;var h=rect.height/2;if(!dx&&!dy){throw new Error("Not possible to find intersection inside of the rectangle")}var sx,sy;if(Math.abs(dy)*w>Math.abs(dx)*h){ // Intersection is top or bottom of rect. if(dy<0){h=-h}sx=h*dx/dy;sy=h}else{ // Intersection is left or right of rect. if(dx<0){w=-w}sx=w;sy=w*dy/dx}return{x:x+sx,y:y+sy}} /* * Given a DAG with each node assigned "rank" and "order" properties, this * function will produce a matrix with the ids of each node. */function buildLayerMatrix(g){var layering=_.map(_.range(maxRank(g)+1),function(){return[]});_.forEach(g.nodes(),function(v){var node=g.node(v);var rank=node.rank;if(!_.isUndefined(rank)){layering[rank][node.order]=v}});return layering} /* * Adjusts the ranks for all nodes in the graph such that all nodes v have * rank(v) >= 0 and at least one node w has rank(w) = 0. */function normalizeRanks(g){var min=_.min(_.map(g.nodes(),function(v){return g.node(v).rank}));_.forEach(g.nodes(),function(v){var node=g.node(v);if(_.has(node,"rank")){node.rank-=min}})}function removeEmptyRanks(g){ // Ranks may not start at 0, so we need to offset them var offset=_.min(_.map(g.nodes(),function(v){return g.node(v).rank}));var layers=[];_.forEach(g.nodes(),function(v){var rank=g.node(v).rank-offset;if(!layers[rank]){layers[rank]=[]}layers[rank].push(v)});var delta=0;var nodeRankFactor=g.graph().nodeRankFactor;_.forEach(layers,function(vs,i){if(_.isUndefined(vs)&&i%nodeRankFactor!==0){--delta}else if(delta){_.forEach(vs,function(v){g.node(v).rank+=delta})}})}function addBorderNode(g,prefix,rank,order){var node={width:0,height:0};if(arguments.length>=4){node.rank=rank;node.order=order}return addDummyNode(g,"border",node,prefix)}function maxRank(g){return _.max(_.map(g.nodes(),function(v){var rank=g.node(v).rank;if(!_.isUndefined(rank)){return rank}}))} /* * Partition a collection into two groups: `lhs` and `rhs`. If the supplied * function returns true for an entry it goes into `lhs`. Otherwise it goes * into `rhs. */function partition(collection,fn){var result={lhs:[],rhs:[]};_.forEach(collection,function(value){if(fn(value)){result.lhs.push(value)}else{result.rhs.push(value)}});return result} /* * Returns a new function that wraps `fn` with a timer. The wrapper logs the * time it takes to execute the function. */function time(name,fn){var start=_.now();try{return fn()}finally{console.log(name+" time: "+(_.now()-start)+"ms")}}function notime(name,fn){return fn()}},{"./graphlib":7,"./lodash":10}],30:[function(require,module,exports){module.exports="0.8.5"},{}]},{},[1])(1)});