import { distance } from './util'; var EPSILON = 0.0001; /** * 使用牛顿切割法求最近的点 * @param {number[]} xArr 点的 x 数组 * @param {number[]} yArr 点的 y 数组 * @param {number} x 指定的点 x * @param {number} y 指定的点 y * @param {Function} tCallback 差值函数 */ export function nearestPoint(xArr, yArr, x, y, tCallback, length) { var t; var d = Infinity; var v0 = [x, y]; var segNum = 20; if (length && length > 200) { segNum = length / 10; } var increaseRate = 1 / segNum; var interval = increaseRate / 10; for (var i = 0; i <= segNum; i++) { var _t = i * increaseRate; var v1 = [tCallback.apply(null, xArr.concat([_t])), tCallback.apply(null, yArr.concat([_t]))]; var d1 = distance(v0[0], v0[1], v1[0], v1[1]); if (d1 < d) { t = _t; d = d1; } } // 提前终止 if (t === 0) { return { x: xArr[0], y: yArr[0], }; } if (t === 1) { var count = xArr.length; return { x: xArr[count - 1], y: yArr[count - 1], }; } d = Infinity; for (var i = 0; i < 32; i++) { if (interval < EPSILON) { break; } var prev = t - interval; var next = t + interval; var v1 = [tCallback.apply(null, xArr.concat([prev])), tCallback.apply(null, yArr.concat([prev]))]; var d1 = distance(v0[0], v0[1], v1[0], v1[1]); if (prev >= 0 && d1 < d) { t = prev; d = d1; } else { var v2 = [tCallback.apply(null, xArr.concat([next])), tCallback.apply(null, yArr.concat([next]))]; var d2 = distance(v0[0], v0[1], v2[0], v2[1]); if (next <= 1 && d2 < d) { t = next; d = d2; } else { interval *= 0.5; } } } return { x: tCallback.apply(null, xArr.concat([t])), y: tCallback.apply(null, yArr.concat([t])), }; } // 近似求解 https://community.khronos.org/t/3d-cubic-bezier-segment-length/62363/2 export function snapLength(xArr, yArr) { var totalLength = 0; var count = xArr.length; for (var i = 0; i < count; i++) { var x = xArr[i]; var y = yArr[i]; var nextX = xArr[(i + 1) % count]; var nextY = yArr[(i + 1) % count]; totalLength += distance(x, y, nextX, nextY); } return totalLength / 2; } //# sourceMappingURL=bezier.js.map