"use strict"; /** * @fileoverview 矩阵运算,本来是要引入 gl-matrix, 但是考虑到 g-mobile 对大小有限制,同时 g-webgl 使用的 matrix 不一致 * 所以,这里仅实现 2D 几个运算,上层自己引入 gl-matrix * @author dxq613@gmail.com */ Object.defineProperty(exports, "__esModule", { value: true }); exports.invert = exports.multiplyVec2 = exports.multiplyMatrix = void 0; /** * 3阶矩阵相乘 * @param {number[]} a 矩阵1 * @param {number[]} b 矩阵2 */ function multiplyMatrix(a, b) { var out = []; var a00 = a[0]; var a01 = a[1]; var a02 = a[2]; var a10 = a[3]; var a11 = a[4]; var a12 = a[5]; var a20 = a[6]; var a21 = a[7]; var a22 = a[8]; var b00 = b[0]; var b01 = b[1]; var b02 = b[2]; var b10 = b[3]; var b11 = b[4]; var b12 = b[5]; var b20 = b[6]; var b21 = b[7]; var b22 = b[8]; out[0] = b00 * a00 + b01 * a10 + b02 * a20; out[1] = b00 * a01 + b01 * a11 + b02 * a21; out[2] = b00 * a02 + b01 * a12 + b02 * a22; out[3] = b10 * a00 + b11 * a10 + b12 * a20; out[4] = b10 * a01 + b11 * a11 + b12 * a21; out[5] = b10 * a02 + b11 * a12 + b12 * a22; out[6] = b20 * a00 + b21 * a10 + b22 * a20; out[7] = b20 * a01 + b21 * a11 + b22 * a21; out[8] = b20 * a02 + b21 * a12 + b22 * a22; return out; } exports.multiplyMatrix = multiplyMatrix; /** * 3阶矩阵同2阶向量相乘 * @param {number[]} m 矩阵 * @param {number[]} v 二阶向量 */ function multiplyVec2(m, v) { var out = []; var x = v[0]; var y = v[1]; out[0] = m[0] * x + m[3] * y + m[6]; out[1] = m[1] * x + m[4] * y + m[7]; return out; } exports.multiplyVec2 = multiplyVec2; /** * 矩阵的逆 * @param {number[]} a 矩阵 */ function invert(a) { var out = []; var a00 = a[0]; var a01 = a[1]; var a02 = a[2]; var a10 = a[3]; var a11 = a[4]; var a12 = a[5]; var a20 = a[6]; var a21 = a[7]; var a22 = a[8]; var b01 = a22 * a11 - a12 * a21; var b11 = -a22 * a10 + a12 * a20; var b21 = a21 * a10 - a11 * a20; // Calculate the determinant var det = a00 * b01 + a01 * b11 + a02 * b21; if (!det) { return null; } det = 1.0 / det; out[0] = b01 * det; out[1] = (-a22 * a01 + a02 * a21) * det; out[2] = (a12 * a01 - a02 * a11) * det; out[3] = b11 * det; out[4] = (a22 * a00 - a02 * a20) * det; out[5] = (-a12 * a00 + a02 * a10) * det; out[6] = b21 * det; out[7] = (-a21 * a00 + a01 * a20) * det; out[8] = (a11 * a00 - a01 * a10) * det; return out; } exports.invert = invert; //# sourceMappingURL=matrix.js.map