import {max, range, tickStep} from "d3-array"; import {slice} from "./array.js"; import {blurX, blurY} from "./blur.js"; import constant from "./constant.js"; import contours from "./contours.js"; function defaultX(d) { return d[0]; } function defaultY(d) { return d[1]; } function defaultWeight() { return 1; } export default function() { var x = defaultX, y = defaultY, weight = defaultWeight, dx = 960, dy = 500, r = 20, // blur radius k = 2, // log2(grid cell size) o = r * 3, // grid offset, to pad for blur n = (dx + o * 2) >> k, // grid width m = (dy + o * 2) >> k, // grid height threshold = constant(20); function density(data) { var values0 = new Float32Array(n * m), values1 = new Float32Array(n * m), pow2k = Math.pow(2, -k); data.forEach(function(d, i, data) { var xi = (x(d, i, data) + o) * pow2k, yi = (y(d, i, data) + o) * pow2k, wi = +weight(d, i, data); if (xi >= 0 && xi < n && yi >= 0 && yi < m) { var x0 = Math.floor(xi), y0 = Math.floor(yi), xt = xi - x0 - 0.5, yt = yi - y0 - 0.5; values0[x0 + y0 * n] += (1 - xt) * (1 - yt) * wi; values0[x0 + 1 + y0 * n] += xt * (1 - yt) * wi; values0[x0 + 1 + (y0 + 1) * n] += xt * yt * wi; values0[x0 + (y0 + 1) * n] += (1 - xt) * yt * wi; } }); // TODO Optimize. blurX({width: n, height: m, data: values0}, {width: n, height: m, data: values1}, r >> k); blurY({width: n, height: m, data: values1}, {width: n, height: m, data: values0}, r >> k); blurX({width: n, height: m, data: values0}, {width: n, height: m, data: values1}, r >> k); blurY({width: n, height: m, data: values1}, {width: n, height: m, data: values0}, r >> k); blurX({width: n, height: m, data: values0}, {width: n, height: m, data: values1}, r >> k); blurY({width: n, height: m, data: values1}, {width: n, height: m, data: values0}, r >> k); var tz = threshold(values0); // Convert number of thresholds into uniform thresholds. if (!Array.isArray(tz)) { var stop = max(values0); tz = tickStep(0, stop, tz); tz = range(0, Math.floor(stop / tz) * tz, tz); tz.shift(); } return contours() .thresholds(tz) .size([n, m]) (values0) .map(transform); } function transform(geometry) { geometry.value *= Math.pow(2, -2 * k); // Density in points per square pixel. geometry.coordinates.forEach(transformPolygon); return geometry; } function transformPolygon(coordinates) { coordinates.forEach(transformRing); } function transformRing(coordinates) { coordinates.forEach(transformPoint); } // TODO Optimize. function transformPoint(coordinates) { coordinates[0] = coordinates[0] * Math.pow(2, k) - o; coordinates[1] = coordinates[1] * Math.pow(2, k) - o; } function resize() { o = r * 3; n = (dx + o * 2) >> k; m = (dy + o * 2) >> k; return density; } density.x = function(_) { return arguments.length ? (x = typeof _ === "function" ? _ : constant(+_), density) : x; }; density.y = function(_) { return arguments.length ? (y = typeof _ === "function" ? _ : constant(+_), density) : y; }; density.weight = function(_) { return arguments.length ? (weight = typeof _ === "function" ? _ : constant(+_), density) : weight; }; density.size = function(_) { if (!arguments.length) return [dx, dy]; var _0 = +_[0], _1 = +_[1]; if (!(_0 >= 0 && _1 >= 0)) throw new Error("invalid size"); return dx = _0, dy = _1, resize(); }; density.cellSize = function(_) { if (!arguments.length) return 1 << k; if (!((_ = +_) >= 1)) throw new Error("invalid cell size"); return k = Math.floor(Math.log(_) / Math.LN2), resize(); }; density.thresholds = function(_) { return arguments.length ? (threshold = typeof _ === "function" ? _ : Array.isArray(_) ? constant(slice.call(_)) : constant(_), density) : threshold; }; density.bandwidth = function(_) { if (!arguments.length) return Math.sqrt(r * (r + 1)); if (!((_ = +_) >= 0)) throw new Error("invalid bandwidth"); return r = Math.round((Math.sqrt(4 * _ * _ + 1) - 1) / 2), resize(); }; return density; }