/*! vue-amap v1.1.20 */ import { defineComponent, openBlock, createElementBlock, renderSlot, createElementVNode, withDirectives, createCommentVNode, vShow, Fragment, renderList } from 'vue'; const makeInstaller = (components = []) => { const apps = []; const install = (app) => { if (apps.includes(app)) return; apps.push(app); components.forEach((c) => app.use(c)); }; return { install }; }; const withInstall = (main, extra) => { main.install = (app) => { for (const comp of [main, ...Object.values(extra != null ? extra : {})]) { app.component(comp.name, comp); } }; if (extra) { for (const [key, comp] of Object.entries(extra)) { main[key] = comp; } } return main; }; function guid() { let s = []; let hexDigits = "0123456789abcdef"; for (var i = 0; i < 36; i++) { s[i] = hexDigits.substr(Math.floor(Math.random() * 16), 1); } s[14] = "4"; s[19] = hexDigits.substr(s[19] & 3 | 8, 1); s[8] = s[13] = s[18] = s[23] = "-"; var uuid = s.join(""); return uuid; } var commonjsGlobal = typeof globalThis !== 'undefined' ? globalThis : typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {}; var camelcase = function () { var str = [].map.call(arguments, function (str) { return str.trim(); }).filter(function (str) { return str.length; }).join('-'); if (!str.length) { return ''; } if (str.length === 1 || !(/[_.\- ]+/).test(str) ) { if (str[0] === str[0].toLowerCase() && str.slice(1) !== str.slice(1).toLowerCase()) { return str; } return str.toLowerCase(); } return str .replace(/^[_.\- ]+/, '') .toLowerCase() .replace(/[_.\- ]+(\w|$)/g, function (m, p1) { return p1.toUpperCase(); }); }; var camelCase = camelcase; var uppercamelcase = function () { var cased = camelCase.apply(camelCase, arguments); return cased.charAt(0).toUpperCase() + cased.slice(1); }; var upperCamelCase = uppercamelcase; let eventHelper; class EventHelper { constructor() { this._listener = /* @__PURE__ */ new Map(); } addListener(instance, eventName, handler, context) { if (!AMap) throw new Error("please wait for Map API load"); if (!instance.on) { return; } instance.on(eventName, handler, context); if (!this._listener.get(instance)) this._listener.set(instance, {}); const listenerMap = this._listener.get(instance); if (!listenerMap[eventName]) listenerMap[eventName] = []; listenerMap[eventName].push(handler); } removeListener(instance, eventName, handler) { if (!AMap) throw new Error("please wait for Map API load"); if (!instance.off) { return; } if (!this._listener.get(instance) || !this._listener.get(instance)[eventName]) return; const listenerArr = this._listener.get(instance)[eventName]; if (handler) { const lIndex = listenerArr.indexOf(handler); instance.off(eventName, listenerArr[lIndex]); listenerArr.splice(lIndex, 1); } else { listenerArr.forEach((listener) => { instance.off(eventName, listener); }); this._listener.get(instance)[eventName] = []; } } addListenerOnce(instance, eventName, handler, context) { return instance.on(eventName, handler, context, true); } trigger(instance, eventName, args) { return instance.emit(eventName, args); } clearListeners(instance) { const listeners = this._listener.get(instance); if (!listeners) return; Object.keys(listeners).map((eventName) => { instance.clearEvents(eventName); }); } } eventHelper = eventHelper || new EventHelper(); var eventHelper$1 = eventHelper; function isMapInstance(instance) { if (!instance) { return false; } return instance instanceof AMap.Map; } function isOverlayGroupInstance(instance) { if (!instance) { return false; } return instance instanceof AMap.OverlayGroup; } function isIndoorMapInstance(instance) { if (!instance) { return false; } return instance instanceof AMap.IndoorMap; } function isVectorLayerInstance(instance) { if (!instance) { return false; } return instance instanceof AMap.VectorLayer; } function convertEventToLowerCase(functionName) { if (!functionName || functionName.length < 4) { return functionName; } const func = functionName.substring(3, functionName.length); const firstLetter = functionName[2].toLowerCase(); return firstLetter + func; } const eventReg = /^on[A-Z]+/; function loadScript(url, callback) { if (!url) { throw new Error("\u8BF7\u4F20\u5165url"); } const script = document.createElement("script"); script.type = "text/javascript"; script.async = true; script.defer = true; script.src = url; document.body.appendChild(script); if (callback) { script.addEventListener("load", () => { callback(); }); } } function convertLnglat(lnglat) { if (Array.isArray(lnglat)) { return lnglat.map(convertLnglat); } return lnglat.toArray(); } var registerMixin = defineComponent({ inject: { parentInstance: { default: null } }, inheritAttrs: false, props: { visible: { type: Boolean, default: true }, zIndex: { type: Number }, reEventWhenUpdate: { type: Boolean, default: false } }, emits: ["init"], data() { return { needInitComponents: [], unwatchFns: [], propsRedirect: {}, converters: {}, isDestroy: false, cacheEvents: {}, isMounted: false }; }, created() { this.$amapComponent = null; this.$parentComponent = null; }, mounted() { if (this.parentInstance) { if (this.parentInstance.$amapComponent) { this.register(); } else { this.parentInstance.addChildComponent(this); } } }, beforeUnmount() { if (!this.$amapComponent) return; this.unregisterEvents(); this.unwatchFns.forEach((item) => item()); this.unwatchFns = []; this.destroyComponent(); this.isDestroy = true; }, beforeUpdate() { if (this.reEventWhenUpdate && this.isMounted && this.$amapComponent) { this.unregisterEvents(); } }, updated() { if (this.reEventWhenUpdate && this.isMounted && this.$amapComponent) { this.registerEvents(); } }, methods: { getHandlerFun(prop) { if (this[`__${prop}`]) { return this[`__${prop}`]; } if (!this.$amapComponent) { return null; } return this.$amapComponent[`set${upperCamelCase(prop)}`]; }, convertProps() { const props = {}; const { $props, propsRedirect } = this; return Object.keys($props).reduce((res, _key) => { let key = _key; const propsValue = this.convertSignalProp(key, $props[key]); if (propsValue === void 0) return res; if (propsRedirect && propsRedirect[_key]) key = propsRedirect[key]; props[key] = propsValue; return res; }, props); }, convertSignalProp(key, sourceData) { if (this.converters && this.converters[key]) { return this.converters[key].call(this, sourceData); } return sourceData; }, registerEvents() { const $props = this.$attrs; Object.keys($props).forEach((key) => { if (eventReg.test(key)) { const eventKey = convertEventToLowerCase(key); eventHelper$1.addListener(this.$amapComponent, eventKey, $props[key]); this.cacheEvents[eventKey] = $props[key]; } }); }, unregisterEvents() { Object.keys(this.cacheEvents).forEach((eventKey) => { eventHelper$1.removeListener(this.$amapComponent, eventKey, this.cacheEvents[eventKey]); delete this.cacheEvents[eventKey]; }); }, setPropWatchers() { const { propsRedirect, $props } = this; Object.keys($props).forEach((prop) => { let handleProp = prop; if (propsRedirect && propsRedirect[prop]) handleProp = propsRedirect[prop]; const handleFun = this.getHandlerFun(handleProp); if (!handleFun) return; const watchOptions = { deep: false }; const propValueType = Object.prototype.toString.call($props[prop]); if (propValueType === "[object Object]" || propValueType === "[object Array]") { watchOptions.deep = true; } const unwatch = this.$watch(prop, (nv) => { handleFun.call(this.$amapComponent, this.convertSignalProp(prop, nv)); }, watchOptions); this.unwatchFns.push(unwatch); }); }, initProps() { const props = ["editable", "visible", "zooms"]; props.forEach((propStr) => { if (this[propStr] !== void 0) { const handleFun = this.getHandlerFun(propStr); handleFun && handleFun.call(this.$amapComponent, this.convertSignalProp(propStr, this[propStr])); } }); }, lazyRegister() { const $parent = this.parentInstance; if ($parent && $parent.addChildComponent) { $parent.addChildComponent(this); } }, addChildComponent(component) { this.needInitComponents.push(component); }, createChildren() { while (this.needInitComponents.length > 0) { this.needInitComponents[0].register(); this.needInitComponents.splice(0, 1); } }, register() { if (this.parentInstance && !this.$parentComponent) { this.$parentComponent = this.parentInstance.$amapComponent; } const res = this["__initComponent"] && this["__initComponent"](this.convertProps()); if (res && res.then) res.then((instance) => this.registerRest(instance)); else this.registerRest(res); }, registerRest(instance) { if (!this.$amapComponent && instance) this.$amapComponent = instance; this.registerEvents(); this.initProps(); this.setPropWatchers(); this.$emit("init", this.$amapComponent, this); this.$nextTick(() => { this.createChildren(); }); this.isMounted = true; }, $$getInstance() { return this.$amapComponent; }, destroyComponent() { this.$amapComponent.setMap && this.$amapComponent.setMap(null); this.$amapComponent.close && this.$amapComponent.close(); this.$amapComponent.editor && this.$amapComponent.editor.close(); }, __visible(flag) { if (!!this.$amapComponent && !!this.$amapComponent.show && !!this.$amapComponent.hide) { flag === false ? this.$amapComponent.hide() : this.$amapComponent.show(); } }, __zIndex(value) { if (this.$amapComponent && this.$amapComponent.setzIndex) { this.$amapComponent.setzIndex(value); } } } }); var dist = {exports: {}}; (function (module, exports) { (function(m,p){module.exports=p();})(commonjsGlobal,function(){function m(a){var b=[];a.AMapUI&&b.push(p(a.AMapUI));a.Loca&&b.push(r(a.Loca));return Promise.all(b)}function p(a){return new Promise(function(h,c){var f=[];if(a.plugins)for(var e=0;e true * * _.isObjectLike([1, 2, 3]); * // => true * * _.isObjectLike(_.noop); * // => false * * _.isObjectLike(null); * // => false */ function isObjectLike(value) { return value != null && typeof value == 'object'; } /** `Object#toString` result references. */ var symbolTag = '[object Symbol]'; /** * Checks if `value` is classified as a `Symbol` primitive or object. * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is a symbol, else `false`. * @example * * _.isSymbol(Symbol.iterator); * // => true * * _.isSymbol('abc'); * // => false */ function isSymbol(value) { return typeof value == 'symbol' || (isObjectLike(value) && baseGetTag(value) == symbolTag); } /** * Checks if `value` is classified as an `Array` object. * * @static * @memberOf _ * @since 0.1.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is an array, else `false`. * @example * * _.isArray([1, 2, 3]); * // => true * * _.isArray(document.body.children); * // => false * * _.isArray('abc'); * // => false * * _.isArray(_.noop); * // => false */ var isArray = Array.isArray; var isArray$1 = isArray; /** Used to match a single whitespace character. */ var reWhitespace = /\s/; /** * Used by `_.trim` and `_.trimEnd` to get the index of the last non-whitespace * character of `string`. * * @private * @param {string} string The string to inspect. * @returns {number} Returns the index of the last non-whitespace character. */ function trimmedEndIndex(string) { var index = string.length; while (index-- && reWhitespace.test(string.charAt(index))) {} return index; } /** Used to match leading whitespace. */ var reTrimStart = /^\s+/; /** * The base implementation of `_.trim`. * * @private * @param {string} string The string to trim. * @returns {string} Returns the trimmed string. */ function baseTrim(string) { return string ? string.slice(0, trimmedEndIndex(string) + 1).replace(reTrimStart, '') : string; } /** * Checks if `value` is the * [language type](http://www.ecma-international.org/ecma-262/7.0/#sec-ecmascript-language-types) * of `Object`. (e.g. arrays, functions, objects, regexes, `new Number(0)`, and `new String('')`) * * @static * @memberOf _ * @since 0.1.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is an object, else `false`. * @example * * _.isObject({}); * // => true * * _.isObject([1, 2, 3]); * // => true * * _.isObject(_.noop); * // => true * * _.isObject(null); * // => false */ function isObject(value) { var type = typeof value; return value != null && (type == 'object' || type == 'function'); } /** Used as references for various `Number` constants. */ var NAN = 0 / 0; /** Used to detect bad signed hexadecimal string values. */ var reIsBadHex = /^[-+]0x[0-9a-f]+$/i; /** Used to detect binary string values. */ var reIsBinary = /^0b[01]+$/i; /** Used to detect octal string values. */ var reIsOctal = /^0o[0-7]+$/i; /** Built-in method references without a dependency on `root`. */ var freeParseInt = parseInt; /** * Converts `value` to a number. * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to process. * @returns {number} Returns the number. * @example * * _.toNumber(3.2); * // => 3.2 * * _.toNumber(Number.MIN_VALUE); * // => 5e-324 * * _.toNumber(Infinity); * // => Infinity * * _.toNumber('3.2'); * // => 3.2 */ function toNumber(value) { if (typeof value == 'number') { return value; } if (isSymbol(value)) { return NAN; } if (isObject(value)) { var other = typeof value.valueOf == 'function' ? value.valueOf() : value; value = isObject(other) ? (other + '') : other; } if (typeof value != 'string') { return value === 0 ? value : +value; } value = baseTrim(value); var isBinary = reIsBinary.test(value); return (isBinary || reIsOctal.test(value)) ? freeParseInt(value.slice(2), isBinary ? 2 : 8) : (reIsBadHex.test(value) ? NAN : +value); } /** Used as references for various `Number` constants. */ var INFINITY = 1 / 0, MAX_INTEGER = 1.7976931348623157e+308; /** * Converts `value` to a finite number. * * @static * @memberOf _ * @since 4.12.0 * @category Lang * @param {*} value The value to convert. * @returns {number} Returns the converted number. * @example * * _.toFinite(3.2); * // => 3.2 * * _.toFinite(Number.MIN_VALUE); * // => 5e-324 * * _.toFinite(Infinity); * // => 1.7976931348623157e+308 * * _.toFinite('3.2'); * // => 3.2 */ function toFinite(value) { if (!value) { return value === 0 ? value : 0; } value = toNumber(value); if (value === INFINITY || value === -INFINITY) { var sign = (value < 0 ? -1 : 1); return sign * MAX_INTEGER; } return value === value ? value : 0; } /** * Converts `value` to an integer. * * **Note:** This method is loosely based on * [`ToInteger`](http://www.ecma-international.org/ecma-262/7.0/#sec-tointeger). * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to convert. * @returns {number} Returns the converted integer. * @example * * _.toInteger(3.2); * // => 3 * * _.toInteger(Number.MIN_VALUE); * // => 0 * * _.toInteger(Infinity); * // => 1.7976931348623157e+308 * * _.toInteger('3.2'); * // => 3 */ function toInteger(value) { var result = toFinite(value), remainder = result % 1; return result === result ? (remainder ? result - remainder : result) : 0; } /** * This method returns the first argument it receives. * * @static * @since 0.1.0 * @memberOf _ * @category Util * @param {*} value Any value. * @returns {*} Returns `value`. * @example * * var object = { 'a': 1 }; * * console.log(_.identity(object) === object); * // => true */ function identity(value) { return value; } /** `Object#toString` result references. */ var asyncTag = '[object AsyncFunction]', funcTag$1 = '[object Function]', genTag = '[object GeneratorFunction]', proxyTag = '[object Proxy]'; /** * Checks if `value` is classified as a `Function` object. * * @static * @memberOf _ * @since 0.1.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is a function, else `false`. * @example * * _.isFunction(_); * // => true * * _.isFunction(/abc/); * // => false */ function isFunction(value) { if (!isObject(value)) { return false; } // The use of `Object#toString` avoids issues with the `typeof` operator // in Safari 9 which returns 'object' for typed arrays and other constructors. var tag = baseGetTag(value); return tag == funcTag$1 || tag == genTag || tag == asyncTag || tag == proxyTag; } /** Used to detect overreaching core-js shims. */ var coreJsData = root$1['__core-js_shared__']; var coreJsData$1 = coreJsData; /** Used to detect methods masquerading as native. */ var maskSrcKey = (function() { var uid = /[^.]+$/.exec(coreJsData$1 && coreJsData$1.keys && coreJsData$1.keys.IE_PROTO || ''); return uid ? ('Symbol(src)_1.' + uid) : ''; }()); /** * Checks if `func` has its source masked. * * @private * @param {Function} func The function to check. * @returns {boolean} Returns `true` if `func` is masked, else `false`. */ function isMasked(func) { return !!maskSrcKey && (maskSrcKey in func); } /** Used for built-in method references. */ var funcProto$2 = Function.prototype; /** Used to resolve the decompiled source of functions. */ var funcToString$2 = funcProto$2.toString; /** * Converts `func` to its source code. * * @private * @param {Function} func The function to convert. * @returns {string} Returns the source code. */ function toSource(func) { if (func != null) { try { return funcToString$2.call(func); } catch (e) {} try { return (func + ''); } catch (e) {} } return ''; } /** * Used to match `RegExp` * [syntax characters](http://ecma-international.org/ecma-262/7.0/#sec-patterns). */ var reRegExpChar = /[\\^$.*+?()[\]{}|]/g; /** Used to detect host constructors (Safari). */ var reIsHostCtor = /^\[object .+?Constructor\]$/; /** Used for built-in method references. */ var funcProto$1 = Function.prototype, objectProto$a = Object.prototype; /** Used to resolve the decompiled source of functions. */ var funcToString$1 = funcProto$1.toString; /** Used to check objects for own properties. */ var hasOwnProperty$a = objectProto$a.hasOwnProperty; /** Used to detect if a method is native. */ var reIsNative = RegExp('^' + funcToString$1.call(hasOwnProperty$a).replace(reRegExpChar, '\\$&') .replace(/hasOwnProperty|(function).*?(?=\\\()| for .+?(?=\\\])/g, '$1.*?') + '$' ); /** * The base implementation of `_.isNative` without bad shim checks. * * @private * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is a native function, * else `false`. */ function baseIsNative(value) { if (!isObject(value) || isMasked(value)) { return false; } var pattern = isFunction(value) ? reIsNative : reIsHostCtor; return pattern.test(toSource(value)); } /** * Gets the value at `key` of `object`. * * @private * @param {Object} [object] The object to query. * @param {string} key The key of the property to get. * @returns {*} Returns the property value. */ function getValue(object, key) { return object == null ? undefined : object[key]; } /** * Gets the native function at `key` of `object`. * * @private * @param {Object} object The object to query. * @param {string} key The key of the method to get. * @returns {*} Returns the function if it's native, else `undefined`. */ function getNative(object, key) { var value = getValue(object, key); return baseIsNative(value) ? value : undefined; } /* Built-in method references that are verified to be native. */ var WeakMap$1 = getNative(root$1, 'WeakMap'); var WeakMap$2 = WeakMap$1; /** Used to store function metadata. */ var metaMap = WeakMap$2 && new WeakMap$2; var metaMap$1 = metaMap; /** * The base implementation of `setData` without support for hot loop shorting. * * @private * @param {Function} func The function to associate metadata with. * @param {*} data The metadata. * @returns {Function} Returns `func`. */ var baseSetData = !metaMap$1 ? identity : function(func, data) { metaMap$1.set(func, data); return func; }; var baseSetData$1 = baseSetData; /** Built-in value references. */ var objectCreate = Object.create; /** * The base implementation of `_.create` without support for assigning * properties to the created object. * * @private * @param {Object} proto The object to inherit from. * @returns {Object} Returns the new object. */ var baseCreate = (function() { function object() {} return function(proto) { if (!isObject(proto)) { return {}; } if (objectCreate) { return objectCreate(proto); } object.prototype = proto; var result = new object; object.prototype = undefined; return result; }; }()); var baseCreate$1 = baseCreate; /** * Creates a function that produces an instance of `Ctor` regardless of * whether it was invoked as part of a `new` expression or by `call` or `apply`. * * @private * @param {Function} Ctor The constructor to wrap. * @returns {Function} Returns the new wrapped function. */ function createCtor(Ctor) { return function() { // Use a `switch` statement to work with class constructors. See // http://ecma-international.org/ecma-262/7.0/#sec-ecmascript-function-objects-call-thisargument-argumentslist // for more details. var args = arguments; switch (args.length) { case 0: return new Ctor; case 1: return new Ctor(args[0]); case 2: return new Ctor(args[0], args[1]); case 3: return new Ctor(args[0], args[1], args[2]); case 4: return new Ctor(args[0], args[1], args[2], args[3]); case 5: return new Ctor(args[0], args[1], args[2], args[3], args[4]); case 6: return new Ctor(args[0], args[1], args[2], args[3], args[4], args[5]); case 7: return new Ctor(args[0], args[1], args[2], args[3], args[4], args[5], args[6]); } var thisBinding = baseCreate$1(Ctor.prototype), result = Ctor.apply(thisBinding, args); // Mimic the constructor's `return` behavior. // See https://es5.github.io/#x13.2.2 for more details. return isObject(result) ? result : thisBinding; }; } /** Used to compose bitmasks for function metadata. */ var WRAP_BIND_FLAG$7 = 1; /** * Creates a function that wraps `func` to invoke it with the optional `this` * binding of `thisArg`. * * @private * @param {Function} func The function to wrap. * @param {number} bitmask The bitmask flags. See `createWrap` for more details. * @param {*} [thisArg] The `this` binding of `func`. * @returns {Function} Returns the new wrapped function. */ function createBind(func, bitmask, thisArg) { var isBind = bitmask & WRAP_BIND_FLAG$7, Ctor = createCtor(func); function wrapper() { var fn = (this && this !== root$1 && this instanceof wrapper) ? Ctor : func; return fn.apply(isBind ? thisArg : this, arguments); } return wrapper; } /** * A faster alternative to `Function#apply`, this function invokes `func` * with the `this` binding of `thisArg` and the arguments of `args`. * * @private * @param {Function} func The function to invoke. * @param {*} thisArg The `this` binding of `func`. * @param {Array} args The arguments to invoke `func` with. * @returns {*} Returns the result of `func`. */ function apply(func, thisArg, args) { switch (args.length) { case 0: return func.call(thisArg); case 1: return func.call(thisArg, args[0]); case 2: return func.call(thisArg, args[0], args[1]); case 3: return func.call(thisArg, args[0], args[1], args[2]); } return func.apply(thisArg, args); } /* Built-in method references for those with the same name as other `lodash` methods. */ var nativeMax$3 = Math.max; /** * Creates an array that is the composition of partially applied arguments, * placeholders, and provided arguments into a single array of arguments. * * @private * @param {Array} args The provided arguments. * @param {Array} partials The arguments to prepend to those provided. * @param {Array} holders The `partials` placeholder indexes. * @params {boolean} [isCurried] Specify composing for a curried function. * @returns {Array} Returns the new array of composed arguments. */ function composeArgs(args, partials, holders, isCurried) { var argsIndex = -1, argsLength = args.length, holdersLength = holders.length, leftIndex = -1, leftLength = partials.length, rangeLength = nativeMax$3(argsLength - holdersLength, 0), result = Array(leftLength + rangeLength), isUncurried = !isCurried; while (++leftIndex < leftLength) { result[leftIndex] = partials[leftIndex]; } while (++argsIndex < holdersLength) { if (isUncurried || argsIndex < argsLength) { result[holders[argsIndex]] = args[argsIndex]; } } while (rangeLength--) { result[leftIndex++] = args[argsIndex++]; } return result; } /* Built-in method references for those with the same name as other `lodash` methods. */ var nativeMax$2 = Math.max; /** * This function is like `composeArgs` except that the arguments composition * is tailored for `_.partialRight`. * * @private * @param {Array} args The provided arguments. * @param {Array} partials The arguments to append to those provided. * @param {Array} holders The `partials` placeholder indexes. * @params {boolean} [isCurried] Specify composing for a curried function. * @returns {Array} Returns the new array of composed arguments. */ function composeArgsRight(args, partials, holders, isCurried) { var argsIndex = -1, argsLength = args.length, holdersIndex = -1, holdersLength = holders.length, rightIndex = -1, rightLength = partials.length, rangeLength = nativeMax$2(argsLength - holdersLength, 0), result = Array(rangeLength + rightLength), isUncurried = !isCurried; while (++argsIndex < rangeLength) { result[argsIndex] = args[argsIndex]; } var offset = argsIndex; while (++rightIndex < rightLength) { result[offset + rightIndex] = partials[rightIndex]; } while (++holdersIndex < holdersLength) { if (isUncurried || argsIndex < argsLength) { result[offset + holders[holdersIndex]] = args[argsIndex++]; } } return result; } /** * Gets the number of `placeholder` occurrences in `array`. * * @private * @param {Array} array The array to inspect. * @param {*} placeholder The placeholder to search for. * @returns {number} Returns the placeholder count. */ function countHolders(array, placeholder) { var length = array.length, result = 0; while (length--) { if (array[length] === placeholder) { ++result; } } return result; } /** * The function whose prototype chain sequence wrappers inherit from. * * @private */ function baseLodash() { // No operation performed. } /** Used as references for the maximum length and index of an array. */ var MAX_ARRAY_LENGTH = 4294967295; /** * Creates a lazy wrapper object which wraps `value` to enable lazy evaluation. * * @private * @constructor * @param {*} value The value to wrap. */ function LazyWrapper(value) { this.__wrapped__ = value; this.__actions__ = []; this.__dir__ = 1; this.__filtered__ = false; this.__iteratees__ = []; this.__takeCount__ = MAX_ARRAY_LENGTH; this.__views__ = []; } // Ensure `LazyWrapper` is an instance of `baseLodash`. LazyWrapper.prototype = baseCreate$1(baseLodash.prototype); LazyWrapper.prototype.constructor = LazyWrapper; /** * This method returns `undefined`. * * @static * @memberOf _ * @since 2.3.0 * @category Util * @example * * _.times(2, _.noop); * // => [undefined, undefined] */ function noop() { // No operation performed. } /** * Gets metadata for `func`. * * @private * @param {Function} func The function to query. * @returns {*} Returns the metadata for `func`. */ var getData = !metaMap$1 ? noop : function(func) { return metaMap$1.get(func); }; var getData$1 = getData; /** Used to lookup unminified function names. */ var realNames = {}; var realNames$1 = realNames; /** Used for built-in method references. */ var objectProto$9 = Object.prototype; /** Used to check objects for own properties. */ var hasOwnProperty$9 = objectProto$9.hasOwnProperty; /** * Gets the name of `func`. * * @private * @param {Function} func The function to query. * @returns {string} Returns the function name. */ function getFuncName(func) { var result = (func.name + ''), array = realNames$1[result], length = hasOwnProperty$9.call(realNames$1, result) ? array.length : 0; while (length--) { var data = array[length], otherFunc = data.func; if (otherFunc == null || otherFunc == func) { return data.name; } } return result; } /** * The base constructor for creating `lodash` wrapper objects. * * @private * @param {*} value The value to wrap. * @param {boolean} [chainAll] Enable explicit method chain sequences. */ function LodashWrapper(value, chainAll) { this.__wrapped__ = value; this.__actions__ = []; this.__chain__ = !!chainAll; this.__index__ = 0; this.__values__ = undefined; } LodashWrapper.prototype = baseCreate$1(baseLodash.prototype); LodashWrapper.prototype.constructor = LodashWrapper; /** * Copies the values of `source` to `array`. * * @private * @param {Array} source The array to copy values from. * @param {Array} [array=[]] The array to copy values to. * @returns {Array} Returns `array`. */ function copyArray$1(source, array) { var index = -1, length = source.length; array || (array = Array(length)); while (++index < length) { array[index] = source[index]; } return array; } /** * Creates a clone of `wrapper`. * * @private * @param {Object} wrapper The wrapper to clone. * @returns {Object} Returns the cloned wrapper. */ function wrapperClone(wrapper) { if (wrapper instanceof LazyWrapper) { return wrapper.clone(); } var result = new LodashWrapper(wrapper.__wrapped__, wrapper.__chain__); result.__actions__ = copyArray$1(wrapper.__actions__); result.__index__ = wrapper.__index__; result.__values__ = wrapper.__values__; return result; } /** Used for built-in method references. */ var objectProto$8 = Object.prototype; /** Used to check objects for own properties. */ var hasOwnProperty$8 = objectProto$8.hasOwnProperty; /** * Creates a `lodash` object which wraps `value` to enable implicit method * chain sequences. Methods that operate on and return arrays, collections, * and functions can be chained together. Methods that retrieve a single value * or may return a primitive value will automatically end the chain sequence * and return the unwrapped value. Otherwise, the value must be unwrapped * with `_#value`. * * Explicit chain sequences, which must be unwrapped with `_#value`, may be * enabled using `_.chain`. * * The execution of chained methods is lazy, that is, it's deferred until * `_#value` is implicitly or explicitly called. * * Lazy evaluation allows several methods to support shortcut fusion. * Shortcut fusion is an optimization to merge iteratee calls; this avoids * the creation of intermediate arrays and can greatly reduce the number of * iteratee executions. Sections of a chain sequence qualify for shortcut * fusion if the section is applied to an array and iteratees accept only * one argument. The heuristic for whether a section qualifies for shortcut * fusion is subject to change. * * Chaining is supported in custom builds as long as the `_#value` method is * directly or indirectly included in the build. * * In addition to lodash methods, wrappers have `Array` and `String` methods. * * The wrapper `Array` methods are: * `concat`, `join`, `pop`, `push`, `shift`, `sort`, `splice`, and `unshift` * * The wrapper `String` methods are: * `replace` and `split` * * The wrapper methods that support shortcut fusion are: * `at`, `compact`, `drop`, `dropRight`, `dropWhile`, `filter`, `find`, * `findLast`, `head`, `initial`, `last`, `map`, `reject`, `reverse`, `slice`, * `tail`, `take`, `takeRight`, `takeRightWhile`, `takeWhile`, and `toArray` * * The chainable wrapper methods are: * `after`, `ary`, `assign`, `assignIn`, `assignInWith`, `assignWith`, `at`, * `before`, `bind`, `bindAll`, `bindKey`, `castArray`, `chain`, `chunk`, * `commit`, `compact`, `concat`, `conforms`, `constant`, `countBy`, `create`, * `curry`, `debounce`, `defaults`, `defaultsDeep`, `defer`, `delay`, * `difference`, `differenceBy`, `differenceWith`, `drop`, `dropRight`, * `dropRightWhile`, `dropWhile`, `extend`, `extendWith`, `fill`, `filter`, * `flatMap`, `flatMapDeep`, `flatMapDepth`, `flatten`, `flattenDeep`, * `flattenDepth`, `flip`, `flow`, `flowRight`, `fromPairs`, `functions`, * `functionsIn`, `groupBy`, `initial`, `intersection`, `intersectionBy`, * `intersectionWith`, `invert`, `invertBy`, `invokeMap`, `iteratee`, `keyBy`, * `keys`, `keysIn`, `map`, `mapKeys`, `mapValues`, `matches`, `matchesProperty`, * `memoize`, `merge`, `mergeWith`, `method`, `methodOf`, `mixin`, `negate`, * `nthArg`, `omit`, `omitBy`, `once`, `orderBy`, `over`, `overArgs`, * `overEvery`, `overSome`, `partial`, `partialRight`, `partition`, `pick`, * `pickBy`, `plant`, `property`, `propertyOf`, `pull`, `pullAll`, `pullAllBy`, * `pullAllWith`, `pullAt`, `push`, `range`, `rangeRight`, `rearg`, `reject`, * `remove`, `rest`, `reverse`, `sampleSize`, `set`, `setWith`, `shuffle`, * `slice`, `sort`, `sortBy`, `splice`, `spread`, `tail`, `take`, `takeRight`, * `takeRightWhile`, `takeWhile`, `tap`, `throttle`, `thru`, `toArray`, * `toPairs`, `toPairsIn`, `toPath`, `toPlainObject`, `transform`, `unary`, * `union`, `unionBy`, `unionWith`, `uniq`, `uniqBy`, `uniqWith`, `unset`, * `unshift`, `unzip`, `unzipWith`, `update`, `updateWith`, `values`, * `valuesIn`, `without`, `wrap`, `xor`, `xorBy`, `xorWith`, `zip`, * `zipObject`, `zipObjectDeep`, and `zipWith` * * The wrapper methods that are **not** chainable by default are: * `add`, `attempt`, `camelCase`, `capitalize`, `ceil`, `clamp`, `clone`, * `cloneDeep`, `cloneDeepWith`, `cloneWith`, `conformsTo`, `deburr`, * `defaultTo`, `divide`, `each`, `eachRight`, `endsWith`, `eq`, `escape`, * `escapeRegExp`, `every`, `find`, `findIndex`, `findKey`, `findLast`, * `findLastIndex`, `findLastKey`, `first`, `floor`, `forEach`, `forEachRight`, * `forIn`, `forInRight`, `forOwn`, `forOwnRight`, `get`, `gt`, `gte`, `has`, * `hasIn`, `head`, `identity`, `includes`, `indexOf`, `inRange`, `invoke`, * `isArguments`, `isArray`, `isArrayBuffer`, `isArrayLike`, `isArrayLikeObject`, * `isBoolean`, `isBuffer`, `isDate`, `isElement`, `isEmpty`, `isEqual`, * `isEqualWith`, `isError`, `isFinite`, `isFunction`, `isInteger`, `isLength`, * `isMap`, `isMatch`, `isMatchWith`, `isNaN`, `isNative`, `isNil`, `isNull`, * `isNumber`, `isObject`, `isObjectLike`, `isPlainObject`, `isRegExp`, * `isSafeInteger`, `isSet`, `isString`, `isUndefined`, `isTypedArray`, * `isWeakMap`, `isWeakSet`, `join`, `kebabCase`, `last`, `lastIndexOf`, * `lowerCase`, `lowerFirst`, `lt`, `lte`, `max`, `maxBy`, `mean`, `meanBy`, * `min`, `minBy`, `multiply`, `noConflict`, `noop`, `now`, `nth`, `pad`, * `padEnd`, `padStart`, `parseInt`, `pop`, `random`, `reduce`, `reduceRight`, * `repeat`, `result`, `round`, `runInContext`, `sample`, `shift`, `size`, * `snakeCase`, `some`, `sortedIndex`, `sortedIndexBy`, `sortedLastIndex`, * `sortedLastIndexBy`, `startCase`, `startsWith`, `stubArray`, `stubFalse`, * `stubObject`, `stubString`, `stubTrue`, `subtract`, `sum`, `sumBy`, * `template`, `times`, `toFinite`, `toInteger`, `toJSON`, `toLength`, * `toLower`, `toNumber`, `toSafeInteger`, `toString`, `toUpper`, `trim`, * `trimEnd`, `trimStart`, `truncate`, `unescape`, `uniqueId`, `upperCase`, * `upperFirst`, `value`, and `words` * * @name _ * @constructor * @category Seq * @param {*} value The value to wrap in a `lodash` instance. * @returns {Object} Returns the new `lodash` wrapper instance. * @example * * function square(n) { * return n * n; * } * * var wrapped = _([1, 2, 3]); * * // Returns an unwrapped value. * wrapped.reduce(_.add); * // => 6 * * // Returns a wrapped value. * var squares = wrapped.map(square); * * _.isArray(squares); * // => false * * _.isArray(squares.value()); * // => true */ function lodash(value) { if (isObjectLike(value) && !isArray$1(value) && !(value instanceof LazyWrapper)) { if (value instanceof LodashWrapper) { return value; } if (hasOwnProperty$8.call(value, '__wrapped__')) { return wrapperClone(value); } } return new LodashWrapper(value); } // Ensure wrappers are instances of `baseLodash`. lodash.prototype = baseLodash.prototype; lodash.prototype.constructor = lodash; /** * Checks if `func` has a lazy counterpart. * * @private * @param {Function} func The function to check. * @returns {boolean} Returns `true` if `func` has a lazy counterpart, * else `false`. */ function isLaziable(func) { var funcName = getFuncName(func), other = lodash[funcName]; if (typeof other != 'function' || !(funcName in LazyWrapper.prototype)) { return false; } if (func === other) { return true; } var data = getData$1(other); return !!data && func === data[0]; } /** Used to detect hot functions by number of calls within a span of milliseconds. */ var HOT_COUNT = 800, HOT_SPAN = 16; /* Built-in method references for those with the same name as other `lodash` methods. */ var nativeNow = Date.now; /** * Creates a function that'll short out and invoke `identity` instead * of `func` when it's called `HOT_COUNT` or more times in `HOT_SPAN` * milliseconds. * * @private * @param {Function} func The function to restrict. * @returns {Function} Returns the new shortable function. */ function shortOut(func) { var count = 0, lastCalled = 0; return function() { var stamp = nativeNow(), remaining = HOT_SPAN - (stamp - lastCalled); lastCalled = stamp; if (remaining > 0) { if (++count >= HOT_COUNT) { return arguments[0]; } } else { count = 0; } return func.apply(undefined, arguments); }; } /** * Sets metadata for `func`. * * **Note:** If this function becomes hot, i.e. is invoked a lot in a short * period of time, it will trip its breaker and transition to an identity * function to avoid garbage collection pauses in V8. See * [V8 issue 2070](https://bugs.chromium.org/p/v8/issues/detail?id=2070) * for more details. * * @private * @param {Function} func The function to associate metadata with. * @param {*} data The metadata. * @returns {Function} Returns `func`. */ var setData = shortOut(baseSetData$1); var setData$1 = setData; /** Used to match wrap detail comments. */ var reWrapDetails = /\{\n\/\* \[wrapped with (.+)\] \*/, reSplitDetails = /,? & /; /** * Extracts wrapper details from the `source` body comment. * * @private * @param {string} source The source to inspect. * @returns {Array} Returns the wrapper details. */ function getWrapDetails(source) { var match = source.match(reWrapDetails); return match ? match[1].split(reSplitDetails) : []; } /** Used to match wrap detail comments. */ var reWrapComment = /\{(?:\n\/\* \[wrapped with .+\] \*\/)?\n?/; /** * Inserts wrapper `details` in a comment at the top of the `source` body. * * @private * @param {string} source The source to modify. * @returns {Array} details The details to insert. * @returns {string} Returns the modified source. */ function insertWrapDetails(source, details) { var length = details.length; if (!length) { return source; } var lastIndex = length - 1; details[lastIndex] = (length > 1 ? '& ' : '') + details[lastIndex]; details = details.join(length > 2 ? ', ' : ' '); return source.replace(reWrapComment, '{\n/* [wrapped with ' + details + '] */\n'); } /** * Creates a function that returns `value`. * * @static * @memberOf _ * @since 2.4.0 * @category Util * @param {*} value The value to return from the new function. * @returns {Function} Returns the new constant function. * @example * * var objects = _.times(2, _.constant({ 'a': 1 })); * * console.log(objects); * // => [{ 'a': 1 }, { 'a': 1 }] * * console.log(objects[0] === objects[1]); * // => true */ function constant(value) { return function() { return value; }; } var defineProperty = (function() { try { var func = getNative(Object, 'defineProperty'); func({}, '', {}); return func; } catch (e) {} }()); var defineProperty$1 = defineProperty; /** * The base implementation of `setToString` without support for hot loop shorting. * * @private * @param {Function} func The function to modify. * @param {Function} string The `toString` result. * @returns {Function} Returns `func`. */ var baseSetToString = !defineProperty$1 ? identity : function(func, string) { return defineProperty$1(func, 'toString', { 'configurable': true, 'enumerable': false, 'value': constant(string), 'writable': true }); }; var baseSetToString$1 = baseSetToString; /** * Sets the `toString` method of `func` to return `string`. * * @private * @param {Function} func The function to modify. * @param {Function} string The `toString` result. * @returns {Function} Returns `func`. */ var setToString = shortOut(baseSetToString$1); var setToString$1 = setToString; /** * A specialized version of `_.forEach` for arrays without support for * iteratee shorthands. * * @private * @param {Array} [array] The array to iterate over. * @param {Function} iteratee The function invoked per iteration. * @returns {Array} Returns `array`. */ function arrayEach(array, iteratee) { var index = -1, length = array == null ? 0 : array.length; while (++index < length) { if (iteratee(array[index], index, array) === false) { break; } } return array; } /** * The base implementation of `_.findIndex` and `_.findLastIndex` without * support for iteratee shorthands. * * @private * @param {Array} array The array to inspect. * @param {Function} predicate The function invoked per iteration. * @param {number} fromIndex The index to search from. * @param {boolean} [fromRight] Specify iterating from right to left. * @returns {number} Returns the index of the matched value, else `-1`. */ function baseFindIndex(array, predicate, fromIndex, fromRight) { var length = array.length, index = fromIndex + (fromRight ? 1 : -1); while ((fromRight ? index-- : ++index < length)) { if (predicate(array[index], index, array)) { return index; } } return -1; } /** * The base implementation of `_.isNaN` without support for number objects. * * @private * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is `NaN`, else `false`. */ function baseIsNaN(value) { return value !== value; } /** * A specialized version of `_.indexOf` which performs strict equality * comparisons of values, i.e. `===`. * * @private * @param {Array} array The array to inspect. * @param {*} value The value to search for. * @param {number} fromIndex The index to search from. * @returns {number} Returns the index of the matched value, else `-1`. */ function strictIndexOf(array, value, fromIndex) { var index = fromIndex - 1, length = array.length; while (++index < length) { if (array[index] === value) { return index; } } return -1; } /** * The base implementation of `_.indexOf` without `fromIndex` bounds checks. * * @private * @param {Array} array The array to inspect. * @param {*} value The value to search for. * @param {number} fromIndex The index to search from. * @returns {number} Returns the index of the matched value, else `-1`. */ function baseIndexOf(array, value, fromIndex) { return value === value ? strictIndexOf(array, value, fromIndex) : baseFindIndex(array, baseIsNaN, fromIndex); } /** * A specialized version of `_.includes` for arrays without support for * specifying an index to search from. * * @private * @param {Array} [array] The array to inspect. * @param {*} target The value to search for. * @returns {boolean} Returns `true` if `target` is found, else `false`. */ function arrayIncludes(array, value) { var length = array == null ? 0 : array.length; return !!length && baseIndexOf(array, value, 0) > -1; } /** Used to compose bitmasks for function metadata. */ var WRAP_BIND_FLAG$6 = 1, WRAP_BIND_KEY_FLAG$4 = 2, WRAP_CURRY_FLAG$4 = 8, WRAP_CURRY_RIGHT_FLAG$2 = 16, WRAP_PARTIAL_FLAG$3 = 32, WRAP_PARTIAL_RIGHT_FLAG$2 = 64, WRAP_ARY_FLAG$2 = 128, WRAP_REARG_FLAG$1 = 256, WRAP_FLIP_FLAG$1 = 512; /** Used to associate wrap methods with their bit flags. */ var wrapFlags = [ ['ary', WRAP_ARY_FLAG$2], ['bind', WRAP_BIND_FLAG$6], ['bindKey', WRAP_BIND_KEY_FLAG$4], ['curry', WRAP_CURRY_FLAG$4], ['curryRight', WRAP_CURRY_RIGHT_FLAG$2], ['flip', WRAP_FLIP_FLAG$1], ['partial', WRAP_PARTIAL_FLAG$3], ['partialRight', WRAP_PARTIAL_RIGHT_FLAG$2], ['rearg', WRAP_REARG_FLAG$1] ]; /** * Updates wrapper `details` based on `bitmask` flags. * * @private * @returns {Array} details The details to modify. * @param {number} bitmask The bitmask flags. See `createWrap` for more details. * @returns {Array} Returns `details`. */ function updateWrapDetails(details, bitmask) { arrayEach(wrapFlags, function(pair) { var value = '_.' + pair[0]; if ((bitmask & pair[1]) && !arrayIncludes(details, value)) { details.push(value); } }); return details.sort(); } /** * Sets the `toString` method of `wrapper` to mimic the source of `reference` * with wrapper details in a comment at the top of the source body. * * @private * @param {Function} wrapper The function to modify. * @param {Function} reference The reference function. * @param {number} bitmask The bitmask flags. See `createWrap` for more details. * @returns {Function} Returns `wrapper`. */ function setWrapToString(wrapper, reference, bitmask) { var source = (reference + ''); return setToString$1(wrapper, insertWrapDetails(source, updateWrapDetails(getWrapDetails(source), bitmask))); } /** Used to compose bitmasks for function metadata. */ var WRAP_BIND_FLAG$5 = 1, WRAP_BIND_KEY_FLAG$3 = 2, WRAP_CURRY_BOUND_FLAG$1 = 4, WRAP_CURRY_FLAG$3 = 8, WRAP_PARTIAL_FLAG$2 = 32, WRAP_PARTIAL_RIGHT_FLAG$1 = 64; /** * Creates a function that wraps `func` to continue currying. * * @private * @param {Function} func The function to wrap. * @param {number} bitmask The bitmask flags. See `createWrap` for more details. * @param {Function} wrapFunc The function to create the `func` wrapper. * @param {*} placeholder The placeholder value. * @param {*} [thisArg] The `this` binding of `func`. * @param {Array} [partials] The arguments to prepend to those provided to * the new function. * @param {Array} [holders] The `partials` placeholder indexes. * @param {Array} [argPos] The argument positions of the new function. * @param {number} [ary] The arity cap of `func`. * @param {number} [arity] The arity of `func`. * @returns {Function} Returns the new wrapped function. */ function createRecurry(func, bitmask, wrapFunc, placeholder, thisArg, partials, holders, argPos, ary, arity) { var isCurry = bitmask & WRAP_CURRY_FLAG$3, newHolders = isCurry ? holders : undefined, newHoldersRight = isCurry ? undefined : holders, newPartials = isCurry ? partials : undefined, newPartialsRight = isCurry ? undefined : partials; bitmask |= (isCurry ? WRAP_PARTIAL_FLAG$2 : WRAP_PARTIAL_RIGHT_FLAG$1); bitmask &= ~(isCurry ? WRAP_PARTIAL_RIGHT_FLAG$1 : WRAP_PARTIAL_FLAG$2); if (!(bitmask & WRAP_CURRY_BOUND_FLAG$1)) { bitmask &= ~(WRAP_BIND_FLAG$5 | WRAP_BIND_KEY_FLAG$3); } var newData = [ func, bitmask, thisArg, newPartials, newHolders, newPartialsRight, newHoldersRight, argPos, ary, arity ]; var result = wrapFunc.apply(undefined, newData); if (isLaziable(func)) { setData$1(result, newData); } result.placeholder = placeholder; return setWrapToString(result, func, bitmask); } /** * Gets the argument placeholder value for `func`. * * @private * @param {Function} func The function to inspect. * @returns {*} Returns the placeholder value. */ function getHolder(func) { var object = func; return object.placeholder; } /** Used as references for various `Number` constants. */ var MAX_SAFE_INTEGER$1 = 9007199254740991; /** Used to detect unsigned integer values. */ var reIsUint = /^(?:0|[1-9]\d*)$/; /** * Checks if `value` is a valid array-like index. * * @private * @param {*} value The value to check. * @param {number} [length=MAX_SAFE_INTEGER] The upper bounds of a valid index. * @returns {boolean} Returns `true` if `value` is a valid index, else `false`. */ function isIndex(value, length) { var type = typeof value; length = length == null ? MAX_SAFE_INTEGER$1 : length; return !!length && (type == 'number' || (type != 'symbol' && reIsUint.test(value))) && (value > -1 && value % 1 == 0 && value < length); } /* Built-in method references for those with the same name as other `lodash` methods. */ var nativeMin$1 = Math.min; /** * Reorder `array` according to the specified indexes where the element at * the first index is assigned as the first element, the element at * the second index is assigned as the second element, and so on. * * @private * @param {Array} array The array to reorder. * @param {Array} indexes The arranged array indexes. * @returns {Array} Returns `array`. */ function reorder(array, indexes) { var arrLength = array.length, length = nativeMin$1(indexes.length, arrLength), oldArray = copyArray$1(array); while (length--) { var index = indexes[length]; array[length] = isIndex(index, arrLength) ? oldArray[index] : undefined; } return array; } /** Used as the internal argument placeholder. */ var PLACEHOLDER$1 = '__lodash_placeholder__'; /** * Replaces all `placeholder` elements in `array` with an internal placeholder * and returns an array of their indexes. * * @private * @param {Array} array The array to modify. * @param {*} placeholder The placeholder to replace. * @returns {Array} Returns the new array of placeholder indexes. */ function replaceHolders(array, placeholder) { var index = -1, length = array.length, resIndex = 0, result = []; while (++index < length) { var value = array[index]; if (value === placeholder || value === PLACEHOLDER$1) { array[index] = PLACEHOLDER$1; result[resIndex++] = index; } } return result; } /** Used to compose bitmasks for function metadata. */ var WRAP_BIND_FLAG$4 = 1, WRAP_BIND_KEY_FLAG$2 = 2, WRAP_CURRY_FLAG$2 = 8, WRAP_CURRY_RIGHT_FLAG$1 = 16, WRAP_ARY_FLAG$1 = 128, WRAP_FLIP_FLAG = 512; /** * Creates a function that wraps `func` to invoke it with optional `this` * binding of `thisArg`, partial application, and currying. * * @private * @param {Function|string} func The function or method name to wrap. * @param {number} bitmask The bitmask flags. See `createWrap` for more details. * @param {*} [thisArg] The `this` binding of `func`. * @param {Array} [partials] The arguments to prepend to those provided to * the new function. * @param {Array} [holders] The `partials` placeholder indexes. * @param {Array} [partialsRight] The arguments to append to those provided * to the new function. * @param {Array} [holdersRight] The `partialsRight` placeholder indexes. * @param {Array} [argPos] The argument positions of the new function. * @param {number} [ary] The arity cap of `func`. * @param {number} [arity] The arity of `func`. * @returns {Function} Returns the new wrapped function. */ function createHybrid(func, bitmask, thisArg, partials, holders, partialsRight, holdersRight, argPos, ary, arity) { var isAry = bitmask & WRAP_ARY_FLAG$1, isBind = bitmask & WRAP_BIND_FLAG$4, isBindKey = bitmask & WRAP_BIND_KEY_FLAG$2, isCurried = bitmask & (WRAP_CURRY_FLAG$2 | WRAP_CURRY_RIGHT_FLAG$1), isFlip = bitmask & WRAP_FLIP_FLAG, Ctor = isBindKey ? undefined : createCtor(func); function wrapper() { var length = arguments.length, args = Array(length), index = length; while (index--) { args[index] = arguments[index]; } if (isCurried) { var placeholder = getHolder(wrapper), holdersCount = countHolders(args, placeholder); } if (partials) { args = composeArgs(args, partials, holders, isCurried); } if (partialsRight) { args = composeArgsRight(args, partialsRight, holdersRight, isCurried); } length -= holdersCount; if (isCurried && length < arity) { var newHolders = replaceHolders(args, placeholder); return createRecurry( func, bitmask, createHybrid, wrapper.placeholder, thisArg, args, newHolders, argPos, ary, arity - length ); } var thisBinding = isBind ? thisArg : this, fn = isBindKey ? thisBinding[func] : func; length = args.length; if (argPos) { args = reorder(args, argPos); } else if (isFlip && length > 1) { args.reverse(); } if (isAry && ary < length) { args.length = ary; } if (this && this !== root$1 && this instanceof wrapper) { fn = Ctor || createCtor(fn); } return fn.apply(thisBinding, args); } return wrapper; } /** * Creates a function that wraps `func` to enable currying. * * @private * @param {Function} func The function to wrap. * @param {number} bitmask The bitmask flags. See `createWrap` for more details. * @param {number} arity The arity of `func`. * @returns {Function} Returns the new wrapped function. */ function createCurry(func, bitmask, arity) { var Ctor = createCtor(func); function wrapper() { var length = arguments.length, args = Array(length), index = length, placeholder = getHolder(wrapper); while (index--) { args[index] = arguments[index]; } var holders = (length < 3 && args[0] !== placeholder && args[length - 1] !== placeholder) ? [] : replaceHolders(args, placeholder); length -= holders.length; if (length < arity) { return createRecurry( func, bitmask, createHybrid, wrapper.placeholder, undefined, args, holders, undefined, undefined, arity - length); } var fn = (this && this !== root$1 && this instanceof wrapper) ? Ctor : func; return apply(fn, this, args); } return wrapper; } /** Used to compose bitmasks for function metadata. */ var WRAP_BIND_FLAG$3 = 1; /** * Creates a function that wraps `func` to invoke it with the `this` binding * of `thisArg` and `partials` prepended to the arguments it receives. * * @private * @param {Function} func The function to wrap. * @param {number} bitmask The bitmask flags. See `createWrap` for more details. * @param {*} thisArg The `this` binding of `func`. * @param {Array} partials The arguments to prepend to those provided to * the new function. * @returns {Function} Returns the new wrapped function. */ function createPartial(func, bitmask, thisArg, partials) { var isBind = bitmask & WRAP_BIND_FLAG$3, Ctor = createCtor(func); function wrapper() { var argsIndex = -1, argsLength = arguments.length, leftIndex = -1, leftLength = partials.length, args = Array(leftLength + argsLength), fn = (this && this !== root$1 && this instanceof wrapper) ? Ctor : func; while (++leftIndex < leftLength) { args[leftIndex] = partials[leftIndex]; } while (argsLength--) { args[leftIndex++] = arguments[++argsIndex]; } return apply(fn, isBind ? thisArg : this, args); } return wrapper; } /** Used as the internal argument placeholder. */ var PLACEHOLDER = '__lodash_placeholder__'; /** Used to compose bitmasks for function metadata. */ var WRAP_BIND_FLAG$2 = 1, WRAP_BIND_KEY_FLAG$1 = 2, WRAP_CURRY_BOUND_FLAG = 4, WRAP_CURRY_FLAG$1 = 8, WRAP_ARY_FLAG = 128, WRAP_REARG_FLAG = 256; /* Built-in method references for those with the same name as other `lodash` methods. */ var nativeMin = Math.min; /** * Merges the function metadata of `source` into `data`. * * Merging metadata reduces the number of wrappers used to invoke a function. * This is possible because methods like `_.bind`, `_.curry`, and `_.partial` * may be applied regardless of execution order. Methods like `_.ary` and * `_.rearg` modify function arguments, making the order in which they are * executed important, preventing the merging of metadata. However, we make * an exception for a safe combined case where curried functions have `_.ary` * and or `_.rearg` applied. * * @private * @param {Array} data The destination metadata. * @param {Array} source The source metadata. * @returns {Array} Returns `data`. */ function mergeData(data, source) { var bitmask = data[1], srcBitmask = source[1], newBitmask = bitmask | srcBitmask, isCommon = newBitmask < (WRAP_BIND_FLAG$2 | WRAP_BIND_KEY_FLAG$1 | WRAP_ARY_FLAG); var isCombo = ((srcBitmask == WRAP_ARY_FLAG) && (bitmask == WRAP_CURRY_FLAG$1)) || ((srcBitmask == WRAP_ARY_FLAG) && (bitmask == WRAP_REARG_FLAG) && (data[7].length <= source[8])) || ((srcBitmask == (WRAP_ARY_FLAG | WRAP_REARG_FLAG)) && (source[7].length <= source[8]) && (bitmask == WRAP_CURRY_FLAG$1)); // Exit early if metadata can't be merged. if (!(isCommon || isCombo)) { return data; } // Use source `thisArg` if available. if (srcBitmask & WRAP_BIND_FLAG$2) { data[2] = source[2]; // Set when currying a bound function. newBitmask |= bitmask & WRAP_BIND_FLAG$2 ? 0 : WRAP_CURRY_BOUND_FLAG; } // Compose partial arguments. var value = source[3]; if (value) { var partials = data[3]; data[3] = partials ? composeArgs(partials, value, source[4]) : value; data[4] = partials ? replaceHolders(data[3], PLACEHOLDER) : source[4]; } // Compose partial right arguments. value = source[5]; if (value) { partials = data[5]; data[5] = partials ? composeArgsRight(partials, value, source[6]) : value; data[6] = partials ? replaceHolders(data[5], PLACEHOLDER) : source[6]; } // Use source `argPos` if available. value = source[7]; if (value) { data[7] = value; } // Use source `ary` if it's smaller. if (srcBitmask & WRAP_ARY_FLAG) { data[8] = data[8] == null ? source[8] : nativeMin(data[8], source[8]); } // Use source `arity` if one is not provided. if (data[9] == null) { data[9] = source[9]; } // Use source `func` and merge bitmasks. data[0] = source[0]; data[1] = newBitmask; return data; } /** Error message constants. */ var FUNC_ERROR_TEXT = 'Expected a function'; /** Used to compose bitmasks for function metadata. */ var WRAP_BIND_FLAG$1 = 1, WRAP_BIND_KEY_FLAG = 2, WRAP_CURRY_FLAG = 8, WRAP_CURRY_RIGHT_FLAG = 16, WRAP_PARTIAL_FLAG$1 = 32, WRAP_PARTIAL_RIGHT_FLAG = 64; /* Built-in method references for those with the same name as other `lodash` methods. */ var nativeMax$1 = Math.max; /** * Creates a function that either curries or invokes `func` with optional * `this` binding and partially applied arguments. * * @private * @param {Function|string} func The function or method name to wrap. * @param {number} bitmask The bitmask flags. * 1 - `_.bind` * 2 - `_.bindKey` * 4 - `_.curry` or `_.curryRight` of a bound function * 8 - `_.curry` * 16 - `_.curryRight` * 32 - `_.partial` * 64 - `_.partialRight` * 128 - `_.rearg` * 256 - `_.ary` * 512 - `_.flip` * @param {*} [thisArg] The `this` binding of `func`. * @param {Array} [partials] The arguments to be partially applied. * @param {Array} [holders] The `partials` placeholder indexes. * @param {Array} [argPos] The argument positions of the new function. * @param {number} [ary] The arity cap of `func`. * @param {number} [arity] The arity of `func`. * @returns {Function} Returns the new wrapped function. */ function createWrap(func, bitmask, thisArg, partials, holders, argPos, ary, arity) { var isBindKey = bitmask & WRAP_BIND_KEY_FLAG; if (!isBindKey && typeof func != 'function') { throw new TypeError(FUNC_ERROR_TEXT); } var length = partials ? partials.length : 0; if (!length) { bitmask &= ~(WRAP_PARTIAL_FLAG$1 | WRAP_PARTIAL_RIGHT_FLAG); partials = holders = undefined; } ary = ary === undefined ? ary : nativeMax$1(toInteger(ary), 0); arity = arity === undefined ? arity : toInteger(arity); length -= holders ? holders.length : 0; if (bitmask & WRAP_PARTIAL_RIGHT_FLAG) { var partialsRight = partials, holdersRight = holders; partials = holders = undefined; } var data = isBindKey ? undefined : getData$1(func); var newData = [ func, bitmask, thisArg, partials, holders, partialsRight, holdersRight, argPos, ary, arity ]; if (data) { mergeData(newData, data); } func = newData[0]; bitmask = newData[1]; thisArg = newData[2]; partials = newData[3]; holders = newData[4]; arity = newData[9] = newData[9] === undefined ? (isBindKey ? 0 : func.length) : nativeMax$1(newData[9] - length, 0); if (!arity && bitmask & (WRAP_CURRY_FLAG | WRAP_CURRY_RIGHT_FLAG)) { bitmask &= ~(WRAP_CURRY_FLAG | WRAP_CURRY_RIGHT_FLAG); } if (!bitmask || bitmask == WRAP_BIND_FLAG$1) { var result = createBind(func, bitmask, thisArg); } else if (bitmask == WRAP_CURRY_FLAG || bitmask == WRAP_CURRY_RIGHT_FLAG) { result = createCurry(func, bitmask, arity); } else if ((bitmask == WRAP_PARTIAL_FLAG$1 || bitmask == (WRAP_BIND_FLAG$1 | WRAP_PARTIAL_FLAG$1)) && !holders.length) { result = createPartial(func, bitmask, thisArg, partials); } else { result = createHybrid.apply(undefined, newData); } var setter = data ? baseSetData$1 : setData$1; return setWrapToString(setter(result, newData), func, bitmask); } /** * The base implementation of `assignValue` and `assignMergeValue` without * value checks. * * @private * @param {Object} object The object to modify. * @param {string} key The key of the property to assign. * @param {*} value The value to assign. */ function baseAssignValue(object, key, value) { if (key == '__proto__' && defineProperty$1) { defineProperty$1(object, key, { 'configurable': true, 'enumerable': true, 'value': value, 'writable': true }); } else { object[key] = value; } } /** * Performs a * [`SameValueZero`](http://ecma-international.org/ecma-262/7.0/#sec-samevaluezero) * comparison between two values to determine if they are equivalent. * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to compare. * @param {*} other The other value to compare. * @returns {boolean} Returns `true` if the values are equivalent, else `false`. * @example * * var object = { 'a': 1 }; * var other = { 'a': 1 }; * * _.eq(object, object); * // => true * * _.eq(object, other); * // => false * * _.eq('a', 'a'); * // => true * * _.eq('a', Object('a')); * // => false * * _.eq(NaN, NaN); * // => true */ function eq(value, other) { return value === other || (value !== value && other !== other); } /** Used for built-in method references. */ var objectProto$7 = Object.prototype; /** Used to check objects for own properties. */ var hasOwnProperty$7 = objectProto$7.hasOwnProperty; /** * Assigns `value` to `key` of `object` if the existing value is not equivalent * using [`SameValueZero`](http://ecma-international.org/ecma-262/7.0/#sec-samevaluezero) * for equality comparisons. * * @private * @param {Object} object The object to modify. * @param {string} key The key of the property to assign. * @param {*} value The value to assign. */ function assignValue(object, key, value) { var objValue = object[key]; if (!(hasOwnProperty$7.call(object, key) && eq(objValue, value)) || (value === undefined && !(key in object))) { baseAssignValue(object, key, value); } } /** * Copies properties of `source` to `object`. * * @private * @param {Object} source The object to copy properties from. * @param {Array} props The property identifiers to copy. * @param {Object} [object={}] The object to copy properties to. * @param {Function} [customizer] The function to customize copied values. * @returns {Object} Returns `object`. */ function copyObject(source, props, object, customizer) { var isNew = !object; object || (object = {}); var index = -1, length = props.length; while (++index < length) { var key = props[index]; var newValue = customizer ? customizer(object[key], source[key], key, object, source) : undefined; if (newValue === undefined) { newValue = source[key]; } if (isNew) { baseAssignValue(object, key, newValue); } else { assignValue(object, key, newValue); } } return object; } /* Built-in method references for those with the same name as other `lodash` methods. */ var nativeMax = Math.max; /** * A specialized version of `baseRest` which transforms the rest array. * * @private * @param {Function} func The function to apply a rest parameter to. * @param {number} [start=func.length-1] The start position of the rest parameter. * @param {Function} transform The rest array transform. * @returns {Function} Returns the new function. */ function overRest(func, start, transform) { start = nativeMax(start === undefined ? (func.length - 1) : start, 0); return function() { var args = arguments, index = -1, length = nativeMax(args.length - start, 0), array = Array(length); while (++index < length) { array[index] = args[start + index]; } index = -1; var otherArgs = Array(start + 1); while (++index < start) { otherArgs[index] = args[index]; } otherArgs[start] = transform(array); return apply(func, this, otherArgs); }; } /** * The base implementation of `_.rest` which doesn't validate or coerce arguments. * * @private * @param {Function} func The function to apply a rest parameter to. * @param {number} [start=func.length-1] The start position of the rest parameter. * @returns {Function} Returns the new function. */ function baseRest(func, start) { return setToString$1(overRest(func, start, identity), func + ''); } /** Used as references for various `Number` constants. */ var MAX_SAFE_INTEGER = 9007199254740991; /** * Checks if `value` is a valid array-like length. * * **Note:** This method is loosely based on * [`ToLength`](http://ecma-international.org/ecma-262/7.0/#sec-tolength). * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is a valid length, else `false`. * @example * * _.isLength(3); * // => true * * _.isLength(Number.MIN_VALUE); * // => false * * _.isLength(Infinity); * // => false * * _.isLength('3'); * // => false */ function isLength(value) { return typeof value == 'number' && value > -1 && value % 1 == 0 && value <= MAX_SAFE_INTEGER; } /** * Checks if `value` is array-like. A value is considered array-like if it's * not a function and has a `value.length` that's an integer greater than or * equal to `0` and less than or equal to `Number.MAX_SAFE_INTEGER`. * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is array-like, else `false`. * @example * * _.isArrayLike([1, 2, 3]); * // => true * * _.isArrayLike(document.body.children); * // => true * * _.isArrayLike('abc'); * // => true * * _.isArrayLike(_.noop); * // => false */ function isArrayLike(value) { return value != null && isLength(value.length) && !isFunction(value); } /** * Checks if the given arguments are from an iteratee call. * * @private * @param {*} value The potential iteratee value argument. * @param {*} index The potential iteratee index or key argument. * @param {*} object The potential iteratee object argument. * @returns {boolean} Returns `true` if the arguments are from an iteratee call, * else `false`. */ function isIterateeCall(value, index, object) { if (!isObject(object)) { return false; } var type = typeof index; if (type == 'number' ? (isArrayLike(object) && isIndex(index, object.length)) : (type == 'string' && index in object) ) { return eq(object[index], value); } return false; } /** * Creates a function like `_.assign`. * * @private * @param {Function} assigner The function to assign values. * @returns {Function} Returns the new assigner function. */ function createAssigner(assigner) { return baseRest(function(object, sources) { var index = -1, length = sources.length, customizer = length > 1 ? sources[length - 1] : undefined, guard = length > 2 ? sources[2] : undefined; customizer = (assigner.length > 3 && typeof customizer == 'function') ? (length--, customizer) : undefined; if (guard && isIterateeCall(sources[0], sources[1], guard)) { customizer = length < 3 ? undefined : customizer; length = 1; } object = Object(object); while (++index < length) { var source = sources[index]; if (source) { assigner(object, source, index, customizer); } } return object; }); } /** Used for built-in method references. */ var objectProto$6 = Object.prototype; /** * Checks if `value` is likely a prototype object. * * @private * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is a prototype, else `false`. */ function isPrototype(value) { var Ctor = value && value.constructor, proto = (typeof Ctor == 'function' && Ctor.prototype) || objectProto$6; return value === proto; } /** * The base implementation of `_.times` without support for iteratee shorthands * or max array length checks. * * @private * @param {number} n The number of times to invoke `iteratee`. * @param {Function} iteratee The function invoked per iteration. * @returns {Array} Returns the array of results. */ function baseTimes(n, iteratee) { var index = -1, result = Array(n); while (++index < n) { result[index] = iteratee(index); } return result; } /** `Object#toString` result references. */ var argsTag$1 = '[object Arguments]'; /** * The base implementation of `_.isArguments`. * * @private * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is an `arguments` object, */ function baseIsArguments(value) { return isObjectLike(value) && baseGetTag(value) == argsTag$1; } /** Used for built-in method references. */ var objectProto$5 = Object.prototype; /** Used to check objects for own properties. */ var hasOwnProperty$6 = objectProto$5.hasOwnProperty; /** Built-in value references. */ var propertyIsEnumerable = objectProto$5.propertyIsEnumerable; /** * Checks if `value` is likely an `arguments` object. * * @static * @memberOf _ * @since 0.1.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is an `arguments` object, * else `false`. * @example * * _.isArguments(function() { return arguments; }()); * // => true * * _.isArguments([1, 2, 3]); * // => false */ var isArguments = baseIsArguments(function() { return arguments; }()) ? baseIsArguments : function(value) { return isObjectLike(value) && hasOwnProperty$6.call(value, 'callee') && !propertyIsEnumerable.call(value, 'callee'); }; var isArguments$1 = isArguments; /** * This method returns `false`. * * @static * @memberOf _ * @since 4.13.0 * @category Util * @returns {boolean} Returns `false`. * @example * * _.times(2, _.stubFalse); * // => [false, false] */ function stubFalse() { return false; } /** Detect free variable `exports`. */ var freeExports$2 = typeof exports == 'object' && exports && !exports.nodeType && exports; /** Detect free variable `module`. */ var freeModule$2 = freeExports$2 && typeof module == 'object' && module && !module.nodeType && module; /** Detect the popular CommonJS extension `module.exports`. */ var moduleExports$2 = freeModule$2 && freeModule$2.exports === freeExports$2; /** Built-in value references. */ var Buffer$1 = moduleExports$2 ? root$1.Buffer : undefined; /* Built-in method references for those with the same name as other `lodash` methods. */ var nativeIsBuffer = Buffer$1 ? Buffer$1.isBuffer : undefined; /** * Checks if `value` is a buffer. * * @static * @memberOf _ * @since 4.3.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is a buffer, else `false`. * @example * * _.isBuffer(new Buffer(2)); * // => true * * _.isBuffer(new Uint8Array(2)); * // => false */ var isBuffer = nativeIsBuffer || stubFalse; var isBuffer$1 = isBuffer; /** `Object#toString` result references. */ var argsTag = '[object Arguments]', arrayTag = '[object Array]', boolTag = '[object Boolean]', dateTag = '[object Date]', errorTag = '[object Error]', funcTag = '[object Function]', mapTag = '[object Map]', numberTag = '[object Number]', objectTag$1 = '[object Object]', regexpTag = '[object RegExp]', setTag = '[object Set]', stringTag = '[object String]', weakMapTag = '[object WeakMap]'; var arrayBufferTag = '[object ArrayBuffer]', dataViewTag = '[object DataView]', float32Tag = '[object Float32Array]', float64Tag = '[object Float64Array]', int8Tag = '[object Int8Array]', int16Tag = '[object Int16Array]', int32Tag = '[object Int32Array]', uint8Tag = '[object Uint8Array]', uint8ClampedTag = '[object Uint8ClampedArray]', uint16Tag = '[object Uint16Array]', uint32Tag = '[object Uint32Array]'; /** Used to identify `toStringTag` values of typed arrays. */ var typedArrayTags = {}; typedArrayTags[float32Tag] = typedArrayTags[float64Tag] = typedArrayTags[int8Tag] = typedArrayTags[int16Tag] = typedArrayTags[int32Tag] = typedArrayTags[uint8Tag] = typedArrayTags[uint8ClampedTag] = typedArrayTags[uint16Tag] = typedArrayTags[uint32Tag] = true; typedArrayTags[argsTag] = typedArrayTags[arrayTag] = typedArrayTags[arrayBufferTag] = typedArrayTags[boolTag] = typedArrayTags[dataViewTag] = typedArrayTags[dateTag] = typedArrayTags[errorTag] = typedArrayTags[funcTag] = typedArrayTags[mapTag] = typedArrayTags[numberTag] = typedArrayTags[objectTag$1] = typedArrayTags[regexpTag] = typedArrayTags[setTag] = typedArrayTags[stringTag] = typedArrayTags[weakMapTag] = false; /** * The base implementation of `_.isTypedArray` without Node.js optimizations. * * @private * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is a typed array, else `false`. */ function baseIsTypedArray(value) { return isObjectLike(value) && isLength(value.length) && !!typedArrayTags[baseGetTag(value)]; } /** * The base implementation of `_.unary` without support for storing metadata. * * @private * @param {Function} func The function to cap arguments for. * @returns {Function} Returns the new capped function. */ function baseUnary(func) { return function(value) { return func(value); }; } /** Detect free variable `exports`. */ var freeExports$1 = typeof exports == 'object' && exports && !exports.nodeType && exports; /** Detect free variable `module`. */ var freeModule$1 = freeExports$1 && typeof module == 'object' && module && !module.nodeType && module; /** Detect the popular CommonJS extension `module.exports`. */ var moduleExports$1 = freeModule$1 && freeModule$1.exports === freeExports$1; /** Detect free variable `process` from Node.js. */ var freeProcess = moduleExports$1 && freeGlobal$1.process; /** Used to access faster Node.js helpers. */ var nodeUtil = (function() { try { // Use `util.types` for Node.js 10+. var types = freeModule$1 && freeModule$1.require && freeModule$1.require('util').types; if (types) { return types; } // Legacy `process.binding('util')` for Node.js < 10. return freeProcess && freeProcess.binding && freeProcess.binding('util'); } catch (e) {} }()); var nodeUtil$1 = nodeUtil; /* Node.js helper references. */ var nodeIsTypedArray = nodeUtil$1 && nodeUtil$1.isTypedArray; /** * Checks if `value` is classified as a typed array. * * @static * @memberOf _ * @since 3.0.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is a typed array, else `false`. * @example * * _.isTypedArray(new Uint8Array); * // => true * * _.isTypedArray([]); * // => false */ var isTypedArray$1 = nodeIsTypedArray ? baseUnary(nodeIsTypedArray) : baseIsTypedArray; var isTypedArray$2 = isTypedArray$1; /** Used for built-in method references. */ var objectProto$4 = Object.prototype; /** Used to check objects for own properties. */ var hasOwnProperty$5 = objectProto$4.hasOwnProperty; /** * Creates an array of the enumerable property names of the array-like `value`. * * @private * @param {*} value The value to query. * @param {boolean} inherited Specify returning inherited property names. * @returns {Array} Returns the array of property names. */ function arrayLikeKeys(value, inherited) { var isArr = isArray$1(value), isArg = !isArr && isArguments$1(value), isBuff = !isArr && !isArg && isBuffer$1(value), isType = !isArr && !isArg && !isBuff && isTypedArray$2(value), skipIndexes = isArr || isArg || isBuff || isType, result = skipIndexes ? baseTimes(value.length, String) : [], length = result.length; for (var key in value) { if ((inherited || hasOwnProperty$5.call(value, key)) && !(skipIndexes && ( // Safari 9 has enumerable `arguments.length` in strict mode. key == 'length' || // Node.js 0.10 has enumerable non-index properties on buffers. (isBuff && (key == 'offset' || key == 'parent')) || // PhantomJS 2 has enumerable non-index properties on typed arrays. (isType && (key == 'buffer' || key == 'byteLength' || key == 'byteOffset')) || // Skip index properties. isIndex(key, length) ))) { result.push(key); } } return result; } /** * Creates a unary function that invokes `func` with its argument transformed. * * @private * @param {Function} func The function to wrap. * @param {Function} transform The argument transform. * @returns {Function} Returns the new function. */ function overArg(func, transform) { return function(arg) { return func(transform(arg)); }; } /** * This function is like * [`Object.keys`](http://ecma-international.org/ecma-262/7.0/#sec-object.keys) * except that it includes inherited enumerable properties. * * @private * @param {Object} object The object to query. * @returns {Array} Returns the array of property names. */ function nativeKeysIn(object) { var result = []; if (object != null) { for (var key in Object(object)) { result.push(key); } } return result; } /** Used for built-in method references. */ var objectProto$3 = Object.prototype; /** Used to check objects for own properties. */ var hasOwnProperty$4 = objectProto$3.hasOwnProperty; /** * The base implementation of `_.keysIn` which doesn't treat sparse arrays as dense. * * @private * @param {Object} object The object to query. * @returns {Array} Returns the array of property names. */ function baseKeysIn(object) { if (!isObject(object)) { return nativeKeysIn(object); } var isProto = isPrototype(object), result = []; for (var key in object) { if (!(key == 'constructor' && (isProto || !hasOwnProperty$4.call(object, key)))) { result.push(key); } } return result; } /** * Creates an array of the own and inherited enumerable property names of `object`. * * **Note:** Non-object values are coerced to objects. * * @static * @memberOf _ * @since 3.0.0 * @category Object * @param {Object} object The object to query. * @returns {Array} Returns the array of property names. * @example * * function Foo() { * this.a = 1; * this.b = 2; * } * * Foo.prototype.c = 3; * * _.keysIn(new Foo); * // => ['a', 'b', 'c'] (iteration order is not guaranteed) */ function keysIn(object) { return isArrayLike(object) ? arrayLikeKeys(object, true) : baseKeysIn(object); } /* Built-in method references that are verified to be native. */ var nativeCreate = getNative(Object, 'create'); var nativeCreate$1 = nativeCreate; /** * Removes all key-value entries from the hash. * * @private * @name clear * @memberOf Hash */ function hashClear() { this.__data__ = nativeCreate$1 ? nativeCreate$1(null) : {}; this.size = 0; } /** * Removes `key` and its value from the hash. * * @private * @name delete * @memberOf Hash * @param {Object} hash The hash to modify. * @param {string} key The key of the value to remove. * @returns {boolean} Returns `true` if the entry was removed, else `false`. */ function hashDelete(key) { var result = this.has(key) && delete this.__data__[key]; this.size -= result ? 1 : 0; return result; } /** Used to stand-in for `undefined` hash values. */ var HASH_UNDEFINED$1 = '__lodash_hash_undefined__'; /** Used for built-in method references. */ var objectProto$2 = Object.prototype; /** Used to check objects for own properties. */ var hasOwnProperty$3 = objectProto$2.hasOwnProperty; /** * Gets the hash value for `key`. * * @private * @name get * @memberOf Hash * @param {string} key The key of the value to get. * @returns {*} Returns the entry value. */ function hashGet(key) { var data = this.__data__; if (nativeCreate$1) { var result = data[key]; return result === HASH_UNDEFINED$1 ? undefined : result; } return hasOwnProperty$3.call(data, key) ? data[key] : undefined; } /** Used for built-in method references. */ var objectProto$1 = Object.prototype; /** Used to check objects for own properties. */ var hasOwnProperty$2 = objectProto$1.hasOwnProperty; /** * Checks if a hash value for `key` exists. * * @private * @name has * @memberOf Hash * @param {string} key The key of the entry to check. * @returns {boolean} Returns `true` if an entry for `key` exists, else `false`. */ function hashHas(key) { var data = this.__data__; return nativeCreate$1 ? (data[key] !== undefined) : hasOwnProperty$2.call(data, key); } /** Used to stand-in for `undefined` hash values. */ var HASH_UNDEFINED = '__lodash_hash_undefined__'; /** * Sets the hash `key` to `value`. * * @private * @name set * @memberOf Hash * @param {string} key The key of the value to set. * @param {*} value The value to set. * @returns {Object} Returns the hash instance. */ function hashSet(key, value) { var data = this.__data__; this.size += this.has(key) ? 0 : 1; data[key] = (nativeCreate$1 && value === undefined) ? HASH_UNDEFINED : value; return this; } /** * Creates a hash object. * * @private * @constructor * @param {Array} [entries] The key-value pairs to cache. */ function Hash(entries) { var index = -1, length = entries == null ? 0 : entries.length; this.clear(); while (++index < length) { var entry = entries[index]; this.set(entry[0], entry[1]); } } // Add methods to `Hash`. Hash.prototype.clear = hashClear; Hash.prototype['delete'] = hashDelete; Hash.prototype.get = hashGet; Hash.prototype.has = hashHas; Hash.prototype.set = hashSet; /** * Removes all key-value entries from the list cache. * * @private * @name clear * @memberOf ListCache */ function listCacheClear() { this.__data__ = []; this.size = 0; } /** * Gets the index at which the `key` is found in `array` of key-value pairs. * * @private * @param {Array} array The array to inspect. * @param {*} key The key to search for. * @returns {number} Returns the index of the matched value, else `-1`. */ function assocIndexOf(array, key) { var length = array.length; while (length--) { if (eq(array[length][0], key)) { return length; } } return -1; } /** Used for built-in method references. */ var arrayProto = Array.prototype; /** Built-in value references. */ var splice = arrayProto.splice; /** * Removes `key` and its value from the list cache. * * @private * @name delete * @memberOf ListCache * @param {string} key The key of the value to remove. * @returns {boolean} Returns `true` if the entry was removed, else `false`. */ function listCacheDelete(key) { var data = this.__data__, index = assocIndexOf(data, key); if (index < 0) { return false; } var lastIndex = data.length - 1; if (index == lastIndex) { data.pop(); } else { splice.call(data, index, 1); } --this.size; return true; } /** * Gets the list cache value for `key`. * * @private * @name get * @memberOf ListCache * @param {string} key The key of the value to get. * @returns {*} Returns the entry value. */ function listCacheGet(key) { var data = this.__data__, index = assocIndexOf(data, key); return index < 0 ? undefined : data[index][1]; } /** * Checks if a list cache value for `key` exists. * * @private * @name has * @memberOf ListCache * @param {string} key The key of the entry to check. * @returns {boolean} Returns `true` if an entry for `key` exists, else `false`. */ function listCacheHas(key) { return assocIndexOf(this.__data__, key) > -1; } /** * Sets the list cache `key` to `value`. * * @private * @name set * @memberOf ListCache * @param {string} key The key of the value to set. * @param {*} value The value to set. * @returns {Object} Returns the list cache instance. */ function listCacheSet(key, value) { var data = this.__data__, index = assocIndexOf(data, key); if (index < 0) { ++this.size; data.push([key, value]); } else { data[index][1] = value; } return this; } /** * Creates an list cache object. * * @private * @constructor * @param {Array} [entries] The key-value pairs to cache. */ function ListCache(entries) { var index = -1, length = entries == null ? 0 : entries.length; this.clear(); while (++index < length) { var entry = entries[index]; this.set(entry[0], entry[1]); } } // Add methods to `ListCache`. ListCache.prototype.clear = listCacheClear; ListCache.prototype['delete'] = listCacheDelete; ListCache.prototype.get = listCacheGet; ListCache.prototype.has = listCacheHas; ListCache.prototype.set = listCacheSet; /* Built-in method references that are verified to be native. */ var Map$1 = getNative(root$1, 'Map'); var Map$2 = Map$1; /** * Removes all key-value entries from the map. * * @private * @name clear * @memberOf MapCache */ function mapCacheClear() { this.size = 0; this.__data__ = { 'hash': new Hash, 'map': new (Map$2 || ListCache), 'string': new Hash }; } /** * Checks if `value` is suitable for use as unique object key. * * @private * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is suitable, else `false`. */ function isKeyable(value) { var type = typeof value; return (type == 'string' || type == 'number' || type == 'symbol' || type == 'boolean') ? (value !== '__proto__') : (value === null); } /** * Gets the data for `map`. * * @private * @param {Object} map The map to query. * @param {string} key The reference key. * @returns {*} Returns the map data. */ function getMapData(map, key) { var data = map.__data__; return isKeyable(key) ? data[typeof key == 'string' ? 'string' : 'hash'] : data.map; } /** * Removes `key` and its value from the map. * * @private * @name delete * @memberOf MapCache * @param {string} key The key of the value to remove. * @returns {boolean} Returns `true` if the entry was removed, else `false`. */ function mapCacheDelete(key) { var result = getMapData(this, key)['delete'](key); this.size -= result ? 1 : 0; return result; } /** * Gets the map value for `key`. * * @private * @name get * @memberOf MapCache * @param {string} key The key of the value to get. * @returns {*} Returns the entry value. */ function mapCacheGet(key) { return getMapData(this, key).get(key); } /** * Checks if a map value for `key` exists. * * @private * @name has * @memberOf MapCache * @param {string} key The key of the entry to check. * @returns {boolean} Returns `true` if an entry for `key` exists, else `false`. */ function mapCacheHas(key) { return getMapData(this, key).has(key); } /** * Sets the map `key` to `value`. * * @private * @name set * @memberOf MapCache * @param {string} key The key of the value to set. * @param {*} value The value to set. * @returns {Object} Returns the map cache instance. */ function mapCacheSet(key, value) { var data = getMapData(this, key), size = data.size; data.set(key, value); this.size += data.size == size ? 0 : 1; return this; } /** * Creates a map cache object to store key-value pairs. * * @private * @constructor * @param {Array} [entries] The key-value pairs to cache. */ function MapCache(entries) { var index = -1, length = entries == null ? 0 : entries.length; this.clear(); while (++index < length) { var entry = entries[index]; this.set(entry[0], entry[1]); } } // Add methods to `MapCache`. MapCache.prototype.clear = mapCacheClear; MapCache.prototype['delete'] = mapCacheDelete; MapCache.prototype.get = mapCacheGet; MapCache.prototype.has = mapCacheHas; MapCache.prototype.set = mapCacheSet; /** Built-in value references. */ var getPrototype = overArg(Object.getPrototypeOf, Object); var getPrototype$1 = getPrototype; /** `Object#toString` result references. */ var objectTag = '[object Object]'; /** Used for built-in method references. */ var funcProto = Function.prototype, objectProto = Object.prototype; /** Used to resolve the decompiled source of functions. */ var funcToString = funcProto.toString; /** Used to check objects for own properties. */ var hasOwnProperty$1 = objectProto.hasOwnProperty; /** Used to infer the `Object` constructor. */ var objectCtorString = funcToString.call(Object); /** * Checks if `value` is a plain object, that is, an object created by the * `Object` constructor or one with a `[[Prototype]]` of `null`. * * @static * @memberOf _ * @since 0.8.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is a plain object, else `false`. * @example * * function Foo() { * this.a = 1; * } * * _.isPlainObject(new Foo); * // => false * * _.isPlainObject([1, 2, 3]); * // => false * * _.isPlainObject({ 'x': 0, 'y': 0 }); * // => true * * _.isPlainObject(Object.create(null)); * // => true */ function isPlainObject(value) { if (!isObjectLike(value) || baseGetTag(value) != objectTag) { return false; } var proto = getPrototype$1(value); if (proto === null) { return true; } var Ctor = hasOwnProperty$1.call(proto, 'constructor') && proto.constructor; return typeof Ctor == 'function' && Ctor instanceof Ctor && funcToString.call(Ctor) == objectCtorString; } /** Used to compose bitmasks for function metadata. */ var WRAP_BIND_FLAG = 1, WRAP_PARTIAL_FLAG = 32; /** * Creates a function that invokes `func` with the `this` binding of `thisArg` * and `partials` prepended to the arguments it receives. * * The `_.bind.placeholder` value, which defaults to `_` in monolithic builds, * may be used as a placeholder for partially applied arguments. * * **Note:** Unlike native `Function#bind`, this method doesn't set the "length" * property of bound functions. * * @static * @memberOf _ * @since 0.1.0 * @category Function * @param {Function} func The function to bind. * @param {*} thisArg The `this` binding of `func`. * @param {...*} [partials] The arguments to be partially applied. * @returns {Function} Returns the new bound function. * @example * * function greet(greeting, punctuation) { * return greeting + ' ' + this.user + punctuation; * } * * var object = { 'user': 'fred' }; * * var bound = _.bind(greet, object, 'hi'); * bound('!'); * // => 'hi fred!' * * // Bound with placeholders. * var bound = _.bind(greet, object, _, '!'); * bound('hi'); * // => 'hi fred!' */ var bind = baseRest(function(func, thisArg, partials) { var bitmask = WRAP_BIND_FLAG; if (partials.length) { var holders = replaceHolders(partials, getHolder(bind)); bitmask |= WRAP_PARTIAL_FLAG; } return createWrap(func, bitmask, thisArg, partials, holders); }); // Assign default placeholders. bind.placeholder = {}; var v = bind; /** * Removes all key-value entries from the stack. * * @private * @name clear * @memberOf Stack */ function stackClear() { this.__data__ = new ListCache; this.size = 0; } /** * Removes `key` and its value from the stack. * * @private * @name delete * @memberOf Stack * @param {string} key The key of the value to remove. * @returns {boolean} Returns `true` if the entry was removed, else `false`. */ function stackDelete(key) { var data = this.__data__, result = data['delete'](key); this.size = data.size; return result; } /** * Gets the stack value for `key`. * * @private * @name get * @memberOf Stack * @param {string} key The key of the value to get. * @returns {*} Returns the entry value. */ function stackGet(key) { return this.__data__.get(key); } /** * Checks if a stack value for `key` exists. * * @private * @name has * @memberOf Stack * @param {string} key The key of the entry to check. * @returns {boolean} Returns `true` if an entry for `key` exists, else `false`. */ function stackHas(key) { return this.__data__.has(key); } /** Used as the size to enable large array optimizations. */ var LARGE_ARRAY_SIZE = 200; /** * Sets the stack `key` to `value`. * * @private * @name set * @memberOf Stack * @param {string} key The key of the value to set. * @param {*} value The value to set. * @returns {Object} Returns the stack cache instance. */ function stackSet(key, value) { var data = this.__data__; if (data instanceof ListCache) { var pairs = data.__data__; if (!Map$2 || (pairs.length < LARGE_ARRAY_SIZE - 1)) { pairs.push([key, value]); this.size = ++data.size; return this; } data = this.__data__ = new MapCache(pairs); } data.set(key, value); this.size = data.size; return this; } /** * Creates a stack cache object to store key-value pairs. * * @private * @constructor * @param {Array} [entries] The key-value pairs to cache. */ function Stack(entries) { var data = this.__data__ = new ListCache(entries); this.size = data.size; } // Add methods to `Stack`. Stack.prototype.clear = stackClear; Stack.prototype['delete'] = stackDelete; Stack.prototype.get = stackGet; Stack.prototype.has = stackHas; Stack.prototype.set = stackSet; /** Detect free variable `exports`. */ var freeExports = typeof exports == 'object' && exports && !exports.nodeType && exports; /** Detect free variable `module`. */ var freeModule = freeExports && typeof module == 'object' && module && !module.nodeType && module; /** Detect the popular CommonJS extension `module.exports`. */ var moduleExports = freeModule && freeModule.exports === freeExports; /** Built-in value references. */ var Buffer = moduleExports ? root$1.Buffer : undefined, allocUnsafe = Buffer ? Buffer.allocUnsafe : undefined; /** * Creates a clone of `buffer`. * * @private * @param {Buffer} buffer The buffer to clone. * @param {boolean} [isDeep] Specify a deep clone. * @returns {Buffer} Returns the cloned buffer. */ function cloneBuffer(buffer, isDeep) { if (isDeep) { return buffer.slice(); } var length = buffer.length, result = allocUnsafe ? allocUnsafe(length) : new buffer.constructor(length); buffer.copy(result); return result; } /** Built-in value references. */ var Uint8Array$1 = root$1.Uint8Array; var Uint8Array$2 = Uint8Array$1; /** * Creates a clone of `arrayBuffer`. * * @private * @param {ArrayBuffer} arrayBuffer The array buffer to clone. * @returns {ArrayBuffer} Returns the cloned array buffer. */ function cloneArrayBuffer(arrayBuffer) { var result = new arrayBuffer.constructor(arrayBuffer.byteLength); new Uint8Array$2(result).set(new Uint8Array$2(arrayBuffer)); return result; } /** * Creates a clone of `typedArray`. * * @private * @param {Object} typedArray The typed array to clone. * @param {boolean} [isDeep] Specify a deep clone. * @returns {Object} Returns the cloned typed array. */ function cloneTypedArray(typedArray, isDeep) { var buffer = isDeep ? cloneArrayBuffer(typedArray.buffer) : typedArray.buffer; return new typedArray.constructor(buffer, typedArray.byteOffset, typedArray.length); } /** * Initializes an object clone. * * @private * @param {Object} object The object to clone. * @returns {Object} Returns the initialized clone. */ function initCloneObject(object) { return (typeof object.constructor == 'function' && !isPrototype(object)) ? baseCreate$1(getPrototype$1(object)) : {}; } /** * Creates a base function for methods like `_.forIn` and `_.forOwn`. * * @private * @param {boolean} [fromRight] Specify iterating from right to left. * @returns {Function} Returns the new base function. */ function createBaseFor(fromRight) { return function(object, iteratee, keysFunc) { var index = -1, iterable = Object(object), props = keysFunc(object), length = props.length; while (length--) { var key = props[fromRight ? length : ++index]; if (iteratee(iterable[key], key, iterable) === false) { break; } } return object; }; } /** * The base implementation of `baseForOwn` which iterates over `object` * properties returned by `keysFunc` and invokes `iteratee` for each property. * Iteratee functions may exit iteration early by explicitly returning `false`. * * @private * @param {Object} object The object to iterate over. * @param {Function} iteratee The function invoked per iteration. * @param {Function} keysFunc The function to get the keys of `object`. * @returns {Object} Returns `object`. */ var baseFor = createBaseFor(); var baseFor$1 = baseFor; /** * This function is like `assignValue` except that it doesn't assign * `undefined` values. * * @private * @param {Object} object The object to modify. * @param {string} key The key of the property to assign. * @param {*} value The value to assign. */ function assignMergeValue(object, key, value) { if ((value !== undefined && !eq(object[key], value)) || (value === undefined && !(key in object))) { baseAssignValue(object, key, value); } } /** * This method is like `_.isArrayLike` except that it also checks if `value` * is an object. * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is an array-like object, * else `false`. * @example * * _.isArrayLikeObject([1, 2, 3]); * // => true * * _.isArrayLikeObject(document.body.children); * // => true * * _.isArrayLikeObject('abc'); * // => false * * _.isArrayLikeObject(_.noop); * // => false */ function isArrayLikeObject(value) { return isObjectLike(value) && isArrayLike(value); } /** * Gets the value at `key`, unless `key` is "__proto__" or "constructor". * * @private * @param {Object} object The object to query. * @param {string} key The key of the property to get. * @returns {*} Returns the property value. */ function safeGet(object, key) { if (key === 'constructor' && typeof object[key] === 'function') { return; } if (key == '__proto__') { return; } return object[key]; } /** * Converts `value` to a plain object flattening inherited enumerable string * keyed properties of `value` to own properties of the plain object. * * @static * @memberOf _ * @since 3.0.0 * @category Lang * @param {*} value The value to convert. * @returns {Object} Returns the converted plain object. * @example * * function Foo() { * this.b = 2; * } * * Foo.prototype.c = 3; * * _.assign({ 'a': 1 }, new Foo); * // => { 'a': 1, 'b': 2 } * * _.assign({ 'a': 1 }, _.toPlainObject(new Foo)); * // => { 'a': 1, 'b': 2, 'c': 3 } */ function toPlainObject(value) { return copyObject(value, keysIn(value)); } /** * A specialized version of `baseMerge` for arrays and objects which performs * deep merges and tracks traversed objects enabling objects with circular * references to be merged. * * @private * @param {Object} object The destination object. * @param {Object} source The source object. * @param {string} key The key of the value to merge. * @param {number} srcIndex The index of `source`. * @param {Function} mergeFunc The function to merge values. * @param {Function} [customizer] The function to customize assigned values. * @param {Object} [stack] Tracks traversed source values and their merged * counterparts. */ function baseMergeDeep(object, source, key, srcIndex, mergeFunc, customizer, stack) { var objValue = safeGet(object, key), srcValue = safeGet(source, key), stacked = stack.get(srcValue); if (stacked) { assignMergeValue(object, key, stacked); return; } var newValue = customizer ? customizer(objValue, srcValue, (key + ''), object, source, stack) : undefined; var isCommon = newValue === undefined; if (isCommon) { var isArr = isArray$1(srcValue), isBuff = !isArr && isBuffer$1(srcValue), isTyped = !isArr && !isBuff && isTypedArray$2(srcValue); newValue = srcValue; if (isArr || isBuff || isTyped) { if (isArray$1(objValue)) { newValue = objValue; } else if (isArrayLikeObject(objValue)) { newValue = copyArray$1(objValue); } else if (isBuff) { isCommon = false; newValue = cloneBuffer(srcValue, true); } else if (isTyped) { isCommon = false; newValue = cloneTypedArray(srcValue, true); } else { newValue = []; } } else if (isPlainObject(srcValue) || isArguments$1(srcValue)) { newValue = objValue; if (isArguments$1(objValue)) { newValue = toPlainObject(objValue); } else if (!isObject(objValue) || isFunction(objValue)) { newValue = initCloneObject(srcValue); } } else { isCommon = false; } } if (isCommon) { // Recursively merge objects and arrays (susceptible to call stack limits). stack.set(srcValue, newValue); mergeFunc(newValue, srcValue, srcIndex, customizer, stack); stack['delete'](srcValue); } assignMergeValue(object, key, newValue); } /** * The base implementation of `_.merge` without support for multiple sources. * * @private * @param {Object} object The destination object. * @param {Object} source The source object. * @param {number} srcIndex The index of `source`. * @param {Function} [customizer] The function to customize merged values. * @param {Object} [stack] Tracks traversed source values and their merged * counterparts. */ function baseMerge(object, source, srcIndex, customizer, stack) { if (object === source) { return; } baseFor$1(source, function(srcValue, key) { stack || (stack = new Stack); if (isObject(srcValue)) { baseMergeDeep(object, source, key, srcIndex, baseMerge, customizer, stack); } else { var newValue = customizer ? customizer(safeGet(object, key), srcValue, (key + ''), object, source, stack) : undefined; if (newValue === undefined) { newValue = srcValue; } assignMergeValue(object, key, newValue); } }, keysIn); } /** * This method is like `_.assign` except that it recursively merges own and * inherited enumerable string keyed properties of source objects into the * destination object. Source properties that resolve to `undefined` are * skipped if a destination value exists. Array and plain object properties * are merged recursively. Other objects and value types are overridden by * assignment. Source objects are applied from left to right. Subsequent * sources overwrite property assignments of previous sources. * * **Note:** This method mutates `object`. * * @static * @memberOf _ * @since 0.5.0 * @category Object * @param {Object} object The destination object. * @param {...Object} [sources] The source objects. * @returns {Object} Returns `object`. * @example * * var object = { * 'a': [{ 'b': 2 }, { 'd': 4 }] * }; * * var other = { * 'a': [{ 'c': 3 }, { 'e': 5 }] * }; * * _.merge(object, other); * // => { 'a': [{ 'b': 2, 'c': 3 }, { 'd': 4, 'e': 5 }] } */ var merge = createAssigner(function(object, source, srcIndex) { baseMerge(object, source, srcIndex); }); var merge$1 = merge; const DEFAULT_AMP_CONFIG = { "key": "", "version": "2.0", "plugins": [], "Loca": { "version": "2.0.0" }, serviceHost: "", securityJsCode: "" }; function AMapAPILoader(config = {}) { config = merge$1({}, DEFAULT_AMP_CONFIG, config); if (config.serviceHost) { window._AMapSecurityConfig = { serviceHost: config.serviceHost }; } else if (config.securityJsCode) { window._AMapSecurityConfig = { securityJsCode: config.securityJsCode }; } return AMapLoader.load(config); } let lazyAMapApiLoaderInstance = null; const initAMapApiLoader = (config) => { if (lazyAMapApiLoaderInstance) return; if (!lazyAMapApiLoaderInstance) { if (config.offline) { lazyAMapApiLoaderInstance = new Promise((resolve) => { console.log("@vuemap/vue-amap\u79BB\u7EBF\u90E8\u7F72"); resolve(window.AMap); }); } else { lazyAMapApiLoaderInstance = AMapAPILoader(config); } } lazyAMapApiLoaderInstance.then(); }; var script$18 = defineComponent({ name: "ElAmap", mixins: [registerMixin], provide() { return { parentInstance: this }; }, props: { vid: { type: String }, center: { type: Array }, zoom: { type: Number }, rotation: { type: Number }, pitch: { type: Number }, viewMode: { type: String }, features: { type: Array }, layers: { type: Array }, zooms: { type: Array }, resizeEnable: { type: Boolean, default: true }, dragEnable: { type: Boolean, default: true }, zoomEnable: { type: Boolean, default: true }, jogEnable: { type: Boolean, default: true }, pitchEnable: { type: Boolean, default: true }, rotateEnable: { type: Boolean, default: true }, animateEnable: { type: Boolean, default: true }, keyboardEnable: { type: Boolean, default: true }, doubleClickZoom: { type: Boolean, default: true }, scrollWheel: { type: Boolean, default: true }, touchZoom: { type: Boolean, default: true }, touchZoomCenter: { type: Number }, showLabel: { type: Boolean, default: true }, defaultCursor: { type: String }, isHotspot: { type: Boolean }, mapStyle: { type: String }, wallColor: { type: [String, Array] }, roofColor: { type: [String, Array] }, showBuildingBlock: { type: Boolean, default: true }, showIndoorMap: { type: Boolean, default: false }, skyColor: { type: [String, Array] }, labelRejectMask: { type: Boolean, default: false }, mask: { type: Array }, WebGLParams: { type: Object }, terrain: { type: Boolean, default: false } }, emits: ["update:zoom", "update:center", "update:rotation", "update:pitch"], data() { return {}; }, computed: {}, mounted() { this.createMap(); }, beforeUnmount() { if (this.$amapComponent) { this.$amapComponent.destroy(); this.$amapComponent = null; this.$parentComponent = null; } }, methods: { createMap() { lazyAMapApiLoaderInstance.then(() => { const mapElement = this.$el.querySelector(".el-vue-amap"); const elementID = this.vid || guid(); mapElement.id = elementID; this.$nextTick(() => { this.$amapComponent = new AMap.Map(elementID, this.convertProps()); this.register(); this.bindModelEvents(); }); }).catch((e) => { console.warn("init map error: ", e); }); }, bindModelEvents() { this.$amapComponent.on("zoomchange", () => { this.$emit("update:zoom", this.$amapComponent.getZoom()); }); this.$amapComponent.on("rotatechange", () => { this.$emit("update:rotation", this.$amapComponent.getRotation()); this.$emit("update:pitch", this.$amapComponent.getPitch()); }); this.$amapComponent.on("dragging", () => { this.$emit("update:center", this.getCenter()); this.$emit("update:pitch", this.$amapComponent.getPitch()); }); this.$amapComponent.on("touchmove", () => { this.$emit("update:center", this.getCenter()); }); }, getCenter() { const center = this.$amapComponent.getCenter(); return [center.lng, center.lat]; }, __dragEnable(flag) { if (this.$amapComponent) { this.$amapComponent.setStatus({ dragEnable: flag }); } }, __zoomEnable(flag) { if (this.$amapComponent) { this.$amapComponent.setStatus({ zoomEnable: flag }); } }, __jogEnable(flag) { if (this.$amapComponent) { this.$amapComponent.setStatus({ jogEnable: flag }); } }, __keyboardEnable(flag) { if (this.$amapComponent) { this.$amapComponent.setStatus({ keyboardEnable: flag }); } }, __doubleClickZoom(flag) { if (this.$amapComponent) { this.$amapComponent.setStatus({ doubleClickZoom: flag }); } }, __scrollWheel(flag) { if (this.$amapComponent) { this.$amapComponent.setStatus({ scrollWheel: flag }); } }, __rotateEnable(flag) { if (this.$amapComponent) { this.$amapComponent.setStatus({ rotateEnable: flag }); } }, __resizeEnable(flag) { if (this.$amapComponent) { this.$amapComponent.setStatus({ resizeEnable: flag }); } }, __showIndoorMap(flag) { if (this.$amapComponent) { this.$amapComponent.setStatus({ showIndoorMap: flag }); } } } }); const _hoisted_1$5 = { class: "el-vue-amap-container" }; const _hoisted_2$4 = /* @__PURE__ */ createElementVNode("div", { class: "el-vue-amap" }, null, -1); function render$9(_ctx, _cache, $props, $setup, $data, $options) { return openBlock(), createElementBlock("div", _hoisted_1$5, [ _hoisted_2$4, renderSlot(_ctx.$slots, "default") ]); } script$18.render = render$9; script$18.__file = "src/packages/amap/amap.vue"; const ElAmap = withInstall(script$18); var script$17 = defineComponent({ name: "ElAmapControlControlBar", mixins: [registerMixin], props: { position: { type: [String, Object] }, offset: { type: Array }, showControlButton: { type: Boolean, default: true } }, data() { return {}; }, methods: { __initComponent(options) { return new Promise((resolve) => { this.$parentComponent.plugin(["AMap.ControlBar"], () => { this.$amapComponent = new AMap.ControlBar(options); this.$parentComponent.addControl(this.$amapComponent); resolve(); }); }); }, destroyComponent() { if (this.$amapComponent && this.$parentComponent) { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeControl(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } } }, render() { return null; } }); script$17.__file = "src/packages/control/ControlBar/ControlBar.vue"; const ElAmapControlControlBar = withInstall(script$17); var script$16 = defineComponent({ name: "ElAmapControlHawkEye", mixins: [registerMixin], props: { autoMove: { type: Boolean, default: true }, showRectangle: { type: Boolean, default: true }, showButton: { type: Boolean, default: true }, isOpen: { type: Boolean, default: true }, mapStyle: { type: String }, layers: { type: Array }, width: { type: String }, height: { type: String }, offset: { type: Array }, borderStyle: { type: String }, borderColor: { type: String }, borderRadius: { type: String }, borderWidth: { type: String }, buttonSize: { type: String } }, data() { return {}; }, methods: { __initComponent(options) { return new Promise((resolve) => { this.$parentComponent.plugin(["AMap.HawkEye"], () => { this.$amapComponent = new AMap.HawkEye(options); this.$parentComponent.addControl(this.$amapComponent); resolve(); }); }); }, destroyComponent() { if (this.$amapComponent && this.$parentComponent) { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeControl(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, __isOpen(flag) { flag === false ? this.$amapComponent.close() : this.$amapComponent.open(); } }, render() { return null; } }); script$16.__file = "src/packages/control/HawkEye/HawkEye.vue"; const ElAmapControlHawkEye = withInstall(script$16); var script$15 = defineComponent({ name: "ElAmapControlMapType", mixins: [registerMixin], props: { defaultType: { type: Number }, showTraffic: { type: Boolean, default: false }, showRoad: { type: Boolean, default: false } }, data() { return {}; }, methods: { __initComponent(options) { return new Promise((resolve) => { this.$parentComponent.plugin(["AMap.MapType"], () => { this.$amapComponent = new AMap.MapType(options); this.$parentComponent.addControl(this.$amapComponent); resolve(); }); }); }, destroyComponent() { if (this.$amapComponent && this.$parentComponent) { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeControl(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } } }, render() { return null; } }); script$15.__file = "src/packages/control/MapType/MapType.vue"; const ElAmapControlMapType = withInstall(script$15); var script$14 = defineComponent({ name: "ElAmapControlScale", mixins: [registerMixin], props: { position: { type: [String, Object] }, offset: { type: Array } }, data() { return {}; }, methods: { __initComponent(options) { return new Promise((resolve) => { this.$parentComponent.plugin(["AMap.Scale"], () => { this.$amapComponent = new AMap.Scale(options); this.$parentComponent.addControl(this.$amapComponent); resolve(); }); }); }, destroyComponent() { if (this.$amapComponent && this.$parentComponent) { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeControl(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } } }, render() { return null; } }); script$14.__file = "src/packages/control/Scale/Scale.vue"; const ElAmapControlScale = withInstall(script$14); var script$13 = defineComponent({ name: "ElAmapControlToolBar", mixins: [registerMixin], props: { position: { type: [String, Object] }, offset: { type: Array } }, data() { return {}; }, methods: { __initComponent(options) { return new Promise((resolve) => { this.$parentComponent.plugin(["AMap.ToolBar"], () => { this.$amapComponent = new AMap.ToolBar(options); this.$parentComponent.addControl(this.$amapComponent); resolve(); }); }); }, destroyComponent() { if (this.$amapComponent && this.$parentComponent) { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeControl(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } } }, render() { return null; } }); script$13.__file = "src/packages/control/ToolBar/ToolBar.vue"; const ElAmapControlToolBar = withInstall(script$13); var script$12 = defineComponent({ name: "ElAmapSearchBox", mixins: [registerMixin], props: { type: { type: String }, city: { type: String }, datatype: { type: String }, citylimit: { type: Boolean, default: false }, inputId: { type: String }, inputCustom: { type: Boolean, default: false }, outputId: { type: String }, outPutDirAuto: { type: Boolean, default: true }, closeResultOnScroll: { type: Boolean, default: true }, lang: { type: String }, placeholder: { type: String } }, data() { return { saveInputId: "", saveVisible: true }; }, created() { this.saveInputId = guid(); }, methods: { __initComponent(options) { if (options.inputId) { this.saveInputId = options.inputId; delete options.inputId; } if (options.visible) { this.saveVisible = options.visible; } options.input = this.saveInputId; if (options.outputId) { options.output = options.outputId; delete options.outputId; } return new Promise((resolve) => { this.$parentComponent.plugin(["AMap.AutoComplete"], () => { this.$amapComponent = new AMap.AutoComplete(options); resolve(); }); }); }, __visible(flag) { this.saveVisible = flag; }, __citylimit(flag) { this.$amapComponent.setCityLimit(flag); } } }); const _hoisted_1$4 = { class: "el-vue-search-box-container" }; const _hoisted_2$3 = ["id", "placeholder"]; function render$8(_ctx, _cache, $props, $setup, $data, $options) { return withDirectives((openBlock(), createElementBlock("div", _hoisted_1$4, [ !_ctx.inputCustom ? (openBlock(), createElementBlock("input", { key: 0, id: _ctx.saveInputId, type: "text", placeholder: _ctx.placeholder }, null, 8, _hoisted_2$3)) : createCommentVNode("v-if", true) ], 512)), [ [vShow, _ctx.visible && !_ctx.inputCustom] ]); } script$12.render = render$8; script$12.__file = "src/packages/control/SearchBox/SearchBox.vue"; const ElAmapSearchBox = withInstall(script$12); var script$11 = defineComponent({ name: "ElAmapInfoWindow", mixins: [registerMixin], props: { isCustom: { type: Boolean, default: false }, autoMove: { type: Boolean, default: true }, avoid: { type: Array }, closeWhenClickMap: { type: Boolean, default: false }, content: { type: [String, Object] }, size: { type: Array }, anchor: { type: String }, offset: { type: Array }, position: { type: Array } }, emits: ["update:visible"], data() { return { converters: {} }; }, unmounted() { if (this.$amapComponent) { this.$amapComponent.close(); } }, updated() { if (!this.content && this.$amapComponent) { this.$amapComponent.setContent(this.$refs.info); } }, methods: { __initComponent(options) { if (!options.content) { options.content = this.getSlotContent(); } this.$amapComponent = new AMap.InfoWindow(options); this.$amapComponent.on("close", () => { this.$emit("update:visible", false); }); if (this.visible !== false) { this.$amapComponent.open(this.$parentComponent, this.position); } if (!this.content && this.$amapComponent) { const config = { attributes: true, childList: true, subtree: true }; const observer = new MutationObserver(() => { this.$amapComponent.setContent(this.getSlotContent()); }); observer.observe(this.$refs.info, config); this.observer = observer; } }, getSlotContent() { return this.$refs.info; }, destroyComponent() { if (this.observer) { this.observer.disconnect(); this.observer = null; } if (this.$amapComponent) { if (this.$amapComponent.getIsOpen()) { this.$amapComponent.close(); } this.$amapComponent = null; this.$parentComponent = null; } }, __position(position) { if (this.visible) { this.$amapComponent.open(this.$parentComponent, position); } else { this.$amapComponent.setPosition(position); } }, __visible(flag) { const position = this.$amapComponent.getPosition(); if (position) { flag === false ? this.$amapComponent.close() : this.$amapComponent.open(this.$parentComponent, [position.lng, position.lat]); } } } }); const _hoisted_1$3 = { style: { "display": "none" } }; const _hoisted_2$2 = { ref: "info" }; function render$7(_ctx, _cache, $props, $setup, $data, $options) { return openBlock(), createElementBlock("div", _hoisted_1$3, [ createElementVNode("div", _hoisted_2$2, [ renderSlot(_ctx.$slots, "default") ], 512) ]); } script$11.render = render$7; script$11.__file = "src/packages/infoWindow/InfoWindow/InfoWindow.vue"; const ElAmapInfoWindow = withInstall(script$11); var script$10 = defineComponent({ name: "ElAmapLayerCanvas", mixins: [registerMixin], props: { canvas: { required: true, type: Object }, zooms: { type: Array }, bounds: { type: [Array, Object] }, opacity: { type: Number } }, data() { return { handlers: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.CanvasLayer(options); this.$parentComponent.addLayer(this.$amapComponent); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeLayer(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$10.__file = "src/packages/layer/data/Canvas/Canvas.vue"; const ElAmapLayerCanvas = withInstall(script$10); var script$$ = defineComponent({ name: "ElAmapLayerCustom", mixins: [registerMixin], props: { canvas: { required: true, type: Object }, render: { type: Function }, zooms: { type: Array }, opacity: { type: Number }, alwaysRender: { type: Boolean, default: false } }, data() { return {}; }, methods: { __initComponent(options) { const canvas = options.canvas; delete options.canvas; this.$amapComponent = new AMap.CustomLayer(canvas, options); this.$amapComponent.setMap(this.$parentComponent); }, destroyComponent() { this.$amapComponent.setMap(null); this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$$.__file = "src/packages/layer/data/Custom/Custom.vue"; const ElAmapLayerCustom = withInstall(script$$); var script$_ = defineComponent({ name: "ElAmapLayerFlexible", mixins: [registerMixin], props: { cacheSize: { type: Number }, createTile: { type: Function }, zooms: { type: Array }, opacity: { type: Array }, tileSize: { type: Number } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.TileLayer.Flexible(options); this.$amapComponent.setMap(this.$parentComponent); }, destroyComponent() { this.$amapComponent.destroy(); this.$amapComponent.setMap(null); this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$_.__file = "src/packages/layer/data/Flexible/Flexible.vue"; const ElAmapLayerFlexible = withInstall(script$_); var script$Z = defineComponent({ name: "ElAmapLayerGlCustom", mixins: [registerMixin], props: { init: { type: Function }, render: { type: Function }, zooms: { type: Array }, opacity: { type: Number } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.GLCustomLayer(options); this.$amapComponent.setMap(this.$parentComponent); }, destroyComponent() { this.$amapComponent.setMap(null); this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$Z.__file = "src/packages/layer/data/GLCustom/GLCustom.vue"; const ElAmapLayerGlCustom = withInstall(script$Z); var script$Y = defineComponent({ name: "ElAmapLayerHeatMap", mixins: [registerMixin], props: { radius: { type: Number }, gradient: { type: Object }, zooms: { type: Array }, opacity: { type: Array }, config: { type: Object }, dataSet: { type: Object } }, data() { return { propsRedirect: { config: "3d" } }; }, methods: { __initComponent(options) { return new Promise((resolve) => { AMap.plugin(["AMap.HeatMap"], () => { delete options.dataSet; this.$amapComponent = new AMap.HeatMap(this.$parentComponent, options); if (this.dataSet) { this.$amapComponent.setDataSet(this.dataSet); } resolve(); }); }); }, destroyComponent() { this.$amapComponent.setDataSet({ data: [] }); this.$amapComponent.setMap(null); this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$Y.__file = "src/packages/layer/data/HeatMap/HeatMap.vue"; const ElAmapLayerHeatMap = withInstall(script$Y); var script$X = defineComponent({ name: "ElAmapLayerImage", mixins: [registerMixin], props: { url: { type: String, required: true }, zoom: { type: Array }, bounds: { type: [Array, Object] }, opacity: { type: Number } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.ImageLayer(options); this.$parentComponent.addLayer(this.$amapComponent); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeLayer(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; }, __url(value) { this.$amapComponent.setImageUrl(value); } }, render() { return null; } }); script$X.__file = "src/packages/layer/data/Image/Image.vue"; const ElAmapLayerImage = withInstall(script$X); var script$W = defineComponent({ name: "ElAmapLayerLabels", mixins: [registerMixin], provide() { return { parentInstance: this }; }, props: { zooms: { type: Array }, opacity: { type: Number }, collision: { type: Boolean, default: true }, allowCollision: { type: Boolean, default: false } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.LabelsLayer(options); this.$parentComponent.add(this.$amapComponent); }, $$add(markers) { this.$amapComponent.add(markers); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeLayer(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } } }); function render$6(_ctx, _cache, $props, $setup, $data, $options) { return openBlock(), createElementBlock("div", null, [ renderSlot(_ctx.$slots, "default") ]); } script$W.render = render$6; script$W.__file = "src/packages/layer/data/Labels/Labels.vue"; const ElAmapLayerLabels = withInstall(script$W); var script$V = defineComponent({ name: "ElAmapLayerVector", mixins: [registerMixin], provide() { return { parentInstance: this }; }, props: {}, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.VectorLayer(options); this.$parentComponent.add(this.$amapComponent); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeLayer(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } } }); function render$5(_ctx, _cache, $props, $setup, $data, $options) { return openBlock(), createElementBlock("div", null, [ renderSlot(_ctx.$slots, "default") ]); } script$V.render = render$5; script$V.__file = "src/packages/layer/data/Vector/Vector.vue"; const ElAmapLayerVector = withInstall(script$V); var script$U = defineComponent({ name: "ElAmapLayerBuildings", mixins: [registerMixin], props: { wallColor: { type: [String, Array] }, roofColor: { type: [String, Array] }, heightFactor: { type: Number }, styleOpts: { type: Object }, zooms: { type: Array }, opacity: { type: Number } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.Buildings(options); this.$parentComponent.add(this.$amapComponent); if (this.styleOpts) { this.__styleOpts(this.styleOpts); } }, destroyComponent() { this.$amapComponent.destroy(); if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; }, __styleOpts(value) { this.$amapComponent.setStyle(value); } }, render() { return null; } }); script$U.__file = "src/packages/layer/official/Buildings/Buildings.vue"; const ElAmapLayerBuildings = withInstall(script$U); var script$T = defineComponent({ name: "ElAmapLayerDefault", mixins: [registerMixin], props: { zoom: { type: Array }, opacity: { type: Number } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = AMap.createDefaultLayer(options); this.$parentComponent.add(this.$amapComponent); } }, render() { return null; } }); script$T.__file = "src/packages/layer/official/DefaultLayer/DefaultLayer.vue"; const ElAmapLayerDefault = withInstall(script$T); var script$S = defineComponent({ name: "ElAmapLayerDistrict", mixins: [registerMixin], props: { type: { type: String, default: "Country", validator(value) { return ["World", "Country", "Province"].indexOf(value) !== -1; } }, adcode: { type: String }, SOC: { type: String }, depth: { type: Number }, zooms: { type: Array }, opacity: { type: Number }, styles: { type: Object } }, data() { return {}; }, methods: { __initComponent(options) { if (this.type === "World") { this.$amapComponent = new AMap.DistrictLayer.World(options); } else if (this.type === "Country") { this.$amapComponent = new AMap.DistrictLayer.Country(options); } else if (this.type === "Province") { this.$amapComponent = new AMap.DistrictLayer.Province(options); } this.$parentComponent.add(this.$amapComponent); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; }, __SOC(value) { this.$amapComponent.setSOC(value); } }, render() { return null; } }); script$S.__file = "src/packages/layer/official/DistrictLayer/DistrictLayer.vue"; const ElAmapLayerDistrict = withInstall(script$S); var script$R = defineComponent({ name: "ElAmapLayerIndoorMap", mixins: [registerMixin], props: { opacity: { type: Number }, cursor: { type: String }, hideFloorBar: { type: Boolean, default: false } }, data() { return {}; }, methods: { __initComponent(options) { return new Promise((resolve) => { AMap.plugin(["AMap.IndoorMap"], () => { this.$amapComponent = new AMap.IndoorMap(options); const layers = this.$parentComponent.getLayers(); layers.push(this.$amapComponent); this.$parentComponent.setLayers(layers); resolve(); }); }); }, destroyComponent() { const layers = this.$parentComponent.getLayers(); let index = -1; for (let i = 0; i < layers.length; i++) { if (isIndoorMapInstance(layers[i])) { index = i; break; } } if (index > -1) { layers.splice(index, 1); this.$parentComponent.setLayers(layers); } this.$amapComponent = null; this.$parentComponent = null; }, __hideFloorBar(flag) { flag === false ? this.$amapComponent.hideFloorBar() : this.$amapComponent.showFloorBar(); } }, render() { return null; } }); script$R.__file = "src/packages/layer/official/IndoorMap/IndoorMap.vue"; const ElAmapLayerIndoorMap = withInstall(script$R); var script$Q = defineComponent({ name: "ElAmapLayerRoadNet", mixins: [registerMixin], props: { zooms: { type: Array }, opacity: { type: Number }, tileSize: { type: Number } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.TileLayer.RoadNet(options); this.$parentComponent.add(this.$amapComponent); }, destroyComponent() { this.$amapComponent.destroy(); if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$Q.__file = "src/packages/layer/official/RoadNet/RoadNet.vue"; const ElAmapLayerRoadNet = withInstall(script$Q); var script$P = defineComponent({ name: "ElAmapLayerSatellite", mixins: [registerMixin], props: { zooms: { type: Array }, opacity: { type: Number }, tileSize: { type: Number } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.TileLayer.Satellite(options); this.$parentComponent.add(this.$amapComponent); }, destroyComponent() { this.$amapComponent.destroy(); if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$P.__file = "src/packages/layer/official/Satellite/Satellite.vue"; const ElAmapLayerSatellite = withInstall(script$P); var script$O = defineComponent({ name: "ElAmapLayerTile", mixins: [registerMixin], props: { tileUrl: { type: String, required: true }, zoom: { type: Array }, dataZooms: { type: Array }, opacity: { type: Number }, tileSize: { type: Number } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.TileLayer(options); this.$parentComponent.add(this.$amapComponent); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$O.__file = "src/packages/layer/official/TileLayer/TileLayer.vue"; const ElAmapLayerTile = withInstall(script$O); var script$N = defineComponent({ name: "ElAmapLayerTraffic", mixins: [registerMixin], props: { autoRefresh: { type: Boolean, defult: true }, interval: { type: Number }, zooms: { type: Array }, opacity: { type: Number }, tileSize: { type: Number } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.TileLayer.Traffic(options); this.$parentComponent.add(this.$amapComponent); }, stopFresh() { if (this.$amapComponent) { this.$amapComponent.stopFresh(); } }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$N.__file = "src/packages/layer/official/Traffic/Traffic.vue"; const ElAmapLayerTraffic = withInstall(script$N); var script$M = defineComponent({ name: "ElAmapLayerMapboxVectorTile", mixins: [registerMixin], props: { url: { type: String }, zooms: { type: Array }, dataZooms: { type: Array }, opacity: { type: Number }, styles: { type: Object } }, data() { return {}; }, methods: { __initComponent(options) { return new Promise((resolve) => { AMap.plugin(["AMap.MapboxVectorTileLayer"], () => { this.$amapComponent = new AMap.MapboxVectorTileLayer(options); this.$parentComponent.addLayer(this.$amapComponent); resolve(); }); }); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeLayer(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$M.__file = "src/packages/layer/standard/MapboxVectorTileLayer/MapboxVectorTileLayer.vue"; const ElAmapLayerMapboxVectorTile = withInstall(script$M); var script$L = defineComponent({ name: "ElAmapLayerWms", mixins: [registerMixin], props: { url: { type: String }, blend: { type: Boolean, default: false }, params: { type: Object }, zooms: { type: Array }, opacity: { type: Number } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.TileLayer.WMS(options); this.$parentComponent.add(this.$amapComponent); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$L.__file = "src/packages/layer/standard/WMS/WMS.vue"; const ElAmapLayerWms = withInstall(script$L); var script$K = defineComponent({ name: "ElAmapLayerWmts", mixins: [registerMixin], props: { url: { type: String }, blend: { type: Boolean, default: false }, params: { type: Object }, zooms: { type: Array }, opacity: { type: Number } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.TileLayer.WMS(options); this.$parentComponent.add(this.$amapComponent); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$K.__file = "src/packages/layer/standard/WMTS/WMTS.vue"; const ElAmapLayerWmts = withInstall(script$K); var locaMixin = defineComponent({ props: { sourceUrl: { type: String }, sourceData: { type: Object }, geoBufferSource: { type: [ArrayBuffer, String], default() { return null; } }, layerStyle: { type: Object }, defaultStyleValue: { type: Object, default() { return {}; } }, zooms: { type: Array }, opacity: { type: Number }, initEvents: { type: Boolean, default: true }, visibleDuration: { type: Number, default: 0 }, onClick: { type: Function, default: null }, onMousemove: { type: Function, default: null }, onRightclick: { type: Function, default: null } }, emits: ["mousemove", "click", "rightclick"], data() { return { isDragging: false, isRotating: false }; }, methods: { setSource() { if (this.source) { this.source.destroy(); this.source = null; } if (this.geoBufferSource) { if (typeof this.geoBufferSource === "string") { this.source = new Loca.GeoBufferSource({ url: this.geoBufferSource }); } else { this.source = new Loca.GeoBufferSource({ data: this.geoBufferSource }); } } else if (this.sourceUrl) { this.source = new Loca.GeoJSONSource({ url: this.sourceUrl }); } else if (this.sourceData) { this.source = new Loca.GeoJSONSource({ data: this.sourceData }); } else { this.source = new Loca.GeoJSONSource({}); } this.$amapComponent.setSource(this.source); }, initComplete() { if (this.initEvents) { this.bindEvents(); } }, destroyComponent() { this.unBindEvents(); if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); this.$amapComponent.destroy(); } if (this.source) { this.source.destroy(); this.source = null; } this.$amapComponent = null; this.$parentComponent = null; }, bindEvents() { if (this.parentInstance) { const map = this.parentInstance.getMap(); const $props = this.$props; if ($props.onClick !== null) { map.on("click", this.clickMap); } if ($props.onMousemove !== null) { map.on("mousemove", this.mouseMoveMap); map.on("dragstart", this.dragStart); map.on("dragend", this.dragEnd); map.on("rotatestart", this.rotateStart); map.on("rotateend", this.rotateEnd); map.on("mouseout", this.mouseoutMap); } if ($props.onRightclick !== null) { map.on("rightclick", this.rightclickMap); } } }, clickMap(e) { const feature = this._getFeature(e); this.$emit("click", feature, e); }, rightclickMap(e) { const feature = this._getFeature(e); this.$emit("rightclick", feature, e); }, mouseMoveMap(e) { if (this.isDragging || this.isRotating) { return; } const feature = this._getFeature(e); this.$emit("mousemove", feature, e); }, _getFeature(e) { return this.$amapComponent.queryFeature(e.pixel.toArray()); }, dragStart() { this.isDragging = true; }, dragEnd() { this.isDragging = false; }, mouseoutMap() { this.isDragging = false; this.isRotating = false; }, rotateStart() { this.isRotating = true; }, rotateEnd() { this.isRotating = false; }, unBindEvents() { if (this.parentInstance) { const map = this.parentInstance.getMap(); map.off("click", this.clickMap); map.off("rightclick", this.rightclickMap); map.off("mousemove", this.mouseMoveMap); map.off("dragstart", this.dragStart); map.off("dragend", this.dragEnd); map.off("rotatestart", this.rotateStart); map.off("rotateend", this.rotateEnd); map.off("mouseout", this.mouseoutMap); } }, __layerStyle(style) { this.$nextTick(() => { if (this.$amapComponent.setStyle) { this.$amapComponent.setStyle(style); } }); }, __sourceUrl() { this.$nextTick(() => { this.setSource(); }); }, __sourceData() { this.$nextTick(() => { this.setSource(); }); }, __geoBufferSource() { this.$nextTick(() => { this.setSource(); }); }, __visible(flag) { if (this.$amapComponent.show && this.$amapComponent.hide) { flag === false ? this.$amapComponent.hide(this.visibleDuration) : this.$amapComponent.show(this.visibleDuration); } } } }); var script$J = defineComponent({ name: "ElAmapLocaGrid", mixins: [registerMixin, locaMixin], props: { cullface: { type: String }, acceptLight: { type: Boolean, default: true }, shininess: { type: Number }, hasSide: { type: Boolean, default: true }, depth: { type: Boolean, default: true } }, data() { return { converters: {}, handlers: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.GridLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { topColor: "#fff", sideTopColor: "#fff", sideBottomColor: "#fff", altitude: 0, height: 0, radius: 1e3, gap: 0, unit: "meter" }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { topColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.topColor === void 0 ? style.topColor : feature.properties.topColor; }, sideTopColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.sideTopColor === void 0 ? style.sideTopColor : feature.properties.sideTopColor; }, sideBottomColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.sideBottomColor === void 0 ? style.sideBottomColor : feature.properties.sideBottomColor; }, altitude: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.altitude === void 0 ? style.altitude : feature.properties.altitude; }, height: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.height === void 0 ? style.height : feature.properties.height; }, radius: style.radius, gap: style.gap, unit: style.unit }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$J.__file = "src/packages/loca/GridLayer/GridLayer.vue"; const ElAmapLocaGrid = withInstall(script$J); var script$I = defineComponent({ name: "ElAmapLocaHeatmap", mixins: [registerMixin, locaMixin], props: { depth: { type: Boolean, default: true } }, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.HeatMapLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { radius: 20, value: 10, gradient: { 0.5: "blue", 0.65: "rgb(117,211,248)", 0.7: "rgb(0, 255, 0)", 0.9: "#ffea00", 1: "red" }, opacity: [0, 1], height: 100, heightBezier: [0.4, 0.2, 0.4, 0.8], max: null, min: null, unit: "px", difference: false }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { radius: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.radius === void 0 ? style.radius : feature.properties.radius; }, value: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.value === void 0 ? style.value : feature.properties.value; }, gradient: style.gradient, opacity: style.opacity, height: style.height, heightBezier: style.heightBezier, max: style.max, min: style.min, unit: style.unit, difference: style.difference }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$I.__file = "src/packages/loca/HeatMapLayer/HeatMapLayer.vue"; const ElAmapLocaHeatmap = withInstall(script$I); var script$H = defineComponent({ name: "ElAmapLocaHexagon", mixins: [registerMixin, locaMixin], props: { cullface: { type: String }, acceptLight: { type: Boolean, default: true }, shininess: { type: Number }, hasSide: { type: Boolean, default: true }, depth: { type: Boolean, default: true } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.HexagonLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { topColor: "#fff", sideTopColor: "#fff", sideBottomColor: "#fff", altitude: 0, height: 0, radius: 1e3, gap: 0, unit: "meter" }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { topColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.topColor === void 0 ? style.topColor : feature.properties.topColor; }, sideTopColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.sideTopColor === void 0 ? style.sideTopColor : feature.properties.sideTopColor; }, sideBottomColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.sideBottomColor === void 0 ? style.sideBottomColor : feature.properties.sideBottomColor; }, altitude: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.altitude === void 0 ? style.altitude : feature.properties.altitude; }, height: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.height === void 0 ? style.height : feature.properties.height; }, radius: style.radius, gap: style.gap, unit: style.unit }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$H.__file = "src/packages/loca/HexagonLayer/HexagonLayer.vue"; const ElAmapLocaHexagon = withInstall(script$H); var script$G = defineComponent({ name: "ElAmapLocaIcon", mixins: [registerMixin, locaMixin], props: {}, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.IconLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { unit: "px", icon: "", iconSize: [20, 20], rotation: 0, opacity: 1, offset: [0, 0] }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { unit: style.unit, icon: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.icon === void 0 ? style.icon : feature.properties.icon; }, iconSize: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.iconSize === void 0 ? style.iconSize : feature.properties.iconSize; }, rotation: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.rotation === void 0 ? style.rotation : feature.properties.rotation; }, opacity: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.opacity === void 0 ? style.opacity : feature.properties.opacity; }, offset: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.offset === void 0 ? style.offset : feature.properties.offset; } }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$G.__file = "src/packages/loca/IconLayer/IconLayer.vue"; const ElAmapLocaIcon = withInstall(script$G); var script$F = defineComponent({ name: "ElAmapLocaLine", mixins: [registerMixin, locaMixin], props: {}, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.LineLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { color: "#fff", lineWidth: 2, altitude: 0, borderWidth: 0, borderColor: "#fff", dashArray: [10, 0, 10, 0] }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { color: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.color === void 0 ? style.color : feature.properties.color; }, lineWidth: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.lineWidth === void 0 ? style.lineWidth : feature.properties.lineWidth; }, altitude: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.altitude === void 0 ? style.altitude : feature.properties.altitude; }, borderWidth: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.borderWidth === void 0 ? style.borderWidth : feature.properties.borderWidth; }, borderColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.borderColor === void 0 ? style.borderColor : feature.properties.borderColor; }, dashArray: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.dashArray === void 0 ? style.dashArray : feature.properties.dashArray; } }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$F.__file = "src/packages/loca/LineLayer/LineLayer.vue"; const ElAmapLocaLine = withInstall(script$F); var script$E = defineComponent({ name: "ElAmapLocaLink", mixins: [registerMixin, locaMixin], props: {}, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.LinkLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { lineColors: ["rgba(255,255,255,1)", "rgba(255,255,255,0)"], height: 100, smoothSteps: 100 }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { lineColors: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.lineColors === void 0 ? style.lineColors : feature.properties.lineColors; }, height: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.height === void 0 ? style.height : feature.properties.height; }, smoothSteps: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.smoothSteps === void 0 ? style.smoothSteps : feature.properties.smoothSteps; } }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$E.__file = "src/packages/loca/LinkLayer/LinkLayer.vue"; const ElAmapLocaLink = withInstall(script$E); var script$D = defineComponent({ name: "ElAmapLoca", mixins: [registerMixin], provide() { return { parentInstance: this }; }, props: { ambLight: { type: Object }, dirLight: { type: Object }, pointLight: { type: Object }, onClick: { type: Function, default: null }, onMousemove: { type: Function, default: null }, onRightclick: { type: Function, default: null }, eventOptions: { type: Object, default: () => ({ hitFirst: true }) } }, emits: ["mousemove", "click", "rightclick"], data() { return { isDragging: false, isRotating: false, hitFirst: true }; }, unmounted() { this.$amapComponent = null; this.$parentComponent = null; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.Container({ map: this.$parentComponent }); if (options.ambLight) { this.$amapComponent.ambLight = options.ambLight; } if (options.dirLight) { this.$amapComponent.dirLight = options.dirLight; } if (options.pointLight) { this.$amapComponent.pointLight = options.pointLight; } this.hitFirst = options.eventOptions.hitFirst; this.bindEvents(); }, bindEvents() { if (this.parentInstance) { const map = this.getMap(); const $props = this.$props; if ($props.onClick !== null) { map.on("click", this.clickMap); } if ($props.onMousemove !== null) { map.on("mousemove", this.mouseMoveMap); map.on("dragstart", this.dragStart); map.on("dragend", this.dragEnd); map.on("rotatestart", this.rotateStart); map.on("rotateend", this.rotateEnd); map.on("mouseout", this.mouseoutMap); } if ($props.onRightclick !== null) { map.on("rightclick", this.rightclickMap); } } }, clickMap(e) { const features = this._getFeature(e); this.$emit("click", features, e); }, rightclickMap(e) { const features = this._getFeature(e); this.$emit("rightclick", features, e); }, mouseMoveMap(e) { if (this.isDragging || this.isRotating) { return; } const features = this._getFeature(e); this.$emit("mousemove", features, e); }, _getFeature(e) { const features = []; if (this.$amapComponent.layers) { const layers = []; this.$amapComponent.layers.forEach((v) => { layers.push(v); }); layers.sort((a, b) => b.zIndex - a.zIndex); const layerLen = layers.length; for (let i = 0; i < layerLen; i++) { const temp = layers[i].queryFeature(e.pixel.toArray()); if (temp) { features.push(temp); if (this.hitFirst) { break; } } } } return features; }, dragStart() { this.isDragging = true; }, dragEnd() { this.isDragging = false; }, mouseoutMap() { this.isDragging = false; this.isRotating = false; }, rotateStart() { this.isRotating = true; }, rotateEnd() { this.isRotating = false; }, unBindEvents() { if (this.parentInstance) { const map = this.getMap(); map.off("click", this.clickMap); map.off("rightclick", this.rightclickMap); map.off("mousemove", this.mouseMoveMap); map.off("dragstart", this.dragStart); map.off("dragend", this.dragEnd); map.off("rotatestart", this.rotateStart); map.off("rotateend", this.rotateEnd); map.off("mouseout", this.mouseoutMap); } }, destroyComponent() { this.unBindEvents(); this.$amapComponent.destroy(); }, getMap() { return this.$parentComponent; } } }); function render$4(_ctx, _cache, $props, $setup, $data, $options) { return openBlock(), createElementBlock("div", null, [ renderSlot(_ctx.$slots, "default") ]); } script$D.render = render$4; script$D.__file = "src/packages/loca/Loca/Loca.vue"; const ElAmapLoca = withInstall(script$D); var script$C = defineComponent({ name: "ElAmapLocaPoint", mixins: [registerMixin, locaMixin], props: { blend: { type: String } }, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.PointLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { radius: 20, color: "#fff", unit: "px", borderWidth: 10, borderColor: "#fff", blurWidth: -1 }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { radius: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.radius === void 0 ? style.radius : feature.properties.radius; }, color: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.color === void 0 ? style.color : feature.properties.color; }, unit: style.unit, borderWidth: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.borderWidth === void 0 ? style.borderWidth : feature.properties.borderWidth; }, borderColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.borderColor === void 0 ? style.borderColor : feature.properties.borderColor; }, blurWidth: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.blurWidth === void 0 ? style.blurWidth : feature.properties.blurWidth; } }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$C.__file = "src/packages/loca/PointLayer/PointLayer.vue"; const ElAmapLocaPoint = withInstall(script$C); var script$B = defineComponent({ name: "ElAmapLocaPolygon", mixins: [registerMixin, locaMixin], props: { cullface: { type: String }, acceptLight: { type: Boolean, default: true }, shininess: { type: Number }, hasSide: { type: Boolean, default: true }, hasBottom: { type: Boolean, default: false }, blockHide: { type: Boolean, default: true }, depth: { type: Boolean, default: true } }, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.PolygonLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { topColor: "#fff", sideTopColor: "#fff", sideBottomColor: "#fff", altitude: 0, height: 0, texture: null, textureSize: [20, 3], label: void 0, labelAltitude: 0 }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { topColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.topColor === void 0 ? style.topColor : feature.properties.topColor; }, sideTopColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.sideTopColor === void 0 ? style.sideTopColor : feature.properties.sideTopColor; }, sideBottomColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.sideBottomColor === void 0 ? style.sideBottomColor : feature.properties.sideBottomColor; }, altitude: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.altitude === void 0 ? style.altitude : feature.properties.altitude; }, height: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.height === void 0 ? style.height : feature.properties.height; }, texture: style.texture, textureSize: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.textureSize === void 0 ? style.textureSize : feature.properties.textureSize; }, label: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.label === void 0 ? style.label : feature.properties.label; }, labelAltitude: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.labelAltitude === void 0 ? style.labelAltitude : feature.properties.labelAltitude; } }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$B.__file = "src/packages/loca/PolygonLayer/PolygonLayer.vue"; const ElAmapLocaPolygon = withInstall(script$B); var script$A = defineComponent({ name: "ElAmapLocaPrism", mixins: [registerMixin, locaMixin], props: { cullface: { type: String }, acceptLight: { type: Boolean, default: true }, shininess: { type: Number }, hasSide: { type: Boolean, default: true }, depth: { type: Boolean, default: true } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.PrismLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { radius: 20, unit: "px", sideNumber: 3, rotation: 0, altitude: 0, height: 100, topColor: "#fff", sideTopColor: "#fff", sideBottomColor: "#fff" }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { radius: style.radius, unit: style.unit, sideNumber: style.sideNumber, rotation: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.rotation === void 0 ? style.rotation : feature.properties.rotation; }, altitude: style.altitude, height: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.height === void 0 ? style.height : feature.properties.height; }, topColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.topColor === void 0 ? style.topColor : feature.properties.topColor; }, sideTopColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.sideTopColor === void 0 ? style.sideTopColor : feature.properties.sideTopColor; }, sideBottomColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.sideBottomColor === void 0 ? style.sideBottomColor : feature.properties.sideBottomColor; } }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$A.__file = "src/packages/loca/PrismLayer/PrismLayer.vue"; const ElAmapLocaPrism = withInstall(script$A); var script$z = defineComponent({ name: "ElAmapLocaPulseLine", mixins: [registerMixin, locaMixin], props: { depth: { type: Boolean, default: true } }, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.PulseLineLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { lineWidth: 1, headColor: "rgba(0, 0, 0, 0.75)", trailColor: "rgba(0, 0, 0, 0.25)", altitude: 0, interval: 1, duration: 2e3 }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { lineWidth: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.lineWidth === void 0 ? style.lineWidth : feature.properties.lineWidth; }, headColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.headColor === void 0 ? style.headColor : feature.properties.headColor; }, trailColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.trailColor === void 0 ? style.trailColor : feature.properties.trailColor; }, altitude: style.altitude, interval: style.interval, duration: style.duration }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$z.__file = "src/packages/loca/PulseLineLayer/PulseLineLayer.vue"; const ElAmapLocaPulseLine = withInstall(script$z); var script$y = defineComponent({ name: "ElAmapLocaPulseLink", mixins: [registerMixin, locaMixin], props: { depth: { type: Boolean, default: true } }, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.PulseLinkLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { lineColors: ["#fff"], height: 100, maxHeightScale: 0, smoothSteps: 50, lineWidth: [1, 1], unit: "px", dash: [4e3, 0, 4e3, 0], speed: 100, headColor: "rgba(0, 0, 0, 0.75)", trailColor: "rgba(0, 0, 0, 0.25)", flowLength: 100 }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { lineColors: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.lineColors === void 0 ? style.lineColors : feature.properties.lineColors; }, height: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.height === void 0 ? style.height : feature.properties.height; }, maxHeightScale: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.maxHeightScale === void 0 ? style.maxHeightScale : feature.properties.maxHeightScale; }, smoothSteps: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.smoothSteps === void 0 ? style.smoothSteps : feature.properties.smoothSteps; }, lineWidth: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.lineWidth === void 0 ? style.lineWidth : feature.properties.lineWidth; }, unit: style.unit, dash: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.dash === void 0 ? style.dash : feature.properties.dash; }, speed: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.speed === void 0 ? style.speed : feature.properties.speed; }, headColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.headColor === void 0 ? style.headColor : feature.properties.headColor; }, trailColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.trailColor === void 0 ? style.trailColor : feature.properties.trailColor; }, flowLength: style.flowLength }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$y.__file = "src/packages/loca/PulseLinkLayer/PulseLinkLayer.vue"; const ElAmapLocaPulseLink = withInstall(script$y); var script$x = defineComponent({ name: "ElAmapLocaScatter", mixins: [registerMixin, locaMixin], props: {}, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.ScatterLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { size: [20, 20], rotation: 0, color: "rgba(200,200,200,1)", altitude: 0, borderWidth: 0, borderColor: "rgba(250,250,250,1)", texture: null, unit: "px", animate: false, duration: 0 }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { size: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.size === void 0 ? style.size : feature.properties.size; }, rotation: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.rotation === void 0 ? style.rotation : feature.properties.rotation; }, color: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.color === void 0 ? style.color : feature.properties.color; }, altitude: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.altitude === void 0 ? style.altitude : feature.properties.altitude; }, borderWidth: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.borderWidth === void 0 ? style.borderWidth : feature.properties.borderWidth; }, borderColor: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.borderColor === void 0 ? style.borderColor : feature.properties.borderColor; }, texture: style.texture, unit: style.unit, animate: style.animate, duration: style.duration }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$x.__file = "src/packages/loca/ScatterLayer/ScatterLayer.vue"; const ElAmapLocaScatter = withInstall(script$x); var script$w = defineComponent({ name: "ElAmapLocaZMarker", mixins: [registerMixin, locaMixin], props: {}, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.ZMarkerLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { unit: "px", content: "", size: [20, 20], rotation: 0, alwaysFront: false, altitude: 0 }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { unit: style.unit, content: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.content === void 0 ? style.content : feature.properties.content; }, size: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.size === void 0 ? style.size : feature.properties.size; }, rotation: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.rotation === void 0 ? style.rotation : feature.properties.rotation; }, alwaysFront: style.alwaysFront, altitude: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.altitude === void 0 ? style.altitude : feature.properties.altitude; } }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$w.__file = "src/packages/loca/ZMarkerLayer/ZMarkerLayer.vue"; const ElAmapLocaZMarker = withInstall(script$w); var script$v = defineComponent({ name: "ElAmapElasticMarker", mixins: [registerMixin], props: { position: { type: [Array, Object], required: true }, title: { type: String }, offset: { type: [Array, Object] }, clickable: { type: Boolean, default: true }, draggable: { type: Boolean, default: false }, bubble: { type: Boolean, default: false }, zooms: { type: Array }, cursor: { type: String }, topWhenClick: { type: Boolean, default: false }, zoomStyleMapping: { type: Object }, styles: { type: Array }, extData: { type: Object, default: () => null } }, emits: ["update:position"], data() { return { converters: {} }; }, methods: { __initComponent(options) { return new Promise((resolve) => { AMap.plugin(["AMap.ElasticMarker"], () => { this.$amapComponent = new AMap.ElasticMarker(options); this.$parentComponent.add(this.$amapComponent); this.bindModelEvents(); resolve(); }); }); }, bindModelEvents() { this.$amapComponent.on("dragend", () => { this.emitPosition(); }); this.$amapComponent.on("touchend", () => { this.emitPosition(); }); }, emitPosition() { const position = this.$amapComponent.getPosition(); this.$emit("update:position", position.toArray()); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$v.__file = "src/packages/marker/ElasticMarker/ElasticMarker.vue"; const ElAmapElasticMarker = withInstall(script$v); var script$u = defineComponent({ name: "ElAmapLabelMarker", mixins: [registerMixin], props: { name: { type: String }, position: { type: [Array, Object], required: true }, zooms: { type: Array }, opacity: { type: Number }, rank: { type: Number }, icon: { type: Object }, text: { type: Object }, extData: null }, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.LabelMarker(options); this.$parentComponent.add(this.$amapComponent); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$u.__file = "src/packages/marker/LabelMarker/LabelMarker.vue"; const ElAmapLabelMarker = withInstall(script$u); var script$t = defineComponent({ name: "ElAmapMarker", mixins: [registerMixin], props: { position: { type: [Array, Object], required: true }, icon: { type: [String, Object] }, content: { type: [String, HTMLElement] }, title: { type: String }, offset: { type: [Array, Object] }, anchor: { type: [String, Array] }, angle: { type: Number }, clickable: { type: Boolean, default: true }, draggable: { type: Boolean, default: false }, bubble: { type: Boolean, default: false }, zooms: { type: Array }, cursor: { type: String }, topWhenClick: { type: Boolean, default: false }, label: { type: Object }, extData: null }, emits: ["update:position"], data() { return { withSlot: false, converters: {} }; }, methods: { __initComponent(options) { if (this.$slots.default && this.$slots.default().length > 0) { this.withSlot = true; options.content = this.getSlotContent(); } this.$amapComponent = new AMap.Marker(options); if (isMapInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.addOverlay(this.$amapComponent); } if (this.withSlot) { const config = { attributes: true, childList: true, subtree: true }; const observer = new MutationObserver(() => { this.$amapComponent.setContent(this.getSlotContent()); }); observer.observe(this.$refs.content, config); this.observer = observer; } this.bindModelEvents(); }, getSlotContent() { return this.$refs.content; }, bindModelEvents() { this.$amapComponent.on("dragend", () => { this.emitPosition(); }); this.$amapComponent.on("touchend", () => { this.emitPosition(); }); }, emitPosition() { const position = this.$amapComponent.getPosition(); this.$emit("update:position", position.toArray()); }, destroyComponent() { if (this.observer) { this.observer.disconnect(); this.observer = null; } this.$amapComponent.setMap(null); this.$amapComponent = null; this.$parentComponent = null; } } }); const _hoisted_1$2 = { style: { "display": "none" } }; const _hoisted_2$1 = { ref: "content" }; function render$3(_ctx, _cache, $props, $setup, $data, $options) { return openBlock(), createElementBlock("div", _hoisted_1$2, [ createElementVNode("div", _hoisted_2$1, [ renderSlot(_ctx.$slots, "default") ], 512) ]); } script$t.render = render$3; script$t.__file = "src/packages/marker/Marker/Marker.vue"; const ElAmapMarker = withInstall(script$t); var script$s = defineComponent({ name: "ElAmapMarkerCluster", mixins: [registerMixin], props: { points: { type: Array, required: true }, gridSize: { type: Number }, maxZoom: { type: Number }, averageCenter: { type: Boolean, default: true }, clusterByZoomChange: { type: Boolean, default: false }, styles: { type: Array }, renderClusterMarker: { type: Function }, renderMarker: { type: Function } }, data() { return { converters: {} }; }, methods: { __initComponent(options) { return new Promise((resolve) => { AMap.plugin(["AMap.MarkerCluster"], () => { const points = options.points; delete options.points; this.$amapComponent = new AMap.MarkerCluster(this.$parentComponent, points, options); resolve(); }); }); }, destroyComponent() { this.$amapComponent.setMap(null); this.$amapComponent = null; this.$parentComponent = null; }, __points(value) { if (this.$amapComponent) { this.$amapComponent.setData(value); } } }, render() { return null; } }); script$s.__file = "src/packages/marker/MarkerCluster/MarkerCluster.vue"; const ElAmapMarkerCluster = withInstall(script$s); var script$r = defineComponent({ name: "ElAmapMassMarks", mixins: [registerMixin], props: { data: { type: Array, required: true }, zooms: { type: Array }, cursor: { type: String }, styles: { type: [Array, Object] } }, data() { return { propsRedirect: { styles: "style" }, converters: {} }; }, methods: { __initComponent(options) { const data = options.data; delete options.data; this.$amapComponent = new AMap.MassMarks(data, options); this.$amapComponent.setMap(this.$parentComponent); }, destroyComponent() { this.$amapComponent.clear(); this.$amapComponent.setMap(null); this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$r.__file = "src/packages/marker/MassMarks/MassMarks.vue"; const ElAmapMassMarks = withInstall(script$r); var script$q = defineComponent({ name: "ElAmapText", mixins: [registerMixin], props: { position: { type: [Array, Object], required: true }, text: { type: String }, title: { type: String }, offset: { type: [Array, Object] }, anchor: { type: [String, Array] }, angle: { type: Number }, clickable: { type: Boolean, default: true }, draggable: { type: Boolean, default: false }, bubble: { type: Boolean, default: false }, zooms: { type: Array }, cursor: { type: String }, topWhenClick: { type: Boolean, default: false }, textStyle: { type: Object }, extData: null }, emits: ["update:position"], data() { return { propsRedirect: { textStyle: "style" }, converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.Text(options); this.$parentComponent.add(this.$amapComponent); this.bindModelEvents(); }, bindModelEvents() { this.$amapComponent.on("dragend", () => { this.emitPosition(); }); this.$amapComponent.on("touchend", () => { this.emitPosition(); }); }, emitPosition() { const position = this.$amapComponent.getPosition(); this.$emit("update:position", position.toArray()); }, destroyComponent() { this.$amapComponent.setMap(null); this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$q.__file = "src/packages/marker/Text/Text.vue"; const ElAmapText = withInstall(script$q); var editorMixin = defineComponent({ props: { editable: { type: Boolean, default: void 0 }, editOptions: { type: Object } }, data() { return {}; }, methods: { setEditorEvents() { if (!this.$amapComponent.editor) return; const filters = ["addnode", "adjust", "removenode", "end", "move", "add"]; const filterSet = {}; Object.keys(this.$attrs).forEach((key) => { if (eventReg.test(key)) { const eventKey = convertEventToLowerCase(key); if (filters.indexOf(eventKey) !== -1) filterSet[eventKey] = this.$attrs[key]; } }); Object.keys(filterSet).forEach((key) => { eventHelper$1.addListener(this.$amapComponent.editor, key, filterSet[key]); }); } } }); var script$p = defineComponent({ name: "ElAmapBezierCurve", mixins: [registerMixin, editorMixin], props: { path: { type: Array, required: true }, bubble: { type: Boolean, default: false }, cursor: { type: String }, strokeColor: { type: String }, strokeOpacity: { type: Number }, strokeWeight: { type: Number }, borderWeight: { type: Number }, isOutline: { type: Boolean, default: false }, outlineColor: { type: String }, draggable: { type: Boolean, default: false }, extData: { type: Object, default: () => null }, strokeStyle: { type: String, validator(value) { return ["solid", "dashed"].indexOf(value) !== -1; } }, strokeDasharray: { type: Array }, lineJoin: { type: String, validator(value) { return ["miter", "round", "bevel"].indexOf(value) !== -1; } }, lineCap: { type: String, validator(value) { return ["butt", "round", "square"].indexOf(value) !== -1; } }, geodesic: { type: Boolean, default: false }, showDir: { type: Boolean, default: false } }, emits: ["update:path"], data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.BezierCurve(options); if (isMapInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.addOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } this.bindModelEvents(); }, bindModelEvents() { this.$amapComponent.on("dragend", () => { this.emitModel(this.$amapComponent); }); this.$amapComponent.on("touchend", () => { this.emitModel(this.$amapComponent); }); }, createEditor() { return new Promise((resolve) => { if (this.$amapComponent.editor) { resolve(); } else { AMap.plugin(["AMap.BezierCurveEditor"], () => { this.$amapComponent.editor = new AMap.BezierCurveEditor(this.$parentComponent, this.$amapComponent, this.editOptions); this.setEditorEvents(); this.bindEditorModelEvents(); resolve(); }); } }); }, bindEditorModelEvents() { this.$amapComponent.editor.on("addnode", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("adjust", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("removenode", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("add", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("end", (e) => { this.emitModel(e.target); }); }, emitModel(target) { this.$emit("update:path", target.getPath()); }, destroyComponent() { if (this.$amapComponent.editor) { if (!this.parentInstance.isDestroy) { this.$amapComponent.editor.close(); } this.$amapComponent.editor = null; } if (!this.parentInstance.isDestroy) { if (isMapInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.removeOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } } if (this.$amapComponent.destroy) { this.$amapComponent.destroy(); } this.$amapComponent = null; this.$parentComponent = null; }, __zIndex(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ zIndex: value }); } }, __strokeColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeColor: value }); } }, __strokeOpacity(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeOpacity: value }); } }, __strokeWeight(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeWeight: value }); } }, __borderWeight(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ borderWeight: value }); } }, __isOutline(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ isOutline: value }); } }, __outlineColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ outlineColor: value }); } }, __strokeStyle(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeStyle: value }); } }, __strokeDasharray(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeDasharray: value }); } }, __lineJoin(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ lineJoin: value }); } }, __lineCap(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ lineCap: value }); } }, __geodesic(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ geodesic: value }); } }, __showDir(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ showDir: value }); } }, __editable(flag) { this.createEditor().then(() => { flag === true ? this.$amapComponent.editor.open() : this.$amapComponent.editor.close(); }); } }, render() { return null; } }); script$p.__file = "src/packages/vector/BezierCurve/BezierCurve.vue"; const ElAmapBezierCurve = withInstall(script$p); var script$o = defineComponent({ name: "ElAmapCircle", mixins: [registerMixin, editorMixin], props: { center: { type: Array, required: true }, radius: { type: Number, required: true }, bubble: { type: Boolean, default: false }, cursor: { type: String }, strokeColor: { type: String }, strokeOpacity: { type: Number }, strokeWeight: { type: Number }, fillColor: { type: String }, fillOpacity: { type: Number }, draggable: { type: Boolean, default: false }, extData: { type: Object, default: () => null }, strokeStyle: { type: String, validator(value) { return ["solid", "dashed"].indexOf(value) !== -1; } }, strokeDasharray: { type: Array } }, emits: ["update:center", "update:radius"], data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.Circle(options); if (isMapInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.addOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } this.bindModelEvents(); }, bindModelEvents() { this.$amapComponent.on("dragend", () => { this.emitModel(this.$amapComponent); }); this.$amapComponent.on("touchend", () => { this.emitModel(this.$amapComponent); }); }, createEditor() { return new Promise((resolve) => { if (this.$amapComponent.editor) { resolve(); } else { AMap.plugin(["AMap.CircleEditor"], () => { this.$amapComponent.editor = new AMap.CircleEditor(this.$parentComponent, this.$amapComponent, this.editOptions); this.setEditorEvents(); this.bindEditorModelEvents(); resolve(); }); } }); }, bindEditorModelEvents() { this.$amapComponent.editor.on("addnode", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("adjust", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("move", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("add", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("end", (e) => { this.emitModel(e.target); }); }, emitModel(target) { this.$emit("update:center", target.getCenter().toArray()); this.$emit("update:radius", target.getRadius()); }, destroyComponent() { if (this.$amapComponent.editor) { if (!this.parentInstance.isDestroy) { this.$amapComponent.editor.close(); } this.$amapComponent.editor = null; } if (!this.parentInstance.isDestroy) { if (isMapInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.removeOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } } if (this.$amapComponent.destroy) { this.$amapComponent.destroy(); } this.$amapComponent = null; this.$parentComponent = null; }, __zIndex(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ zIndex: value }); } }, __strokeColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeColor: value }); } }, __strokeOpacity(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeOpacity: value }); } }, __strokeWeight(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeWeight: value }); } }, __fillColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ fillColor: value }); } }, __fillOpacity(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ fillOpacity: value }); } }, __strokeStyle(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeStyle: value }); } }, __strokeDasharray(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeDasharray: value }); } }, __editable(flag) { this.createEditor().then(() => { flag === true ? this.$amapComponent.editor.open() : this.$amapComponent.editor.close(); }); } }, render() { return null; } }); script$o.__file = "src/packages/vector/Circle/Circle.vue"; const ElAmapCircle = withInstall(script$o); var script$n = defineComponent({ name: "ElAmapEllipse", mixins: [registerMixin, editorMixin], props: { center: { type: Array, required: true }, radius: { type: Array, required: true }, bubble: { type: Boolean, default: false }, cursor: { type: String }, strokeColor: { type: String }, strokeOpacity: { type: Number }, strokeWeight: { type: Number }, fillColor: { type: String }, fillOpacity: { type: Number }, draggable: { type: Boolean, default: false }, extData: { type: Object, default: () => null }, strokeStyle: { type: String, validator(value) { return ["solid", "dashed"].indexOf(value) !== -1; } }, strokeDasharray: { type: Array } }, emits: ["update:center", "update:radius"], data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.Ellipse(options); if (isMapInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.addOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } this.bindModelEvents(); }, bindModelEvents() { this.$amapComponent.on("dragend", () => { this.emitModel(this.$amapComponent); }); this.$amapComponent.on("touchend", () => { this.emitModel(this.$amapComponent); }); }, createEditor() { return new Promise((resolve) => { if (this.$amapComponent.editor) { resolve(); } else { AMap.plugin(["AMap.EllipseEditor"], () => { this.$amapComponent.editor = new AMap.EllipseEditor(this.$parentComponent, this.$amapComponent, this.editOptions); this.setEditorEvents(); this.bindEditorModelEvents(); resolve(); }); } }); }, bindEditorModelEvents() { this.$amapComponent.editor.on("addnode", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("adjust", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("move", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("add", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("end", (e) => { this.emitModel(e.target); }); }, emitModel(target) { this.$emit("update:center", target.getCenter().toArray()); this.$emit("update:radius", target.getRadius()); }, destroyComponent() { if (this.$amapComponent.editor) { if (!this.parentInstance.isDestroy) { this.$amapComponent.editor.close(); } this.$amapComponent.editor = null; } if (!this.parentInstance.isDestroy) { if (isMapInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.removeOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } } if (this.$amapComponent.destroy) { this.$amapComponent.destroy(); } this.$amapComponent = null; this.$parentComponent = null; }, __zIndex(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ zIndex: value }); } }, __strokeColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeColor: value }); } }, __strokeOpacity(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeOpacity: value }); } }, __strokeWeight(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeWeight: value }); } }, __fillColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ fillColor: value }); } }, __fillOpacity(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ fillOpacity: value }); } }, __strokeStyle(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeStyle: value }); } }, __strokeDasharray(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeDasharray: value }); } }, __editable(flag) { this.createEditor().then(() => { flag === true ? this.$amapComponent.editor.open() : this.$amapComponent.editor.close(); }); } }, render() { return null; } }); script$n.__file = "src/packages/vector/Ellipse/Ellipse.vue"; const ElAmapEllipse = withInstall(script$n); var script$m = defineComponent({ name: "ElAmapGeojson", mixins: [registerMixin], props: { geo: { type: Object, required: true }, markerOptions: { type: Object }, getMarker: { type: Function }, polylineOptions: { type: Object }, getPolyline: { type: Function }, polygonOptions: { type: Object }, getPolygon: { type: Function } }, data() { return { propsRedirect: { geo: "geoJSON" }, converters: {} }; }, methods: { __initComponent(options) { return new Promise((resolve) => { AMap.plugin(["AMap.GeoJSON"], () => { if (!options.getMarker) { options.getMarker = this.createMarker; } if (!options.getPolyline) { options.getPolyline = this.createPolyline; } if (!options.getPolygon) { options.getPolygon = this.createPolygon; } this.$amapComponent = new AMap.GeoJSON(options); this.$parentComponent.add(this.$amapComponent); resolve(); }); }); }, createMarker(geojson, lnglat) { let options = this.markerOptions || {}; options = merge$1({}, options, geojson.properties); options.position = lnglat; return new AMap.Marker(options); }, createPolyline(geojson, lnglat) { let options = this.polylineOptions || {}; options = merge$1({}, options, geojson.properties); options.path = lnglat; return new AMap.Polyline(options); }, createPolygon(geojson, lnglat) { let options = this.polygonOptions || {}; options = merge$1({}, options, geojson.properties); options.path = lnglat; return new AMap.Polygon(options); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; }, __geoJSON(value) { if (this.$amapComponent) { this.$amapComponent.importData(value); } } }, render() { return null; } }); script$m.__file = "src/packages/vector/GeoJSON/GeoJSON.vue"; const ElAmapGeojson = withInstall(script$m); var script$l = defineComponent({ name: "ElAmapPolygon", mixins: [registerMixin, editorMixin], props: { path: { type: Array, required: true }, bubble: { type: Boolean, default: false }, cursor: { type: String }, strokeColor: { type: String }, strokeOpacity: { type: Number }, strokeWeight: { type: Number }, fillColor: { type: String }, fillOpacity: { type: Number }, draggable: { type: Boolean, default: false }, extData: { type: Object, default: () => null }, strokeStyle: { type: String, validator(value) { return ["solid", "dashed"].indexOf(value) !== -1; } }, strokeDasharray: { type: Array } }, emits: ["update:path"], data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.Polygon(options); if (isMapInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.addOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } this.bindModelEvents(); }, bindModelEvents() { this.$amapComponent.on("dragend", () => { this.emitModel(this.$amapComponent); }); this.$amapComponent.on("touchend", () => { this.emitModel(this.$amapComponent); }); }, createEditor() { return new Promise((resolve) => { if (this.$amapComponent.editor) { resolve(); } else { AMap.plugin(["AMap.PolygonEditor"], () => { this.$amapComponent.editor = new AMap.PolygonEditor(this.$parentComponent, this.$amapComponent, this.editOptions); this.setEditorEvents(); this.bindEditorModelEvents(); resolve(); }); } }); }, bindEditorModelEvents() { this.$amapComponent.editor.on("addnode", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("adjust", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("removenode", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("add", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("end", (e) => { this.emitModel(e.target); }); }, emitModel(target) { const paths = target.getPath(); const pathArray = paths.map(convertLnglat); this.$emit("update:path", pathArray); }, destroyComponent() { if (this.$amapComponent.editor) { if (!this.parentInstance.isDestroy) { this.$amapComponent.editor.close(); } this.$amapComponent.editor = null; } if (!this.parentInstance.isDestroy) { if (isMapInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.removeOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } } if (this.$amapComponent.destroy) { this.$amapComponent.destroy(); } this.$amapComponent = null; this.$parentComponent = null; }, __zIndex(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ zIndex: value }); } }, __strokeColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeColor: value }); } }, __strokeOpacity(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeOpacity: value }); } }, __strokeWeight(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeWeight: value }); } }, __fillColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ fillColor: value }); } }, __fillOpacity(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ fillOpacity: value }); } }, __strokeStyle(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeStyle: value }); } }, __strokeDasharray(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeDasharray: value }); } }, __editable(flag) { this.createEditor().then(() => { flag === true ? this.$amapComponent.editor.open() : this.$amapComponent.editor.close(); }); } }, render() { return null; } }); script$l.__file = "src/packages/vector/Polygon/Polygon.vue"; const ElAmapPolygon = withInstall(script$l); var script$k = defineComponent({ name: "ElAmapPolyline", mixins: [registerMixin, editorMixin], props: { path: { type: Array, required: true }, bubble: { type: Boolean, default: false }, cursor: { type: String }, strokeColor: { type: String }, strokeOpacity: { type: Number }, strokeWeight: { type: Number }, borderWeight: { type: Number }, isOutline: { type: Boolean, default: false }, outlineColor: { type: String }, draggable: { type: Boolean, default: false }, extData: { type: Object, default: () => null }, strokeStyle: { type: String, validator(value) { return ["solid", "dashed"].indexOf(value) !== -1; } }, strokeDasharray: { type: Array }, lineJoin: { type: String, validator(value) { return ["miter", "round", "bevel"].indexOf(value) !== -1; } }, lineCap: { type: String, validator(value) { return ["butt", "round", "square"].indexOf(value) !== -1; } }, geodesic: { type: Boolean, default: false }, showDir: { type: Boolean, default: false } }, emits: ["update:path"], data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.Polyline(options); if (isMapInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.addOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } this.bindModelEvents(); }, bindModelEvents() { this.$amapComponent.on("dragend", () => { this.emitModel(this.$amapComponent); }); this.$amapComponent.on("touchend", () => { this.emitModel(this.$amapComponent); }); }, createEditor() { return new Promise((resolve) => { if (this.$amapComponent.editor) { resolve(); } else { AMap.plugin(["AMap.PolylineEditor"], () => { this.$amapComponent.editor = new AMap.PolylineEditor(this.$parentComponent, this.$amapComponent, this.editOptions); this.setEditorEvents(); this.bindEditorModelEvents(); resolve(); }); } }); }, bindEditorModelEvents() { this.$amapComponent.editor.on("addnode", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("adjust", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("removenode", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("add", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("end", (e) => { this.emitModel(e.target); }); }, emitModel(target) { const paths = target.getPath(); const pathArray = paths.map(convertLnglat); this.$emit("update:path", pathArray); }, destroyComponent() { if (this.$amapComponent.editor) { if (!this.parentInstance.isDestroy) { this.$amapComponent.editor.close(); } this.$amapComponent.editor = null; } if (!this.parentInstance.isDestroy) { if (isMapInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.removeOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } } if (this.$amapComponent.destroy) { this.$amapComponent.destroy(); } this.$amapComponent = null; this.$parentComponent = null; }, __zIndex(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ zIndex: value }); } }, __strokeColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeColor: value }); } }, __strokeOpacity(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeOpacity: value }); } }, __strokeWeight(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeWeight: value }); } }, __borderWeight(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ borderWeight: value }); } }, __isOutline(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ isOutline: value }); } }, __outlineColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ outlineColor: value }); } }, __strokeStyle(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeStyle: value }); } }, __strokeDasharray(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeDasharray: value }); } }, __lineJoin(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ lineJoin: value }); } }, __lineCap(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ lineCap: value }); } }, __geodesic(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ geodesic: value }); } }, __showDir(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ showDir: value }); } }, __editable(flag) { this.createEditor().then(() => { flag === true ? this.$amapComponent.editor.open() : this.$amapComponent.editor.close(); }); } }, render() { return null; } }); script$k.__file = "src/packages/vector/Polyline/Polyline.vue"; const ElAmapPolyline = withInstall(script$k); function toLngLat(arr) { return new AMap.LngLat(arr[0], arr[1]); } var script$j = defineComponent({ name: "ElAmapRectangle", mixins: [registerMixin, editorMixin], props: { bounds: { type: Array, required: true }, bubble: { type: Boolean, default: false }, cursor: { type: String }, strokeColor: { type: String }, strokeOpacity: { type: Number }, strokeWeight: { type: Number }, fillColor: { type: String }, fillOpacity: { type: Number }, draggable: { type: Boolean, default: false }, extData: { type: Object, default: () => null }, strokeStyle: { type: String, validator(value) { return ["solid", "dashed"].indexOf(value) !== -1; } }, strokeDasharray: { type: Array } }, emits: ["update:bounds"], data() { return { converters: { bounds(path) { return new AMap.Bounds(toLngLat(path[0]), toLngLat(path[1])); } } }; }, methods: { __initComponent(options) { this.$amapComponent = new AMap.Rectangle(options); if (isMapInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.addOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.add(this.$amapComponent); } this.bindModelEvents(); }, bindModelEvents() { this.$amapComponent.on("dragend", () => { this.emitModel(this.$amapComponent); }); this.$amapComponent.on("touchend", () => { this.emitModel(this.$amapComponent); }); }, createEditor() { return new Promise((resolve) => { if (this.$amapComponent.editor) { resolve(); } else { AMap.plugin(["AMap.RectangleEditor"], () => { this.$amapComponent.editor = new AMap.RectangleEditor(this.$parentComponent, this.$amapComponent, this.editOptions); this.setEditorEvents(); this.bindEditorModelEvents(); resolve(); }); } }); }, bindEditorModelEvents() { this.$amapComponent.editor.on("addnode", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("adjust", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("move", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("add", (e) => { this.emitModel(e.target); }); this.$amapComponent.editor.on("end", (e) => { this.emitModel(e.target); }); }, emitModel(target) { const bounds = target.getBounds(); const southWest = bounds.getSouthWest(); const northEast = bounds.getNorthEast(); const paths = [southWest.toArray(), northEast.toArray()]; this.$emit("update:bounds", paths); }, destroyComponent() { if (this.$amapComponent.editor) { if (!this.parentInstance.isDestroy) { this.$amapComponent.editor.close(); } this.$amapComponent.editor = null; } if (!this.parentInstance.isDestroy) { if (isMapInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } else if (isOverlayGroupInstance(this.$parentComponent)) { this.$parentComponent.removeOverlay(this.$amapComponent); } else if (isVectorLayerInstance(this.$parentComponent)) { this.$parentComponent.remove(this.$amapComponent); } } if (this.$amapComponent.destroy) { this.$amapComponent.destroy(); } this.$amapComponent = null; this.$parentComponent = null; }, __zIndex(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ zIndex: value }); } }, __strokeColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeColor: value }); } }, __strokeOpacity(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeOpacity: value }); } }, __strokeWeight(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeWeight: value }); } }, __fillColor(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ fillColor: value }); } }, __fillOpacity(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ fillOpacity: value }); } }, __strokeStyle(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeStyle: value }); } }, __strokeDasharray(value) { if (this.$amapComponent) { this.$amapComponent.setOptions({ strokeDasharray: value }); } }, __editable(flag) { this.createEditor().then(() => { flag === true ? this.$amapComponent.editor.open() : this.$amapComponent.editor.close(); }); } }, render() { return null; } }); script$j.__file = "src/packages/vector/Rectangle/Rectangle.vue"; const ElAmapRectangle = withInstall(script$j); var script$i = defineComponent({ name: "ElAmapLayerTiles3d", mixins: [registerMixin], props: { url: { type: String, required: true }, threeScriptUrl: { type: String, default: "//a.amap.com/jsapi_demos/static/data3d/lib/three.117.js" }, threeGltfLoader: { type: String, default: "//a.amap.com/jsapi_demos/static/data3d/lib/GLTFLoader.117.min.js" }, layerStyle: { type: Object } }, data() { return {}; }, methods: { __initComponent(options) { return new Promise((resolve) => { this.$parentComponent.plugin(["AMap.3DTilesLayer"], () => { if (!window["THREE"]) { loadScript(options.threeScriptUrl, () => { loadScript(options.threeGltfLoader, () => { this.createLayer(options); resolve(); }); }); } else { this.createLayer(options); resolve(); } }); }); }, destroyComponent() { this.$amapComponent = null; this.$parentComponent = null; }, createLayer(options) { let layerStyle = {}; if (options.layerStyle) { layerStyle = JSON.parse(JSON.stringify(options.layerStyle)); } this.$amapComponent = new AMap["3DTilesLayer"]({ map: this.$parentComponent, url: options.url, style: layerStyle }); console.log(this.$amapComponent); } }, render() { return null; } }); script$i.__file = "src/packages/layer/data/Tiles3D/Tiles3D.vue"; const ElAmapLayerTiles3d = withInstall(script$i); /** * @license * Copyright 2010-2022 Three.js Authors * SPDX-License-Identifier: MIT */ const REVISION = '143'; const CullFaceNone = 0; const CullFaceBack = 1; const CullFaceFront = 2; const PCFShadowMap = 1; const PCFSoftShadowMap = 2; const VSMShadowMap = 3; const FrontSide = 0; const BackSide = 1; const DoubleSide = 2; const FlatShading = 1; const NoBlending = 0; const NormalBlending = 1; const AdditiveBlending = 2; const SubtractiveBlending = 3; const MultiplyBlending = 4; const CustomBlending = 5; const AddEquation = 100; const SubtractEquation = 101; const ReverseSubtractEquation = 102; const MinEquation = 103; const MaxEquation = 104; const ZeroFactor = 200; const OneFactor = 201; const SrcColorFactor = 202; const OneMinusSrcColorFactor = 203; const SrcAlphaFactor = 204; const OneMinusSrcAlphaFactor = 205; const DstAlphaFactor = 206; const OneMinusDstAlphaFactor = 207; const DstColorFactor = 208; const OneMinusDstColorFactor = 209; const SrcAlphaSaturateFactor = 210; const NeverDepth = 0; const AlwaysDepth = 1; const LessDepth = 2; const LessEqualDepth = 3; const EqualDepth = 4; const GreaterEqualDepth = 5; const GreaterDepth = 6; const NotEqualDepth = 7; const MultiplyOperation = 0; const MixOperation = 1; const AddOperation = 2; const NoToneMapping = 0; const LinearToneMapping = 1; const ReinhardToneMapping = 2; const CineonToneMapping = 3; const ACESFilmicToneMapping = 4; const CustomToneMapping = 5; const UVMapping = 300; const CubeReflectionMapping = 301; const CubeRefractionMapping = 302; const EquirectangularReflectionMapping = 303; const EquirectangularRefractionMapping = 304; const CubeUVReflectionMapping = 306; const RepeatWrapping = 1000; const ClampToEdgeWrapping = 1001; const MirroredRepeatWrapping = 1002; const NearestFilter = 1003; const NearestMipmapNearestFilter = 1004; const NearestMipmapLinearFilter = 1005; const LinearFilter = 1006; const LinearMipmapNearestFilter = 1007; const LinearMipmapLinearFilter = 1008; const UnsignedByteType = 1009; const ByteType = 1010; const ShortType = 1011; const UnsignedShortType = 1012; const IntType = 1013; const UnsignedIntType = 1014; const FloatType = 1015; const HalfFloatType = 1016; const UnsignedShort4444Type = 1017; const UnsignedShort5551Type = 1018; const UnsignedInt248Type = 1020; const AlphaFormat = 1021; const RGBFormat = 1022; const RGBAFormat = 1023; const LuminanceFormat = 1024; const LuminanceAlphaFormat = 1025; const DepthFormat = 1026; const DepthStencilFormat = 1027; const RedFormat = 1028; const RedIntegerFormat = 1029; const RGFormat = 1030; const RGIntegerFormat = 1031; const RGBAIntegerFormat = 1033; const RGB_S3TC_DXT1_Format = 33776; const RGBA_S3TC_DXT1_Format = 33777; const RGBA_S3TC_DXT3_Format = 33778; const RGBA_S3TC_DXT5_Format = 33779; const RGB_PVRTC_4BPPV1_Format = 35840; const RGB_PVRTC_2BPPV1_Format = 35841; const RGBA_PVRTC_4BPPV1_Format = 35842; const RGBA_PVRTC_2BPPV1_Format = 35843; const RGB_ETC1_Format = 36196; const RGB_ETC2_Format = 37492; const RGBA_ETC2_EAC_Format = 37496; const RGBA_ASTC_4x4_Format = 37808; const RGBA_ASTC_5x4_Format = 37809; const RGBA_ASTC_5x5_Format = 37810; const RGBA_ASTC_6x5_Format = 37811; const RGBA_ASTC_6x6_Format = 37812; const RGBA_ASTC_8x5_Format = 37813; const RGBA_ASTC_8x6_Format = 37814; const RGBA_ASTC_8x8_Format = 37815; const RGBA_ASTC_10x5_Format = 37816; const RGBA_ASTC_10x6_Format = 37817; const RGBA_ASTC_10x8_Format = 37818; const RGBA_ASTC_10x10_Format = 37819; const RGBA_ASTC_12x10_Format = 37820; const RGBA_ASTC_12x12_Format = 37821; const RGBA_BPTC_Format = 36492; const LoopOnce = 2200; const LoopRepeat = 2201; const LoopPingPong = 2202; const InterpolateDiscrete = 2300; const InterpolateLinear = 2301; const InterpolateSmooth = 2302; const ZeroCurvatureEnding = 2400; const ZeroSlopeEnding = 2401; const WrapAroundEnding = 2402; const NormalAnimationBlendMode = 2500; const AdditiveAnimationBlendMode = 2501; const TriangleStripDrawMode = 1; const TriangleFanDrawMode = 2; const LinearEncoding = 3000; const sRGBEncoding = 3001; const BasicDepthPacking = 3200; const RGBADepthPacking = 3201; const TangentSpaceNormalMap = 0; const ObjectSpaceNormalMap = 1; const SRGBColorSpace = 'srgb'; const LinearSRGBColorSpace = 'srgb-linear'; const KeepStencilOp = 7680; const AlwaysStencilFunc = 519; const StaticDrawUsage = 35044; const GLSL3 = '300 es'; const _SRGBAFormat = 1035; // fallback for WebGL 1 /** * https://github.com/mrdoob/eventdispatcher.js/ */ class EventDispatcher { addEventListener( type, listener ) { if ( this._listeners === undefined ) this._listeners = {}; const listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } } hasEventListener( type, listener ) { if ( this._listeners === undefined ) return false; const listeners = this._listeners; return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1; } removeEventListener( type, listener ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { const index = listenerArray.indexOf( listener ); if ( index !== - 1 ) { listenerArray.splice( index, 1 ); } } } dispatchEvent( event ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; // Make a copy, in case listeners are removed while iterating. const array = listenerArray.slice( 0 ); for ( let i = 0, l = array.length; i < l; i ++ ) { array[ i ].call( this, event ); } event.target = null; } } } const _lut = [ '00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '0a', '0b', '0c', '0d', '0e', '0f', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '1a', '1b', '1c', '1d', '1e', '1f', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '2a', '2b', '2c', '2d', '2e', '2f', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '3a', '3b', '3c', '3d', '3e', '3f', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '4a', '4b', '4c', '4d', '4e', '4f', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '5a', '5b', '5c', '5d', '5e', '5f', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '6a', '6b', '6c', '6d', '6e', '6f', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '7a', '7b', '7c', '7d', '7e', '7f', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '8a', '8b', '8c', '8d', '8e', '8f', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '9a', '9b', '9c', '9d', '9e', '9f', 'a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'aa', 'ab', 'ac', 'ad', 'ae', 'af', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'ba', 'bb', 'bc', 'bd', 'be', 'bf', 'c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'ca', 'cb', 'cc', 'cd', 'ce', 'cf', 'd0', 'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9', 'da', 'db', 'dc', 'dd', 'de', 'df', 'e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'ea', 'eb', 'ec', 'ed', 'ee', 'ef', 'f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'fa', 'fb', 'fc', 'fd', 'fe', 'ff' ]; let _seed = 1234567; const DEG2RAD = Math.PI / 180; const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 function generateUUID() { const d0 = Math.random() * 0xffffffff | 0; const d1 = Math.random() * 0xffffffff | 0; const d2 = Math.random() * 0xffffffff | 0; const d3 = Math.random() * 0xffffffff | 0; const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' + _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' + _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] + _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ]; // .toLowerCase() here flattens concatenated strings to save heap memory space. return uuid.toLowerCase(); } function clamp$1( value, min, max ) { return Math.max( min, Math.min( max, value ) ); } // compute euclidean modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation function euclideanModulo( n, m ) { return ( ( n % m ) + m ) % m; } // Linear mapping from range to range function mapLinear( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); } // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ function inverseLerp( x, y, value ) { if ( x !== y ) { return ( value - x ) / ( y - x ); } else { return 0; } } // https://en.wikipedia.org/wiki/Linear_interpolation function lerp( x, y, t ) { return ( 1 - t ) * x + t * y; } // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/ function damp( x, y, lambda, dt ) { return lerp( x, y, 1 - Math.exp( - lambda * dt ) ); } // https://www.desmos.com/calculator/vcsjnyz7x4 function pingpong( x, length = 1 ) { return length - Math.abs( euclideanModulo( x, length * 2 ) - length ); } // http://en.wikipedia.org/wiki/Smoothstep function smoothstep( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); } function smootherstep( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); } // Random integer from interval function randInt( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); } // Random float from interval function randFloat( low, high ) { return low + Math.random() * ( high - low ); } // Random float from <-range/2, range/2> interval function randFloatSpread( range ) { return range * ( 0.5 - Math.random() ); } // Deterministic pseudo-random float in the interval [ 0, 1 ] function seededRandom( s ) { if ( s !== undefined ) _seed = s; // Mulberry32 generator let t = _seed += 0x6D2B79F5; t = Math.imul( t ^ t >>> 15, t | 1 ); t ^= t + Math.imul( t ^ t >>> 7, t | 61 ); return ( ( t ^ t >>> 14 ) >>> 0 ) / 4294967296; } function degToRad( degrees ) { return degrees * DEG2RAD; } function radToDeg( radians ) { return radians * RAD2DEG; } function isPowerOfTwo( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; } function ceilPowerOfTwo( value ) { return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) ); } function floorPowerOfTwo( value ) { return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) ); } function setQuaternionFromProperEuler( q, a, b, c, order ) { // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles // rotations are applied to the axes in the order specified by 'order' // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c' // angles are in radians const cos = Math.cos; const sin = Math.sin; const c2 = cos( b / 2 ); const s2 = sin( b / 2 ); const c13 = cos( ( a + c ) / 2 ); const s13 = sin( ( a + c ) / 2 ); const c1_3 = cos( ( a - c ) / 2 ); const s1_3 = sin( ( a - c ) / 2 ); const c3_1 = cos( ( c - a ) / 2 ); const s3_1 = sin( ( c - a ) / 2 ); switch ( order ) { case 'XYX': q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 ); break; case 'YZY': q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 ); break; case 'ZXZ': q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 ); break; case 'XZX': q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 ); break; case 'YXY': q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 ); break; case 'ZYZ': q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 ); break; default: console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order ); } } function denormalize$1( value, array ) { switch ( array.constructor ) { case Float32Array: return value; case Uint16Array: return value / 65535.0; case Uint8Array: return value / 255.0; case Int16Array: return Math.max( value / 32767.0, - 1.0 ); case Int8Array: return Math.max( value / 127.0, - 1.0 ); default: throw new Error( 'Invalid component type.' ); } } function normalize( value, array ) { switch ( array.constructor ) { case Float32Array: return value; case Uint16Array: return Math.round( value * 65535.0 ); case Uint8Array: return Math.round( value * 255.0 ); case Int16Array: return Math.round( value * 32767.0 ); case Int8Array: return Math.round( value * 127.0 ); default: throw new Error( 'Invalid component type.' ); } } var MathUtils = /*#__PURE__*/Object.freeze({ __proto__: null, DEG2RAD: DEG2RAD, RAD2DEG: RAD2DEG, generateUUID: generateUUID, clamp: clamp$1, euclideanModulo: euclideanModulo, mapLinear: mapLinear, inverseLerp: inverseLerp, lerp: lerp, damp: damp, pingpong: pingpong, smoothstep: smoothstep, smootherstep: smootherstep, randInt: randInt, randFloat: randFloat, randFloatSpread: randFloatSpread, seededRandom: seededRandom, degToRad: degToRad, radToDeg: radToDeg, isPowerOfTwo: isPowerOfTwo, ceilPowerOfTwo: ceilPowerOfTwo, floorPowerOfTwo: floorPowerOfTwo, setQuaternionFromProperEuler: setQuaternionFromProperEuler, normalize: normalize, denormalize: denormalize$1 }); class Vector2 { constructor( x = 0, y = 0 ) { Vector2.prototype.isVector2 = true; this.x = x; this.y = y; } get width() { return this.x; } set width( value ) { this.x = value; } get height() { return this.y; } set height( value ) { this.y = value; } set( x, y ) { this.x = x; this.y = y; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y ); } copy( v ) { this.x = v.x; this.y = v.y; return this; } add( v ) { this.x += v.x; this.y += v.y; return this; } addScalar( s ) { this.x += s; this.y += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; return this; } sub( v ) { this.x -= v.x; this.y -= v.y; return this; } subScalar( s ) { this.x -= s; this.y -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; return this; } divide( v ) { this.x /= v.x; this.y /= v.y; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } applyMatrix3( m ) { const x = this.x, y = this.y; const e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ]; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ]; return this; } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); return this; } roundToZero() { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); return this; } negate() { this.x = - this.x; this.y = - this.y; return this; } dot( v ) { return this.x * v.x + this.y * v.y; } cross( v ) { return this.x * v.y - this.y * v.x; } lengthSq() { return this.x * this.x + this.y * this.y; } length() { return Math.sqrt( this.x * this.x + this.y * this.y ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ); } normalize() { return this.divideScalar( this.length() || 1 ); } angle() { // computes the angle in radians with respect to the positive x-axis const angle = Math.atan2( - this.y, - this.x ) + Math.PI; return angle; } distanceTo( v ) { return Math.sqrt( this.distanceToSquared( v ) ); } distanceToSquared( v ) { const dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; } manhattanDistanceTo( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; return array; } fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); return this; } rotateAround( center, angle ) { const c = Math.cos( angle ), s = Math.sin( angle ); const x = this.x - center.x; const y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; } random() { this.x = Math.random(); this.y = Math.random(); return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; } } class Matrix3 { constructor() { Matrix3.prototype.isMatrix3 = true; this.elements = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; } set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { const te = this.elements; te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; return this; } identity() { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; } copy( m ) { const te = this.elements; const me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; return this; } extractBasis( xAxis, yAxis, zAxis ) { xAxis.setFromMatrix3Column( this, 0 ); yAxis.setFromMatrix3Column( this, 1 ); zAxis.setFromMatrix3Column( this, 2 ); return this; } setFromMatrix4( m ) { const me = m.elements; this.set( me[ 0 ], me[ 4 ], me[ 8 ], me[ 1 ], me[ 5 ], me[ 9 ], me[ 2 ], me[ 6 ], me[ 10 ] ); return this; } multiply( m ) { return this.multiplyMatrices( this, m ); } premultiply( m ) { return this.multiplyMatrices( m, this ); } multiplyMatrices( a, b ) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ]; const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ]; const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ]; const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ]; const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ]; const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31; te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32; te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31; te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32; te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31; te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32; te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33; return this; } multiplyScalar( s ) { const te = this.elements; te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; return this; } determinant() { const te = this.elements; const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; } invert() { const te = this.elements, n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n12 = te[ 3 ], n22 = te[ 4 ], n32 = te[ 5 ], n13 = te[ 6 ], n23 = te[ 7 ], n33 = te[ 8 ], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 ); const detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv; te[ 3 ] = t12 * detInv; te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv; te[ 6 ] = t13 * detInv; te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv; return this; } transpose() { let tmp; const m = this.elements; tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; return this; } getNormalMatrix( matrix4 ) { return this.setFromMatrix4( matrix4 ).invert().transpose(); } transposeIntoArray( r ) { const m = this.elements; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; } setUvTransform( tx, ty, sx, sy, rotation, cx, cy ) { const c = Math.cos( rotation ); const s = Math.sin( rotation ); this.set( sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx, - sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty, 0, 0, 1 ); return this; } scale( sx, sy ) { const te = this.elements; te[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx; te[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy; return this; } rotate( theta ) { const c = Math.cos( theta ); const s = Math.sin( theta ); const te = this.elements; const a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ]; const a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ]; te[ 0 ] = c * a11 + s * a21; te[ 3 ] = c * a12 + s * a22; te[ 6 ] = c * a13 + s * a23; te[ 1 ] = - s * a11 + c * a21; te[ 4 ] = - s * a12 + c * a22; te[ 7 ] = - s * a13 + c * a23; return this; } translate( tx, ty ) { const te = this.elements; te[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ]; te[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ]; return this; } equals( matrix ) { const te = this.elements; const me = matrix.elements; for ( let i = 0; i < 9; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; } fromArray( array, offset = 0 ) { for ( let i = 0; i < 9; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; } toArray( array = [], offset = 0 ) { const te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; return array; } clone() { return new this.constructor().fromArray( this.elements ); } } function arrayNeedsUint32( array ) { // assumes larger values usually on last for ( let i = array.length - 1; i >= 0; -- i ) { if ( array[ i ] > 65535 ) return true; } return false; } function createElementNS( name ) { return document.createElementNS( 'http://www.w3.org/1999/xhtml', name ); } function SRGBToLinear( c ) { return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 ); } function LinearToSRGB( c ) { return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055; } // JavaScript RGB-to-RGB transforms, defined as // FN[InputColorSpace][OutputColorSpace] callback functions. const FN = { [ SRGBColorSpace ]: { [ LinearSRGBColorSpace ]: SRGBToLinear }, [ LinearSRGBColorSpace ]: { [ SRGBColorSpace ]: LinearToSRGB }, }; const ColorManagement = { legacyMode: true, get workingColorSpace() { return LinearSRGBColorSpace; }, set workingColorSpace( colorSpace ) { console.warn( 'THREE.ColorManagement: .workingColorSpace is readonly.' ); }, convert: function ( color, sourceColorSpace, targetColorSpace ) { if ( this.legacyMode || sourceColorSpace === targetColorSpace || ! sourceColorSpace || ! targetColorSpace ) { return color; } if ( FN[ sourceColorSpace ] && FN[ sourceColorSpace ][ targetColorSpace ] !== undefined ) { const fn = FN[ sourceColorSpace ][ targetColorSpace ]; color.r = fn( color.r ); color.g = fn( color.g ); color.b = fn( color.b ); return color; } throw new Error( 'Unsupported color space conversion.' ); }, fromWorkingColorSpace: function ( color, targetColorSpace ) { return this.convert( color, this.workingColorSpace, targetColorSpace ); }, toWorkingColorSpace: function ( color, sourceColorSpace ) { return this.convert( color, sourceColorSpace, this.workingColorSpace ); }, }; const _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; const _rgb = { r: 0, g: 0, b: 0 }; const _hslA = { h: 0, s: 0, l: 0 }; const _hslB = { h: 0, s: 0, l: 0 }; function hue2rgb( p, q, t ) { if ( t < 0 ) t += 1; if ( t > 1 ) t -= 1; if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; if ( t < 1 / 2 ) return q; if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); return p; } function toComponents( source, target ) { target.r = source.r; target.g = source.g; target.b = source.b; return target; } class Color$2 { constructor( r, g, b ) { this.isColor = true; this.r = 1; this.g = 1; this.b = 1; if ( g === undefined && b === undefined ) { // r is THREE.Color, hex or string return this.set( r ); } return this.setRGB( r, g, b ); } set( value ) { if ( value && value.isColor ) { this.copy( value ); } else if ( typeof value === 'number' ) { this.setHex( value ); } else if ( typeof value === 'string' ) { this.setStyle( value ); } return this; } setScalar( scalar ) { this.r = scalar; this.g = scalar; this.b = scalar; return this; } setHex( hex, colorSpace = SRGBColorSpace ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; ColorManagement.toWorkingColorSpace( this, colorSpace ); return this; } setRGB( r, g, b, colorSpace = LinearSRGBColorSpace ) { this.r = r; this.g = g; this.b = b; ColorManagement.toWorkingColorSpace( this, colorSpace ); return this; } setHSL( h, s, l, colorSpace = LinearSRGBColorSpace ) { // h,s,l ranges are in 0.0 - 1.0 h = euclideanModulo( h, 1 ); s = clamp$1( s, 0, 1 ); l = clamp$1( l, 0, 1 ); if ( s === 0 ) { this.r = this.g = this.b = l; } else { const p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); const q = ( 2 * l ) - p; this.r = hue2rgb( q, p, h + 1 / 3 ); this.g = hue2rgb( q, p, h ); this.b = hue2rgb( q, p, h - 1 / 3 ); } ColorManagement.toWorkingColorSpace( this, colorSpace ); return this; } setStyle( style, colorSpace = SRGBColorSpace ) { function handleAlpha( string ) { if ( string === undefined ) return; if ( parseFloat( string ) < 1 ) { console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); } } let m; if ( m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec( style ) ) { // rgb / hsl let color; const name = m[ 1 ]; const components = m[ 2 ]; switch ( name ) { case 'rgb': case 'rgba': if ( color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255; this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255; this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255; ColorManagement.toWorkingColorSpace( this, colorSpace ); handleAlpha( color[ 4 ] ); return this; } if ( color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100; this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100; this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100; ColorManagement.toWorkingColorSpace( this, colorSpace ); handleAlpha( color[ 4 ] ); return this; } break; case 'hsl': case 'hsla': if ( color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) const h = parseFloat( color[ 1 ] ) / 360; const s = parseInt( color[ 2 ], 10 ) / 100; const l = parseInt( color[ 3 ], 10 ) / 100; handleAlpha( color[ 4 ] ); return this.setHSL( h, s, l, colorSpace ); } break; } } else if ( m = /^\#([A-Fa-f\d]+)$/.exec( style ) ) { // hex color const hex = m[ 1 ]; const size = hex.length; if ( size === 3 ) { // #ff0 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255; this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255; this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255; ColorManagement.toWorkingColorSpace( this, colorSpace ); return this; } else if ( size === 6 ) { // #ff0000 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255; this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255; this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255; ColorManagement.toWorkingColorSpace( this, colorSpace ); return this; } } if ( style && style.length > 0 ) { return this.setColorName( style, colorSpace ); } return this; } setColorName( style, colorSpace = SRGBColorSpace ) { // color keywords const hex = _colorKeywords[ style.toLowerCase() ]; if ( hex !== undefined ) { // red this.setHex( hex, colorSpace ); } else { // unknown color console.warn( 'THREE.Color: Unknown color ' + style ); } return this; } clone() { return new this.constructor( this.r, this.g, this.b ); } copy( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; } copySRGBToLinear( color ) { this.r = SRGBToLinear( color.r ); this.g = SRGBToLinear( color.g ); this.b = SRGBToLinear( color.b ); return this; } copyLinearToSRGB( color ) { this.r = LinearToSRGB( color.r ); this.g = LinearToSRGB( color.g ); this.b = LinearToSRGB( color.b ); return this; } convertSRGBToLinear() { this.copySRGBToLinear( this ); return this; } convertLinearToSRGB() { this.copyLinearToSRGB( this ); return this; } getHex( colorSpace = SRGBColorSpace ) { ColorManagement.fromWorkingColorSpace( toComponents( this, _rgb ), colorSpace ); return clamp$1( _rgb.r * 255, 0, 255 ) << 16 ^ clamp$1( _rgb.g * 255, 0, 255 ) << 8 ^ clamp$1( _rgb.b * 255, 0, 255 ) << 0; } getHexString( colorSpace = SRGBColorSpace ) { return ( '000000' + this.getHex( colorSpace ).toString( 16 ) ).slice( - 6 ); } getHSL( target, colorSpace = LinearSRGBColorSpace ) { // h,s,l ranges are in 0.0 - 1.0 ColorManagement.fromWorkingColorSpace( toComponents( this, _rgb ), colorSpace ); const r = _rgb.r, g = _rgb.g, b = _rgb.b; const max = Math.max( r, g, b ); const min = Math.min( r, g, b ); let hue, saturation; const lightness = ( min + max ) / 2.0; if ( min === max ) { hue = 0; saturation = 0; } else { const delta = max - min; saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); switch ( max ) { case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; case g: hue = ( b - r ) / delta + 2; break; case b: hue = ( r - g ) / delta + 4; break; } hue /= 6; } target.h = hue; target.s = saturation; target.l = lightness; return target; } getRGB( target, colorSpace = LinearSRGBColorSpace ) { ColorManagement.fromWorkingColorSpace( toComponents( this, _rgb ), colorSpace ); target.r = _rgb.r; target.g = _rgb.g; target.b = _rgb.b; return target; } getStyle( colorSpace = SRGBColorSpace ) { ColorManagement.fromWorkingColorSpace( toComponents( this, _rgb ), colorSpace ); if ( colorSpace !== SRGBColorSpace ) { // Requires CSS Color Module Level 4 (https://www.w3.org/TR/css-color-4/). return `color(${ colorSpace } ${ _rgb.r } ${ _rgb.g } ${ _rgb.b })`; } return `rgb(${( _rgb.r * 255 ) | 0},${( _rgb.g * 255 ) | 0},${( _rgb.b * 255 ) | 0})`; } offsetHSL( h, s, l ) { this.getHSL( _hslA ); _hslA.h += h; _hslA.s += s; _hslA.l += l; this.setHSL( _hslA.h, _hslA.s, _hslA.l ); return this; } add( color ) { this.r += color.r; this.g += color.g; this.b += color.b; return this; } addColors( color1, color2 ) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; } addScalar( s ) { this.r += s; this.g += s; this.b += s; return this; } sub( color ) { this.r = Math.max( 0, this.r - color.r ); this.g = Math.max( 0, this.g - color.g ); this.b = Math.max( 0, this.b - color.b ); return this; } multiply( color ) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; } multiplyScalar( s ) { this.r *= s; this.g *= s; this.b *= s; return this; } lerp( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; } lerpColors( color1, color2, alpha ) { this.r = color1.r + ( color2.r - color1.r ) * alpha; this.g = color1.g + ( color2.g - color1.g ) * alpha; this.b = color1.b + ( color2.b - color1.b ) * alpha; return this; } lerpHSL( color, alpha ) { this.getHSL( _hslA ); color.getHSL( _hslB ); const h = lerp( _hslA.h, _hslB.h, alpha ); const s = lerp( _hslA.s, _hslB.s, alpha ); const l = lerp( _hslA.l, _hslB.l, alpha ); this.setHSL( h, s, l ); return this; } equals( c ) { return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); } fromArray( array, offset = 0 ) { this.r = array[ offset ]; this.g = array[ offset + 1 ]; this.b = array[ offset + 2 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.r; array[ offset + 1 ] = this.g; array[ offset + 2 ] = this.b; return array; } fromBufferAttribute( attribute, index ) { this.r = attribute.getX( index ); this.g = attribute.getY( index ); this.b = attribute.getZ( index ); if ( attribute.normalized === true ) { // assuming Uint8Array this.r /= 255; this.g /= 255; this.b /= 255; } return this; } toJSON() { return this.getHex(); } *[ Symbol.iterator ]() { yield this.r; yield this.g; yield this.b; } } Color$2.NAMES = _colorKeywords; let _canvas; class ImageUtils { static getDataURL( image ) { if ( /^data:/i.test( image.src ) ) { return image.src; } if ( typeof HTMLCanvasElement == 'undefined' ) { return image.src; } let canvas; if ( image instanceof HTMLCanvasElement ) { canvas = image; } else { if ( _canvas === undefined ) _canvas = createElementNS( 'canvas' ); _canvas.width = image.width; _canvas.height = image.height; const context = _canvas.getContext( '2d' ); if ( image instanceof ImageData ) { context.putImageData( image, 0, 0 ); } else { context.drawImage( image, 0, 0, image.width, image.height ); } canvas = _canvas; } if ( canvas.width > 2048 || canvas.height > 2048 ) { console.warn( 'THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image ); return canvas.toDataURL( 'image/jpeg', 0.6 ); } else { return canvas.toDataURL( 'image/png' ); } } static sRGBToLinear( image ) { if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { const canvas = createElementNS( 'canvas' ); canvas.width = image.width; canvas.height = image.height; const context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, image.width, image.height ); const imageData = context.getImageData( 0, 0, image.width, image.height ); const data = imageData.data; for ( let i = 0; i < data.length; i ++ ) { data[ i ] = SRGBToLinear( data[ i ] / 255 ) * 255; } context.putImageData( imageData, 0, 0 ); return canvas; } else if ( image.data ) { const data = image.data.slice( 0 ); for ( let i = 0; i < data.length; i ++ ) { if ( data instanceof Uint8Array || data instanceof Uint8ClampedArray ) { data[ i ] = Math.floor( SRGBToLinear( data[ i ] / 255 ) * 255 ); } else { // assuming float data[ i ] = SRGBToLinear( data[ i ] ); } } return { data: data, width: image.width, height: image.height }; } else { console.warn( 'THREE.ImageUtils.sRGBToLinear(): Unsupported image type. No color space conversion applied.' ); return image; } } } class Source { constructor( data = null ) { this.isSource = true; this.uuid = generateUUID(); this.data = data; this.version = 0; } set needsUpdate( value ) { if ( value === true ) this.version ++; } toJSON( meta ) { const isRootObject = ( meta === undefined || typeof meta === 'string' ); if ( ! isRootObject && meta.images[ this.uuid ] !== undefined ) { return meta.images[ this.uuid ]; } const output = { uuid: this.uuid, url: '' }; const data = this.data; if ( data !== null ) { let url; if ( Array.isArray( data ) ) { // cube texture url = []; for ( let i = 0, l = data.length; i < l; i ++ ) { if ( data[ i ].isDataTexture ) { url.push( serializeImage( data[ i ].image ) ); } else { url.push( serializeImage( data[ i ] ) ); } } } else { // texture url = serializeImage( data ); } output.url = url; } if ( ! isRootObject ) { meta.images[ this.uuid ] = output; } return output; } } function serializeImage( image ) { if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { // default images return ImageUtils.getDataURL( image ); } else { if ( image.data ) { // images of DataTexture return { data: Array.from( image.data ), width: image.width, height: image.height, type: image.data.constructor.name }; } else { console.warn( 'THREE.Texture: Unable to serialize Texture.' ); return {}; } } } let textureId = 0; class Texture extends EventDispatcher { constructor( image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding ) { super(); this.isTexture = true; Object.defineProperty( this, 'id', { value: textureId ++ } ); this.uuid = generateUUID(); this.name = ''; this.source = new Source( image ); this.mipmaps = []; this.mapping = mapping; this.wrapS = wrapS; this.wrapT = wrapT; this.magFilter = magFilter; this.minFilter = minFilter; this.anisotropy = anisotropy; this.format = format; this.internalFormat = null; this.type = type; this.offset = new Vector2( 0, 0 ); this.repeat = new Vector2( 1, 1 ); this.center = new Vector2( 0, 0 ); this.rotation = 0; this.matrixAutoUpdate = true; this.matrix = new Matrix3(); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. // // Also changing the encoding after already used by a Material will not automatically make the Material // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. this.encoding = encoding; this.userData = {}; this.version = 0; this.onUpdate = null; this.isRenderTargetTexture = false; // indicates whether a texture belongs to a render target or not this.needsPMREMUpdate = false; // indicates whether this texture should be processed by PMREMGenerator or not (only relevant for render target textures) } get image() { return this.source.data; } set image( value ) { this.source.data = value; } updateMatrix() { this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y ); } clone() { return new this.constructor().copy( this ); } copy( source ) { this.name = source.name; this.source = source.source; this.mipmaps = source.mipmaps.slice( 0 ); this.mapping = source.mapping; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.internalFormat = source.internalFormat; this.type = source.type; this.offset.copy( source.offset ); this.repeat.copy( source.repeat ); this.center.copy( source.center ); this.rotation = source.rotation; this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrix.copy( source.matrix ); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.encoding = source.encoding; this.userData = JSON.parse( JSON.stringify( source.userData ) ); this.needsUpdate = true; return this; } toJSON( meta ) { const isRootObject = ( meta === undefined || typeof meta === 'string' ); if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) { return meta.textures[ this.uuid ]; } const output = { metadata: { version: 4.5, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, image: this.source.toJSON( meta ).uuid, mapping: this.mapping, repeat: [ this.repeat.x, this.repeat.y ], offset: [ this.offset.x, this.offset.y ], center: [ this.center.x, this.center.y ], rotation: this.rotation, wrap: [ this.wrapS, this.wrapT ], format: this.format, type: this.type, encoding: this.encoding, minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY, premultiplyAlpha: this.premultiplyAlpha, unpackAlignment: this.unpackAlignment }; if ( JSON.stringify( this.userData ) !== '{}' ) output.userData = this.userData; if ( ! isRootObject ) { meta.textures[ this.uuid ] = output; } return output; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } transformUv( uv ) { if ( this.mapping !== UVMapping ) return uv; uv.applyMatrix3( this.matrix ); if ( uv.x < 0 || uv.x > 1 ) { switch ( this.wrapS ) { case RepeatWrapping: uv.x = uv.x - Math.floor( uv.x ); break; case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { uv.x = Math.ceil( uv.x ) - uv.x; } else { uv.x = uv.x - Math.floor( uv.x ); } break; } } if ( uv.y < 0 || uv.y > 1 ) { switch ( this.wrapT ) { case RepeatWrapping: uv.y = uv.y - Math.floor( uv.y ); break; case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { uv.y = Math.ceil( uv.y ) - uv.y; } else { uv.y = uv.y - Math.floor( uv.y ); } break; } } if ( this.flipY ) { uv.y = 1 - uv.y; } return uv; } set needsUpdate( value ) { if ( value === true ) { this.version ++; this.source.needsUpdate = true; } } } Texture.DEFAULT_IMAGE = null; Texture.DEFAULT_MAPPING = UVMapping; class Vector4 { constructor( x = 0, y = 0, z = 0, w = 1 ) { Vector4.prototype.isVector4 = true; this.x = x; this.y = y; this.z = z; this.w = w; } get width() { return this.z; } set width( value ) { this.z = value; } get height() { return this.w; } set height( value ) { this.w = value; } set( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setZ( z ) { this.z = z; return this; } setW( w ) { this.w = w; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y, this.z, this.w ); } copy( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; } add( v ) { this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; } addScalar( s ) { this.x += s; this.y += s; this.z += s; this.w += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; } sub( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; } subScalar( s ) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; this.w *= v.w; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; } applyMatrix4( m ) { const x = this.x, y = this.y, z = this.z, w = this.w; const e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } setAxisAngleFromQuaternion( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); const s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; } setAxisAngleFromRotationMatrix( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) let angle, x, y, z; // variables for result const epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; const xx = ( m11 + 1 ) / 2; const yy = ( m22 + 1 ) / 2; const zz = ( m33 + 1 ) / 2; const xy = ( m12 + m21 ) / 4; const xz = ( m13 + m31 ) / 4; const yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); this.w = Math.min( this.w, v.w ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); this.w = Math.max( this.w, v.w ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); this.w = Math.max( min.w, Math.min( max.w, this.w ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); this.w = Math.max( minVal, Math.min( maxVal, this.w ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w ); return this; } roundToZero() { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w ); return this; } negate() { this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w; return this; } dot( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; } lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; } length() { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); } normalize() { return this.divideScalar( this.length() || 1 ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; this.w = v1.w + ( v2.w - v1.w ) * alpha; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; this.w = array[ offset + 3 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; array[ offset + 3 ] = this.w; return array; } fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); this.w = attribute.getW( index ); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); this.w = Math.random(); return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; yield this.z; yield this.w; } } /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ class WebGLRenderTarget extends EventDispatcher { constructor( width, height, options = {} ) { super(); this.isWebGLRenderTarget = true; this.width = width; this.height = height; this.depth = 1; this.scissor = new Vector4( 0, 0, width, height ); this.scissorTest = false; this.viewport = new Vector4( 0, 0, width, height ); const image = { width: width, height: height, depth: 1 }; this.texture = new Texture( image, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding ); this.texture.isRenderTargetTexture = true; this.texture.flipY = false; this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null; this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false; this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null; this.samples = options.samples !== undefined ? options.samples : 0; } setSize( width, height, depth = 1 ) { if ( this.width !== width || this.height !== height || this.depth !== depth ) { this.width = width; this.height = height; this.depth = depth; this.texture.image.width = width; this.texture.image.height = height; this.texture.image.depth = depth; this.dispose(); } this.viewport.set( 0, 0, width, height ); this.scissor.set( 0, 0, width, height ); } clone() { return new this.constructor().copy( this ); } copy( source ) { this.width = source.width; this.height = source.height; this.depth = source.depth; this.viewport.copy( source.viewport ); this.texture = source.texture.clone(); this.texture.isRenderTargetTexture = true; // ensure image object is not shared, see #20328 const image = Object.assign( {}, source.texture.image ); this.texture.source = new Source( image ); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; if ( source.depthTexture !== null ) this.depthTexture = source.depthTexture.clone(); this.samples = source.samples; return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } } class DataArrayTexture extends Texture { constructor( data = null, width = 1, height = 1, depth = 1 ) { super( null ); this.isDataArrayTexture = true; this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; } } class Data3DTexture extends Texture { constructor( data = null, width = 1, height = 1, depth = 1 ) { // We're going to add .setXXX() methods for setting properties later. // Users can still set in DataTexture3D directly. // // const texture = new THREE.DataTexture3D( data, width, height, depth ); // texture.anisotropy = 16; // // See #14839 super( null ); this.isData3DTexture = true; this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; } } class Quaternion { constructor( x = 0, y = 0, z = 0, w = 1 ) { this.isQuaternion = true; this._x = x; this._y = y; this._z = z; this._w = w; } static slerpFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { // fuzz-free, array-based Quaternion SLERP operation let x0 = src0[ srcOffset0 + 0 ], y0 = src0[ srcOffset0 + 1 ], z0 = src0[ srcOffset0 + 2 ], w0 = src0[ srcOffset0 + 3 ]; const x1 = src1[ srcOffset1 + 0 ], y1 = src1[ srcOffset1 + 1 ], z1 = src1[ srcOffset1 + 2 ], w1 = src1[ srcOffset1 + 3 ]; if ( t === 0 ) { dst[ dstOffset + 0 ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; return; } if ( t === 1 ) { dst[ dstOffset + 0 ] = x1; dst[ dstOffset + 1 ] = y1; dst[ dstOffset + 2 ] = z1; dst[ dstOffset + 3 ] = w1; return; } if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { let s = 1 - t; const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = ( cos >= 0 ? 1 : - 1 ), sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if ( sqrSin > Number.EPSILON ) { const sin = Math.sqrt( sqrSin ), len = Math.atan2( sin, cos * dir ); s = Math.sin( s * len ) / sin; t = Math.sin( t * len ) / sin; } const tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if ( s === 1 - t ) { const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[ dstOffset ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; } static multiplyQuaternionsFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) { const x0 = src0[ srcOffset0 ]; const y0 = src0[ srcOffset0 + 1 ]; const z0 = src0[ srcOffset0 + 2 ]; const w0 = src0[ srcOffset0 + 3 ]; const x1 = src1[ srcOffset1 ]; const y1 = src1[ srcOffset1 + 1 ]; const z1 = src1[ srcOffset1 + 2 ]; const w1 = src1[ srcOffset1 + 3 ]; dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; return dst; } get x() { return this._x; } set x( value ) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y( value ) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z( value ) { this._z = value; this._onChangeCallback(); } get w() { return this._w; } set w( value ) { this._w = value; this._onChangeCallback(); } set( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this._onChangeCallback(); return this; } clone() { return new this.constructor( this._x, this._y, this._z, this._w ); } copy( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this._onChangeCallback(); return this; } setFromEuler( euler, update ) { if ( ! ( euler && euler.isEuler ) ) { throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' ); } const x = euler._x, y = euler._y, z = euler._z, order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m const cos = Math.cos; const sin = Math.sin; const c1 = cos( x / 2 ); const c2 = cos( y / 2 ); const c3 = cos( z / 2 ); const s1 = sin( x / 2 ); const s2 = sin( y / 2 ); const s3 = sin( z / 2 ); switch ( order ) { case 'XYZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'YXZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'ZXY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'ZYX': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'YZX': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'XZY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; default: console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order ); } if ( update !== false ) this._onChangeCallback(); return this; } setFromAxisAngle( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized const halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this._onChangeCallback(); return this; } setFromRotationMatrix( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33; if ( trace > 0 ) { const s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s; } else if ( m22 > m33 ) { const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s; } else { const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s; } this._onChangeCallback(); return this; } setFromUnitVectors( vFrom, vTo ) { // assumes direction vectors vFrom and vTo are normalized let r = vFrom.dot( vTo ) + 1; if ( r < Number.EPSILON ) { // vFrom and vTo point in opposite directions r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { this._x = - vFrom.y; this._y = vFrom.x; this._z = 0; this._w = r; } else { this._x = 0; this._y = - vFrom.z; this._z = vFrom.y; this._w = r; } } else { // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; this._w = r; } return this.normalize(); } angleTo( q ) { return 2 * Math.acos( Math.abs( clamp$1( this.dot( q ), - 1, 1 ) ) ); } rotateTowards( q, step ) { const angle = this.angleTo( q ); if ( angle === 0 ) return this; const t = Math.min( 1, step / angle ); this.slerp( q, t ); return this; } identity() { return this.set( 0, 0, 0, 1 ); } invert() { // quaternion is assumed to have unit length return this.conjugate(); } conjugate() { this._x *= - 1; this._y *= - 1; this._z *= - 1; this._onChangeCallback(); return this; } dot( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; } lengthSq() { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; } length() { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); } normalize() { let l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this._onChangeCallback(); return this; } multiply( q ) { return this.multiplyQuaternions( this, q ); } premultiply( q ) { return this.multiplyQuaternions( q, this ); } multiplyQuaternions( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this._onChangeCallback(); return this; } slerp( qb, t ) { if ( t === 0 ) return this; if ( t === 1 ) return this.copy( qb ); const x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; if ( sqrSinHalfTheta <= Number.EPSILON ) { const s = 1 - t; this._w = s * w + t * this._w; this._x = s * x + t * this._x; this._y = s * y + t * this._y; this._z = s * z + t * this._z; this.normalize(); this._onChangeCallback(); return this; } const sinHalfTheta = Math.sqrt( sqrSinHalfTheta ); const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this._onChangeCallback(); return this; } slerpQuaternions( qa, qb, t ) { return this.copy( qa ).slerp( qb, t ); } random() { // Derived from http://planning.cs.uiuc.edu/node198.html // Note, this source uses w, x, y, z ordering, // so we swap the order below. const u1 = Math.random(); const sqrt1u1 = Math.sqrt( 1 - u1 ); const sqrtu1 = Math.sqrt( u1 ); const u2 = 2 * Math.PI * Math.random(); const u3 = 2 * Math.PI * Math.random(); return this.set( sqrt1u1 * Math.cos( u2 ), sqrtu1 * Math.sin( u3 ), sqrtu1 * Math.cos( u3 ), sqrt1u1 * Math.sin( u2 ), ); } equals( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); } fromArray( array, offset = 0 ) { this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ]; this._onChangeCallback(); return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w; return array; } fromBufferAttribute( attribute, index ) { this._x = attribute.getX( index ); this._y = attribute.getY( index ); this._z = attribute.getZ( index ); this._w = attribute.getW( index ); return this; } _onChange( callback ) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} *[ Symbol.iterator ]() { yield this._x; yield this._y; yield this._z; yield this._w; } } class Vector3 { constructor( x = 0, y = 0, z = 0 ) { Vector3.prototype.isVector3 = true; this.x = x; this.y = y; this.z = z; } set( x, y, z ) { if ( z === undefined ) z = this.z; // sprite.scale.set(x,y) this.x = x; this.y = y; this.z = z; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setZ( z ) { this.z = z; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y, this.z ); } copy( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; } add( v ) { this.x += v.x; this.y += v.y; this.z += v.z; return this; } addScalar( s ) { this.x += s; this.y += s; this.z += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; } sub( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; } subScalar( s ) { this.x -= s; this.y -= s; this.z -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; } multiplyVectors( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; } applyEuler( euler ) { return this.applyQuaternion( _quaternion$4.setFromEuler( euler ) ); } applyAxisAngle( axis, angle ) { return this.applyQuaternion( _quaternion$4.setFromAxisAngle( axis, angle ) ); } applyMatrix3( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; } applyNormalMatrix( m ) { return this.applyMatrix3( m ).normalize(); } applyMatrix4( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w; return this; } applyQuaternion( q ) { const x = this.x, y = this.y, z = this.z; const qx = q.x, qy = q.y, qz = q.z, qw = q.w; // calculate quat * vector const ix = qw * x + qy * z - qz * y; const iy = qw * y + qz * x - qx * z; const iz = qw * z + qx * y - qy * x; const iw = - qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx; return this; } project( camera ) { return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix ); } unproject( camera ) { return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld ); } transformDirection( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; return this.normalize(); } divide( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; } roundToZero() { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); return this; } negate() { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; } dot( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; } // TODO lengthSquared? lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z; } length() { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); } normalize() { return this.divideScalar( this.length() || 1 ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; return this; } cross( v ) { return this.crossVectors( this, v ); } crossVectors( a, b ) { const ax = a.x, ay = a.y, az = a.z; const bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; } projectOnVector( v ) { const denominator = v.lengthSq(); if ( denominator === 0 ) return this.set( 0, 0, 0 ); const scalar = v.dot( this ) / denominator; return this.copy( v ).multiplyScalar( scalar ); } projectOnPlane( planeNormal ) { _vector$c.copy( this ).projectOnVector( planeNormal ); return this.sub( _vector$c ); } reflect( normal ) { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length return this.sub( _vector$c.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); } angleTo( v ) { const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); if ( denominator === 0 ) return Math.PI / 2; const theta = this.dot( v ) / denominator; // clamp, to handle numerical problems return Math.acos( clamp$1( theta, - 1, 1 ) ); } distanceTo( v ) { return Math.sqrt( this.distanceToSquared( v ) ); } distanceToSquared( v ) { const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; } manhattanDistanceTo( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); } setFromSpherical( s ) { return this.setFromSphericalCoords( s.radius, s.phi, s.theta ); } setFromSphericalCoords( radius, phi, theta ) { const sinPhiRadius = Math.sin( phi ) * radius; this.x = sinPhiRadius * Math.sin( theta ); this.y = Math.cos( phi ) * radius; this.z = sinPhiRadius * Math.cos( theta ); return this; } setFromCylindrical( c ) { return this.setFromCylindricalCoords( c.radius, c.theta, c.y ); } setFromCylindricalCoords( radius, theta, y ) { this.x = radius * Math.sin( theta ); this.y = y; this.z = radius * Math.cos( theta ); return this; } setFromMatrixPosition( m ) { const e = m.elements; this.x = e[ 12 ]; this.y = e[ 13 ]; this.z = e[ 14 ]; return this; } setFromMatrixScale( m ) { const sx = this.setFromMatrixColumn( m, 0 ).length(); const sy = this.setFromMatrixColumn( m, 1 ).length(); const sz = this.setFromMatrixColumn( m, 2 ).length(); this.x = sx; this.y = sy; this.z = sz; return this; } setFromMatrixColumn( m, index ) { return this.fromArray( m.elements, index * 4 ); } setFromMatrix3Column( m, index ) { return this.fromArray( m.elements, index * 3 ); } setFromEuler( e ) { this.x = e._x; this.y = e._y; this.z = e._z; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; } fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); return this; } randomDirection() { // Derived from https://mathworld.wolfram.com/SpherePointPicking.html const u = ( Math.random() - 0.5 ) * 2; const t = Math.random() * Math.PI * 2; const f = Math.sqrt( 1 - u ** 2 ); this.x = f * Math.cos( t ); this.y = f * Math.sin( t ); this.z = u; return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; yield this.z; } } const _vector$c = /*@__PURE__*/ new Vector3(); const _quaternion$4 = /*@__PURE__*/ new Quaternion(); class Box3 { constructor( min = new Vector3( + Infinity, + Infinity, + Infinity ), max = new Vector3( - Infinity, - Infinity, - Infinity ) ) { this.isBox3 = true; this.min = min; this.max = max; } set( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; } setFromArray( array ) { let minX = + Infinity; let minY = + Infinity; let minZ = + Infinity; let maxX = - Infinity; let maxY = - Infinity; let maxZ = - Infinity; for ( let i = 0, l = array.length; i < l; i += 3 ) { const x = array[ i ]; const y = array[ i + 1 ]; const z = array[ i + 2 ]; if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z; } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); return this; } setFromBufferAttribute( attribute ) { let minX = + Infinity; let minY = + Infinity; let minZ = + Infinity; let maxX = - Infinity; let maxY = - Infinity; let maxZ = - Infinity; for ( let i = 0, l = attribute.count; i < l; i ++ ) { const x = attribute.getX( i ); const y = attribute.getY( i ); const z = attribute.getZ( i ); if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z; } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); return this; } setFromPoints( points ) { this.makeEmpty(); for ( let i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; } setFromCenterAndSize( center, size ) { const halfSize = _vector$b.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; } setFromObject( object, precise = false ) { this.makeEmpty(); return this.expandByObject( object, precise ); } clone() { return new this.constructor().copy( this ); } copy( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; } makeEmpty() { this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); } getCenter( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); } getSize( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min ); } expandByPoint( point ) { this.min.min( point ); this.max.max( point ); return this; } expandByVector( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; } expandByScalar( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; } expandByObject( object, precise = false ) { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms object.updateWorldMatrix( false, false ); const geometry = object.geometry; if ( geometry !== undefined ) { if ( precise && geometry.attributes != undefined && geometry.attributes.position !== undefined ) { const position = geometry.attributes.position; for ( let i = 0, l = position.count; i < l; i ++ ) { _vector$b.fromBufferAttribute( position, i ).applyMatrix4( object.matrixWorld ); this.expandByPoint( _vector$b ); } } else { if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } _box$3.copy( geometry.boundingBox ); _box$3.applyMatrix4( object.matrixWorld ); this.union( _box$3 ); } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { this.expandByObject( children[ i ], precise ); } return this; } containsPoint( point ) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true; } containsBox( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; } getParameter( point, target ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); } intersectsBox( box ) { // using 6 splitting planes to rule out intersections. return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true; } intersectsSphere( sphere ) { // Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, _vector$b ); // If that point is inside the sphere, the AABB and sphere intersect. return _vector$b.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); } intersectsPlane( plane ) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. let min, max; if ( plane.normal.x > 0 ) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if ( plane.normal.y > 0 ) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if ( plane.normal.z > 0 ) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return ( min <= - plane.constant && max >= - plane.constant ); } intersectsTriangle( triangle ) { if ( this.isEmpty() ) { return false; } // compute box center and extents this.getCenter( _center ); _extents.subVectors( this.max, _center ); // translate triangle to aabb origin _v0$2.subVectors( triangle.a, _center ); _v1$7.subVectors( triangle.b, _center ); _v2$3.subVectors( triangle.c, _center ); // compute edge vectors for triangle _f0.subVectors( _v1$7, _v0$2 ); _f1.subVectors( _v2$3, _v1$7 ); _f2.subVectors( _v0$2, _v2$3 ); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) let axes = [ 0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y, _f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x, - _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0 ]; if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$3, _extents ) ) { return false; } // test 3 face normals from the aabb axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$3, _extents ) ) { return false; } // finally testing the face normal of the triangle // use already existing triangle edge vectors here _triangleNormal.crossVectors( _f0, _f1 ); axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ]; return satForAxes( axes, _v0$2, _v1$7, _v2$3, _extents ); } clampPoint( point, target ) { return target.copy( point ).clamp( this.min, this.max ); } distanceToPoint( point ) { const clampedPoint = _vector$b.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); } getBoundingSphere( target ) { this.getCenter( target.center ); target.radius = this.getSize( _vector$b ).length() * 0.5; return target; } intersect( box ) { this.min.max( box.min ); this.max.min( box.max ); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if ( this.isEmpty() ) this.makeEmpty(); return this; } union( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; } applyMatrix4( matrix ) { // transform of empty box is an empty box. if ( this.isEmpty() ) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below _points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 _points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 _points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 _points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 _points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 _points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 _points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 _points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.setFromPoints( _points ); return this; } translate( offset ) { this.min.add( offset ); this.max.add( offset ); return this; } equals( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } } const _points = [ /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3() ]; const _vector$b = /*@__PURE__*/ new Vector3(); const _box$3 = /*@__PURE__*/ new Box3(); // triangle centered vertices const _v0$2 = /*@__PURE__*/ new Vector3(); const _v1$7 = /*@__PURE__*/ new Vector3(); const _v2$3 = /*@__PURE__*/ new Vector3(); // triangle edge vectors const _f0 = /*@__PURE__*/ new Vector3(); const _f1 = /*@__PURE__*/ new Vector3(); const _f2 = /*@__PURE__*/ new Vector3(); const _center = /*@__PURE__*/ new Vector3(); const _extents = /*@__PURE__*/ new Vector3(); const _triangleNormal = /*@__PURE__*/ new Vector3(); const _testAxis = /*@__PURE__*/ new Vector3(); function satForAxes( axes, v0, v1, v2, extents ) { for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) { _testAxis.fromArray( axes, i ); // project the aabb onto the separating axis const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z ); // project all 3 vertices of the triangle onto the separating axis const p0 = v0.dot( _testAxis ); const p1 = v1.dot( _testAxis ); const p2 = v2.dot( _testAxis ); // actual test, basically see if either of the most extreme of the triangle points intersects r if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) { // points of the projected triangle are outside the projected half-length of the aabb // the axis is separating and we can exit return false; } } return true; } const _box$2 = /*@__PURE__*/ new Box3(); const _v1$6 = /*@__PURE__*/ new Vector3(); const _toFarthestPoint = /*@__PURE__*/ new Vector3(); const _toPoint = /*@__PURE__*/ new Vector3(); class Sphere { constructor( center = new Vector3(), radius = - 1 ) { this.center = center; this.radius = radius; } set( center, radius ) { this.center.copy( center ); this.radius = radius; return this; } setFromPoints( points, optionalCenter ) { const center = this.center; if ( optionalCenter !== undefined ) { center.copy( optionalCenter ); } else { _box$2.setFromPoints( points ).getCenter( center ); } let maxRadiusSq = 0; for ( let i = 0, il = points.length; i < il; i ++ ) { maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); } this.radius = Math.sqrt( maxRadiusSq ); return this; } copy( sphere ) { this.center.copy( sphere.center ); this.radius = sphere.radius; return this; } isEmpty() { return ( this.radius < 0 ); } makeEmpty() { this.center.set( 0, 0, 0 ); this.radius = - 1; return this; } containsPoint( point ) { return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); } distanceToPoint( point ) { return ( point.distanceTo( this.center ) - this.radius ); } intersectsSphere( sphere ) { const radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); } intersectsBox( box ) { return box.intersectsSphere( this ); } intersectsPlane( plane ) { return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius; } clampPoint( point, target ) { const deltaLengthSq = this.center.distanceToSquared( point ); target.copy( point ); if ( deltaLengthSq > ( this.radius * this.radius ) ) { target.sub( this.center ).normalize(); target.multiplyScalar( this.radius ).add( this.center ); } return target; } getBoundingBox( target ) { if ( this.isEmpty() ) { // Empty sphere produces empty bounding box target.makeEmpty(); return target; } target.set( this.center, this.center ); target.expandByScalar( this.radius ); return target; } applyMatrix4( matrix ) { this.center.applyMatrix4( matrix ); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; } translate( offset ) { this.center.add( offset ); return this; } expandByPoint( point ) { // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671 _toPoint.subVectors( point, this.center ); const lengthSq = _toPoint.lengthSq(); if ( lengthSq > ( this.radius * this.radius ) ) { const length = Math.sqrt( lengthSq ); const missingRadiusHalf = ( length - this.radius ) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius, // and the other half to position. This gives a tighter enclosure, instead of if // the whole missing distance were just added to radius. this.center.add( _toPoint.multiplyScalar( missingRadiusHalf / length ) ); this.radius += missingRadiusHalf; } return this; } union( sphere ) { // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769 // To enclose another sphere into this sphere, we only need to enclose two points: // 1) Enclose the farthest point on the other sphere into this sphere. // 2) Enclose the opposite point of the farthest point into this sphere. if ( this.center.equals( sphere.center ) === true ) { _toFarthestPoint.set( 0, 0, 1 ).multiplyScalar( sphere.radius ); } else { _toFarthestPoint.subVectors( sphere.center, this.center ).normalize().multiplyScalar( sphere.radius ); } this.expandByPoint( _v1$6.copy( sphere.center ).add( _toFarthestPoint ) ); this.expandByPoint( _v1$6.copy( sphere.center ).sub( _toFarthestPoint ) ); return this; } equals( sphere ) { return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); } clone() { return new this.constructor().copy( this ); } } const _vector$a = /*@__PURE__*/ new Vector3(); const _segCenter = /*@__PURE__*/ new Vector3(); const _segDir = /*@__PURE__*/ new Vector3(); const _diff = /*@__PURE__*/ new Vector3(); const _edge1 = /*@__PURE__*/ new Vector3(); const _edge2 = /*@__PURE__*/ new Vector3(); const _normal$1 = /*@__PURE__*/ new Vector3(); class Ray { constructor( origin = new Vector3(), direction = new Vector3( 0, 0, - 1 ) ) { this.origin = origin; this.direction = direction; } set( origin, direction ) { this.origin.copy( origin ); this.direction.copy( direction ); return this; } copy( ray ) { this.origin.copy( ray.origin ); this.direction.copy( ray.direction ); return this; } at( t, target ) { return target.copy( this.direction ).multiplyScalar( t ).add( this.origin ); } lookAt( v ) { this.direction.copy( v ).sub( this.origin ).normalize(); return this; } recast( t ) { this.origin.copy( this.at( t, _vector$a ) ); return this; } closestPointToPoint( point, target ) { target.subVectors( point, this.origin ); const directionDistance = target.dot( this.direction ); if ( directionDistance < 0 ) { return target.copy( this.origin ); } return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); } distanceToPoint( point ) { return Math.sqrt( this.distanceSqToPoint( point ) ); } distanceSqToPoint( point ) { const directionDistance = _vector$a.subVectors( point, this.origin ).dot( this.direction ); // point behind the ray if ( directionDistance < 0 ) { return this.origin.distanceToSquared( point ); } _vector$a.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); return _vector$a.distanceToSquared( point ); } distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment _segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 ); _segDir.copy( v1 ).sub( v0 ).normalize(); _diff.copy( this.origin ).sub( _segCenter ); const segExtent = v0.distanceTo( v1 ) * 0.5; const a01 = - this.direction.dot( _segDir ); const b0 = _diff.dot( this.direction ); const b1 = - _diff.dot( _segDir ); const c = _diff.lengthSq(); const det = Math.abs( 1 - a01 * a01 ); let s0, s1, sqrDist, extDet; if ( det > 0 ) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if ( s0 >= 0 ) { if ( s1 >= - extDet ) { if ( s1 <= extDet ) { // region 0 // Minimum at interior points of ray and segment. const invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; } else { // region 1 s1 = segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { // region 5 s1 = - segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { if ( s1 <= - extDet ) { // region 4 s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } else if ( s1 <= extDet ) { // region 3 s0 = 0; s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = s1 * ( s1 + 2 * b1 ) + c; } else { // region 2 s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } } else { // Ray and segment are parallel. s1 = ( a01 > 0 ) ? - segExtent : segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } if ( optionalPointOnRay ) { optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin ); } if ( optionalPointOnSegment ) { optionalPointOnSegment.copy( _segDir ).multiplyScalar( s1 ).add( _segCenter ); } return sqrDist; } intersectSphere( sphere, target ) { _vector$a.subVectors( sphere.center, this.origin ); const tca = _vector$a.dot( this.direction ); const d2 = _vector$a.dot( _vector$a ) - tca * tca; const radius2 = sphere.radius * sphere.radius; if ( d2 > radius2 ) return null; const thc = Math.sqrt( radius2 - d2 ); // t0 = first intersect point - entrance on front of sphere const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null if ( t0 < 0 && t1 < 0 ) return null; // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if ( t0 < 0 ) return this.at( t1, target ); // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at( t0, target ); } intersectsSphere( sphere ) { return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius ); } distanceToPlane( plane ) { const denominator = plane.normal.dot( this.direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( plane.distanceToPoint( this.origin ) === 0 ) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } const t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; } intersectPlane( plane, target ) { const t = this.distanceToPlane( plane ); if ( t === null ) { return null; } return this.at( t, target ); } intersectsPlane( plane ) { // check if the ray lies on the plane first const distToPoint = plane.distanceToPoint( this.origin ); if ( distToPoint === 0 ) { return true; } const denominator = plane.normal.dot( this.direction ); if ( denominator * distToPoint < 0 ) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; } intersectBox( box, target ) { let tmin, tmax, tymin, tymax, tzmin, tzmax; const invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; const origin = this.origin; if ( invdirx >= 0 ) { tmin = ( box.min.x - origin.x ) * invdirx; tmax = ( box.max.x - origin.x ) * invdirx; } else { tmin = ( box.max.x - origin.x ) * invdirx; tmax = ( box.min.x - origin.x ) * invdirx; } if ( invdiry >= 0 ) { tymin = ( box.min.y - origin.y ) * invdiry; tymax = ( box.max.y - origin.y ) * invdiry; } else { tymin = ( box.max.y - origin.y ) * invdiry; tymax = ( box.min.y - origin.y ) * invdiry; } if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null; // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if ( tymin > tmin || tmin !== tmin ) tmin = tymin; if ( tymax < tmax || tmax !== tmax ) tmax = tymax; if ( invdirz >= 0 ) { tzmin = ( box.min.z - origin.z ) * invdirz; tzmax = ( box.max.z - origin.z ) * invdirz; } else { tzmin = ( box.max.z - origin.z ) * invdirz; tzmax = ( box.min.z - origin.z ) * invdirz; } if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null; if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin; if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax; //return point closest to the ray (positive side) if ( tmax < 0 ) return null; return this.at( tmin >= 0 ? tmin : tmax, target ); } intersectsBox( box ) { return this.intersectBox( box, _vector$a ) !== null; } intersectTriangle( a, b, c, backfaceCulling, target ) { // Compute the offset origin, edges, and normal. // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h _edge1.subVectors( b, a ); _edge2.subVectors( c, a ); _normal$1.crossVectors( _edge1, _edge2 ); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) let DdN = this.direction.dot( _normal$1 ); let sign; if ( DdN > 0 ) { if ( backfaceCulling ) return null; sign = 1; } else if ( DdN < 0 ) { sign = - 1; DdN = - DdN; } else { return null; } _diff.subVectors( this.origin, a ); const DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) ); // b1 < 0, no intersection if ( DdQxE2 < 0 ) { return null; } const DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) ); // b2 < 0, no intersection if ( DdE1xQ < 0 ) { return null; } // b1+b2 > 1, no intersection if ( DdQxE2 + DdE1xQ > DdN ) { return null; } // Line intersects triangle, check if ray does. const QdN = - sign * _diff.dot( _normal$1 ); // t < 0, no intersection if ( QdN < 0 ) { return null; } // Ray intersects triangle. return this.at( QdN / DdN, target ); } applyMatrix4( matrix4 ) { this.origin.applyMatrix4( matrix4 ); this.direction.transformDirection( matrix4 ); return this; } equals( ray ) { return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); } clone() { return new this.constructor().copy( this ); } } class Matrix4 { constructor() { Matrix4.prototype.isMatrix4 = true; this.elements = [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ]; } set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { const te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; } identity() { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } clone() { return new Matrix4().fromArray( this.elements ); } copy( m ) { const te = this.elements; const me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ]; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ]; return this; } copyPosition( m ) { const te = this.elements, me = m.elements; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; return this; } setFromMatrix3( m ) { const me = m.elements; this.set( me[ 0 ], me[ 3 ], me[ 6 ], 0, me[ 1 ], me[ 4 ], me[ 7 ], 0, me[ 2 ], me[ 5 ], me[ 8 ], 0, 0, 0, 0, 1 ); return this; } extractBasis( xAxis, yAxis, zAxis ) { xAxis.setFromMatrixColumn( this, 0 ); yAxis.setFromMatrixColumn( this, 1 ); zAxis.setFromMatrixColumn( this, 2 ); return this; } makeBasis( xAxis, yAxis, zAxis ) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ); return this; } extractRotation( m ) { // this method does not support reflection matrices const te = this.elements; const me = m.elements; const scaleX = 1 / _v1$5.setFromMatrixColumn( m, 0 ).length(); const scaleY = 1 / _v1$5.setFromMatrixColumn( m, 1 ).length(); const scaleZ = 1 / _v1$5.setFromMatrixColumn( m, 2 ).length(); te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 3 ] = 0; te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 7 ] = 0; te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; te[ 11 ] = 0; te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; } makeRotationFromEuler( euler ) { const te = this.elements; const x = euler.x, y = euler.y, z = euler.z; const a = Math.cos( x ), b = Math.sin( x ); const c = Math.cos( y ), d = Math.sin( y ); const e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d; te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d; te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b; te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce - df * b; te[ 4 ] = - a * f; te[ 8 ] = de + cf * b; te[ 1 ] = cf + de * b; te[ 5 ] = a * e; te[ 9 ] = df - ce * b; te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = be * d - af; te[ 8 ] = ae * d + bf; te[ 1 ] = c * f; te[ 5 ] = bf * d + ae; te[ 9 ] = af * d - be; te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad; te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e; te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e; te[ 1 ] = ac * f + bd; te[ 5 ] = a * e; te[ 9 ] = ad * f - bc; te[ 2 ] = bc * f - ad; te[ 6 ] = b * e; te[ 10 ] = bd * f + ac; } // bottom row te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // last column te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; } makeRotationFromQuaternion( q ) { return this.compose( _zero, q, _one ); } lookAt( eye, target, up ) { const te = this.elements; _z.subVectors( eye, target ); if ( _z.lengthSq() === 0 ) { // eye and target are in the same position _z.z = 1; } _z.normalize(); _x.crossVectors( up, _z ); if ( _x.lengthSq() === 0 ) { // up and z are parallel if ( Math.abs( up.z ) === 1 ) { _z.x += 0.0001; } else { _z.z += 0.0001; } _z.normalize(); _x.crossVectors( up, _z ); } _x.normalize(); _y.crossVectors( _z, _x ); te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x; te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y; te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z; return this; } multiply( m ) { return this.multiplyMatrices( this, m ); } premultiply( m ) { return this.multiplyMatrices( m, this ); } multiplyMatrices( a, b ) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; } multiplyScalar( s ) { const te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; } determinant() { const te = this.elements; const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 ) ); } transpose() { const te = this.elements; let tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; } setPosition( x, y, z ) { const te = this.elements; if ( x.isVector3 ) { te[ 12 ] = x.x; te[ 13 ] = x.y; te[ 14 ] = x.z; } else { te[ 12 ] = x; te[ 13 ] = y; te[ 14 ] = z; } return this; } invert() { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm const te = this.elements, n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n41 = te[ 3 ], n12 = te[ 4 ], n22 = te[ 5 ], n32 = te[ 6 ], n42 = te[ 7 ], n13 = te[ 8 ], n23 = te[ 9 ], n33 = te[ 10 ], n43 = te[ 11 ], n14 = te[ 12 ], n24 = te[ 13 ], n34 = te[ 14 ], n44 = te[ 15 ], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); const detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv; te[ 4 ] = t12 * detInv; te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv; te[ 8 ] = t13 * detInv; te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv; te[ 12 ] = t14 * detInv; te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv; return this; } scale( v ) { const te = this.elements; const x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; } getMaxScaleOnAxis() { const te = this.elements; const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); } makeTranslation( x, y, z ) { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); return this; } makeRotationX( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; } makeRotationY( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1 ); return this; } makeRotationZ( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } makeRotationAxis( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp const c = Math.cos( angle ); const s = Math.sin( angle ); const t = 1 - c; const x = axis.x, y = axis.y, z = axis.z; const tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; } makeScale( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; } makeShear( xy, xz, yx, yz, zx, zy ) { this.set( 1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1 ); return this; } compose( position, quaternion, scale ) { const te = this.elements; const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; const x2 = x + x, y2 = y + y, z2 = z + z; const xx = x * x2, xy = x * y2, xz = x * z2; const yy = y * y2, yz = y * z2, zz = z * z2; const wx = w * x2, wy = w * y2, wz = w * z2; const sx = scale.x, sy = scale.y, sz = scale.z; te[ 0 ] = ( 1 - ( yy + zz ) ) * sx; te[ 1 ] = ( xy + wz ) * sx; te[ 2 ] = ( xz - wy ) * sx; te[ 3 ] = 0; te[ 4 ] = ( xy - wz ) * sy; te[ 5 ] = ( 1 - ( xx + zz ) ) * sy; te[ 6 ] = ( yz + wx ) * sy; te[ 7 ] = 0; te[ 8 ] = ( xz + wy ) * sz; te[ 9 ] = ( yz - wx ) * sz; te[ 10 ] = ( 1 - ( xx + yy ) ) * sz; te[ 11 ] = 0; te[ 12 ] = position.x; te[ 13 ] = position.y; te[ 14 ] = position.z; te[ 15 ] = 1; return this; } decompose( position, quaternion, scale ) { const te = this.elements; let sx = _v1$5.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); const sy = _v1$5.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); const sz = _v1$5.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale const det = this.determinant(); if ( det < 0 ) sx = - sx; position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ]; // scale the rotation part _m1$2.copy( this ); const invSX = 1 / sx; const invSY = 1 / sy; const invSZ = 1 / sz; _m1$2.elements[ 0 ] *= invSX; _m1$2.elements[ 1 ] *= invSX; _m1$2.elements[ 2 ] *= invSX; _m1$2.elements[ 4 ] *= invSY; _m1$2.elements[ 5 ] *= invSY; _m1$2.elements[ 6 ] *= invSY; _m1$2.elements[ 8 ] *= invSZ; _m1$2.elements[ 9 ] *= invSZ; _m1$2.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( _m1$2 ); scale.x = sx; scale.y = sy; scale.z = sz; return this; } makePerspective( left, right, top, bottom, near, far ) { const te = this.elements; const x = 2 * near / ( right - left ); const y = 2 * near / ( top - bottom ); const a = ( right + left ) / ( right - left ); const b = ( top + bottom ) / ( top - bottom ); const c = - ( far + near ) / ( far - near ); const d = - 2 * far * near / ( far - near ); te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; return this; } makeOrthographic( left, right, top, bottom, near, far ) { const te = this.elements; const w = 1.0 / ( right - left ); const h = 1.0 / ( top - bottom ); const p = 1.0 / ( far - near ); const x = ( right + left ) * w; const y = ( top + bottom ) * h; const z = ( far + near ) * p; te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; return this; } equals( matrix ) { const te = this.elements; const me = matrix.elements; for ( let i = 0; i < 16; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; } fromArray( array, offset = 0 ) { for ( let i = 0; i < 16; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; } toArray( array = [], offset = 0 ) { const te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ]; return array; } } const _v1$5 = /*@__PURE__*/ new Vector3(); const _m1$2 = /*@__PURE__*/ new Matrix4(); const _zero = /*@__PURE__*/ new Vector3( 0, 0, 0 ); const _one = /*@__PURE__*/ new Vector3( 1, 1, 1 ); const _x = /*@__PURE__*/ new Vector3(); const _y = /*@__PURE__*/ new Vector3(); const _z = /*@__PURE__*/ new Vector3(); const _matrix$1 = /*@__PURE__*/ new Matrix4(); const _quaternion$3 = /*@__PURE__*/ new Quaternion(); class Euler { constructor( x = 0, y = 0, z = 0, order = Euler.DefaultOrder ) { this.isEuler = true; this._x = x; this._y = y; this._z = z; this._order = order; } get x() { return this._x; } set x( value ) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y( value ) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z( value ) { this._z = value; this._onChangeCallback(); } get order() { return this._order; } set order( value ) { this._order = value; this._onChangeCallback(); } set( x, y, z, order = this._order ) { this._x = x; this._y = y; this._z = z; this._order = order; this._onChangeCallback(); return this; } clone() { return new this.constructor( this._x, this._y, this._z, this._order ); } copy( euler ) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this._onChangeCallback(); return this; } setFromRotationMatrix( m, order = this._order, update = true ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements; const m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; const m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; const m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; switch ( order ) { case 'XYZ': this._y = Math.asin( clamp$1( m13, - 1, 1 ) ); if ( Math.abs( m13 ) < 0.9999999 ) { this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 ); } else { this._x = Math.atan2( m32, m22 ); this._z = 0; } break; case 'YXZ': this._x = Math.asin( - clamp$1( m23, - 1, 1 ) ); if ( Math.abs( m23 ) < 0.9999999 ) { this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 ); } else { this._y = Math.atan2( - m31, m11 ); this._z = 0; } break; case 'ZXY': this._x = Math.asin( clamp$1( m32, - 1, 1 ) ); if ( Math.abs( m32 ) < 0.9999999 ) { this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 ); } else { this._y = 0; this._z = Math.atan2( m21, m11 ); } break; case 'ZYX': this._y = Math.asin( - clamp$1( m31, - 1, 1 ) ); if ( Math.abs( m31 ) < 0.9999999 ) { this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 ); } else { this._x = 0; this._z = Math.atan2( - m12, m22 ); } break; case 'YZX': this._z = Math.asin( clamp$1( m21, - 1, 1 ) ); if ( Math.abs( m21 ) < 0.9999999 ) { this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 ); } else { this._x = 0; this._y = Math.atan2( m13, m33 ); } break; case 'XZY': this._z = Math.asin( - clamp$1( m12, - 1, 1 ) ); if ( Math.abs( m12 ) < 0.9999999 ) { this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 ); } else { this._x = Math.atan2( - m23, m33 ); this._y = 0; } break; default: console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order ); } this._order = order; if ( update === true ) this._onChangeCallback(); return this; } setFromQuaternion( q, order, update ) { _matrix$1.makeRotationFromQuaternion( q ); return this.setFromRotationMatrix( _matrix$1, order, update ); } setFromVector3( v, order = this._order ) { return this.set( v.x, v.y, v.z, order ); } reorder( newOrder ) { // WARNING: this discards revolution information -bhouston _quaternion$3.setFromEuler( this ); return this.setFromQuaternion( _quaternion$3, newOrder ); } equals( euler ) { return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); } fromArray( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; this._onChangeCallback(); return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._order; return array; } _onChange( callback ) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} *[ Symbol.iterator ]() { yield this._x; yield this._y; yield this._z; yield this._order; } // @deprecated since r138, 02cf0df1cb4575d5842fef9c85bb5a89fe020d53 toVector3() { console.error( 'THREE.Euler: .toVector3() has been removed. Use Vector3.setFromEuler() instead' ); } } Euler.DefaultOrder = 'XYZ'; Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ]; class Layers { constructor() { this.mask = 1 | 0; } set( channel ) { this.mask = ( 1 << channel | 0 ) >>> 0; } enable( channel ) { this.mask |= 1 << channel | 0; } enableAll() { this.mask = 0xffffffff | 0; } toggle( channel ) { this.mask ^= 1 << channel | 0; } disable( channel ) { this.mask &= ~ ( 1 << channel | 0 ); } disableAll() { this.mask = 0; } test( layers ) { return ( this.mask & layers.mask ) !== 0; } isEnabled( channel ) { return ( this.mask & ( 1 << channel | 0 ) ) !== 0; } } let _object3DId = 0; const _v1$4 = /*@__PURE__*/ new Vector3(); const _q1 = /*@__PURE__*/ new Quaternion(); const _m1$1 = /*@__PURE__*/ new Matrix4(); const _target = /*@__PURE__*/ new Vector3(); const _position$3 = /*@__PURE__*/ new Vector3(); const _scale$2 = /*@__PURE__*/ new Vector3(); const _quaternion$2 = /*@__PURE__*/ new Quaternion(); const _xAxis = /*@__PURE__*/ new Vector3( 1, 0, 0 ); const _yAxis = /*@__PURE__*/ new Vector3( 0, 1, 0 ); const _zAxis = /*@__PURE__*/ new Vector3( 0, 0, 1 ); const _addedEvent = { type: 'added' }; const _removedEvent = { type: 'removed' }; class Object3D extends EventDispatcher { constructor() { super(); this.isObject3D = true; Object.defineProperty( this, 'id', { value: _object3DId ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'Object3D'; this.parent = null; this.children = []; this.up = Object3D.DefaultUp.clone(); const position = new Vector3(); const rotation = new Euler(); const quaternion = new Quaternion(); const scale = new Vector3( 1, 1, 1 ); function onRotationChange() { quaternion.setFromEuler( rotation, false ); } function onQuaternionChange() { rotation.setFromQuaternion( quaternion, undefined, false ); } rotation._onChange( onRotationChange ); quaternion._onChange( onQuaternionChange ); Object.defineProperties( this, { position: { configurable: true, enumerable: true, value: position }, rotation: { configurable: true, enumerable: true, value: rotation }, quaternion: { configurable: true, enumerable: true, value: quaternion }, scale: { configurable: true, enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } } ); this.matrix = new Matrix4(); this.matrixWorld = new Matrix4(); this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate; this.matrixWorldNeedsUpdate = false; this.layers = new Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.animations = []; this.userData = {}; } onBeforeRender( /* renderer, scene, camera, geometry, material, group */ ) {} onAfterRender( /* renderer, scene, camera, geometry, material, group */ ) {} applyMatrix4( matrix ) { if ( this.matrixAutoUpdate ) this.updateMatrix(); this.matrix.premultiply( matrix ); this.matrix.decompose( this.position, this.quaternion, this.scale ); } applyQuaternion( q ) { this.quaternion.premultiply( q ); return this; } setRotationFromAxisAngle( axis, angle ) { // assumes axis is normalized this.quaternion.setFromAxisAngle( axis, angle ); } setRotationFromEuler( euler ) { this.quaternion.setFromEuler( euler, true ); } setRotationFromMatrix( m ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix( m ); } setRotationFromQuaternion( q ) { // assumes q is normalized this.quaternion.copy( q ); } rotateOnAxis( axis, angle ) { // rotate object on axis in object space // axis is assumed to be normalized _q1.setFromAxisAngle( axis, angle ); this.quaternion.multiply( _q1 ); return this; } rotateOnWorldAxis( axis, angle ) { // rotate object on axis in world space // axis is assumed to be normalized // method assumes no rotated parent _q1.setFromAxisAngle( axis, angle ); this.quaternion.premultiply( _q1 ); return this; } rotateX( angle ) { return this.rotateOnAxis( _xAxis, angle ); } rotateY( angle ) { return this.rotateOnAxis( _yAxis, angle ); } rotateZ( angle ) { return this.rotateOnAxis( _zAxis, angle ); } translateOnAxis( axis, distance ) { // translate object by distance along axis in object space // axis is assumed to be normalized _v1$4.copy( axis ).applyQuaternion( this.quaternion ); this.position.add( _v1$4.multiplyScalar( distance ) ); return this; } translateX( distance ) { return this.translateOnAxis( _xAxis, distance ); } translateY( distance ) { return this.translateOnAxis( _yAxis, distance ); } translateZ( distance ) { return this.translateOnAxis( _zAxis, distance ); } localToWorld( vector ) { return vector.applyMatrix4( this.matrixWorld ); } worldToLocal( vector ) { return vector.applyMatrix4( _m1$1.copy( this.matrixWorld ).invert() ); } lookAt( x, y, z ) { // This method does not support objects having non-uniformly-scaled parent(s) if ( x.isVector3 ) { _target.copy( x ); } else { _target.set( x, y, z ); } const parent = this.parent; this.updateWorldMatrix( true, false ); _position$3.setFromMatrixPosition( this.matrixWorld ); if ( this.isCamera || this.isLight ) { _m1$1.lookAt( _position$3, _target, this.up ); } else { _m1$1.lookAt( _target, _position$3, this.up ); } this.quaternion.setFromRotationMatrix( _m1$1 ); if ( parent ) { _m1$1.extractRotation( parent.matrixWorld ); _q1.setFromRotationMatrix( _m1$1 ); this.quaternion.premultiply( _q1.invert() ); } } add( object ) { if ( arguments.length > 1 ) { for ( let i = 0; i < arguments.length; i ++ ) { this.add( arguments[ i ] ); } return this; } if ( object === this ) { console.error( 'THREE.Object3D.add: object can\'t be added as a child of itself.', object ); return this; } if ( object && object.isObject3D ) { if ( object.parent !== null ) { object.parent.remove( object ); } object.parent = this; this.children.push( object ); object.dispatchEvent( _addedEvent ); } else { console.error( 'THREE.Object3D.add: object not an instance of THREE.Object3D.', object ); } return this; } remove( object ) { if ( arguments.length > 1 ) { for ( let i = 0; i < arguments.length; i ++ ) { this.remove( arguments[ i ] ); } return this; } const index = this.children.indexOf( object ); if ( index !== - 1 ) { object.parent = null; this.children.splice( index, 1 ); object.dispatchEvent( _removedEvent ); } return this; } removeFromParent() { const parent = this.parent; if ( parent !== null ) { parent.remove( this ); } return this; } clear() { for ( let i = 0; i < this.children.length; i ++ ) { const object = this.children[ i ]; object.parent = null; object.dispatchEvent( _removedEvent ); } this.children.length = 0; return this; } attach( object ) { // adds object as a child of this, while maintaining the object's world transform // Note: This method does not support scene graphs having non-uniformly-scaled nodes(s) this.updateWorldMatrix( true, false ); _m1$1.copy( this.matrixWorld ).invert(); if ( object.parent !== null ) { object.parent.updateWorldMatrix( true, false ); _m1$1.multiply( object.parent.matrixWorld ); } object.applyMatrix4( _m1$1 ); this.add( object ); object.updateWorldMatrix( false, true ); return this; } getObjectById( id ) { return this.getObjectByProperty( 'id', id ); } getObjectByName( name ) { return this.getObjectByProperty( 'name', name ); } getObjectByProperty( name, value ) { if ( this[ name ] === value ) return this; for ( let i = 0, l = this.children.length; i < l; i ++ ) { const child = this.children[ i ]; const object = child.getObjectByProperty( name, value ); if ( object !== undefined ) { return object; } } return undefined; } getWorldPosition( target ) { this.updateWorldMatrix( true, false ); return target.setFromMatrixPosition( this.matrixWorld ); } getWorldQuaternion( target ) { this.updateWorldMatrix( true, false ); this.matrixWorld.decompose( _position$3, target, _scale$2 ); return target; } getWorldScale( target ) { this.updateWorldMatrix( true, false ); this.matrixWorld.decompose( _position$3, _quaternion$2, target ); return target; } getWorldDirection( target ) { this.updateWorldMatrix( true, false ); const e = this.matrixWorld.elements; return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize(); } raycast( /* raycaster, intersects */ ) {} traverse( callback ) { callback( this ); const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverse( callback ); } } traverseVisible( callback ) { if ( this.visible === false ) return; callback( this ); const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverseVisible( callback ); } } traverseAncestors( callback ) { const parent = this.parent; if ( parent !== null ) { callback( parent ); parent.traverseAncestors( callback ); } } updateMatrix() { this.matrix.compose( this.position, this.quaternion, this.scale ); this.matrixWorldNeedsUpdate = true; } updateMatrixWorld( force ) { if ( this.matrixAutoUpdate ) this.updateMatrix(); if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].updateMatrixWorld( force ); } } updateWorldMatrix( updateParents, updateChildren ) { const parent = this.parent; if ( updateParents === true && parent !== null ) { parent.updateWorldMatrix( true, false ); } if ( this.matrixAutoUpdate ) this.updateMatrix(); if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } // update children if ( updateChildren === true ) { const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].updateWorldMatrix( false, true ); } } } toJSON( meta ) { // meta is a string when called from JSON.stringify const isRootObject = ( meta === undefined || typeof meta === 'string' ); const output = {}; // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if ( isRootObject ) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {}, shapes: {}, skeletons: {}, animations: {}, nodes: {} }; output.metadata = { version: 4.5, type: 'Object', generator: 'Object3D.toJSON' }; } // standard Object3D serialization const object = {}; object.uuid = this.uuid; object.type = this.type; if ( this.name !== '' ) object.name = this.name; if ( this.castShadow === true ) object.castShadow = true; if ( this.receiveShadow === true ) object.receiveShadow = true; if ( this.visible === false ) object.visible = false; if ( this.frustumCulled === false ) object.frustumCulled = false; if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder; if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData; object.layers = this.layers.mask; object.matrix = this.matrix.toArray(); if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false; // object specific properties if ( this.isInstancedMesh ) { object.type = 'InstancedMesh'; object.count = this.count; object.instanceMatrix = this.instanceMatrix.toJSON(); if ( this.instanceColor !== null ) object.instanceColor = this.instanceColor.toJSON(); } // function serialize( library, element ) { if ( library[ element.uuid ] === undefined ) { library[ element.uuid ] = element.toJSON( meta ); } return element.uuid; } if ( this.isScene ) { if ( this.background ) { if ( this.background.isColor ) { object.background = this.background.toJSON(); } else if ( this.background.isTexture ) { object.background = this.background.toJSON( meta ).uuid; } } if ( this.environment && this.environment.isTexture && this.environment.isRenderTargetTexture !== true ) { object.environment = this.environment.toJSON( meta ).uuid; } } else if ( this.isMesh || this.isLine || this.isPoints ) { object.geometry = serialize( meta.geometries, this.geometry ); const parameters = this.geometry.parameters; if ( parameters !== undefined && parameters.shapes !== undefined ) { const shapes = parameters.shapes; if ( Array.isArray( shapes ) ) { for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; serialize( meta.shapes, shape ); } } else { serialize( meta.shapes, shapes ); } } } if ( this.isSkinnedMesh ) { object.bindMode = this.bindMode; object.bindMatrix = this.bindMatrix.toArray(); if ( this.skeleton !== undefined ) { serialize( meta.skeletons, this.skeleton ); object.skeleton = this.skeleton.uuid; } } if ( this.material !== undefined ) { if ( Array.isArray( this.material ) ) { const uuids = []; for ( let i = 0, l = this.material.length; i < l; i ++ ) { uuids.push( serialize( meta.materials, this.material[ i ] ) ); } object.material = uuids; } else { object.material = serialize( meta.materials, this.material ); } } // if ( this.children.length > 0 ) { object.children = []; for ( let i = 0; i < this.children.length; i ++ ) { object.children.push( this.children[ i ].toJSON( meta ).object ); } } // if ( this.animations.length > 0 ) { object.animations = []; for ( let i = 0; i < this.animations.length; i ++ ) { const animation = this.animations[ i ]; object.animations.push( serialize( meta.animations, animation ) ); } } if ( isRootObject ) { const geometries = extractFromCache( meta.geometries ); const materials = extractFromCache( meta.materials ); const textures = extractFromCache( meta.textures ); const images = extractFromCache( meta.images ); const shapes = extractFromCache( meta.shapes ); const skeletons = extractFromCache( meta.skeletons ); const animations = extractFromCache( meta.animations ); const nodes = extractFromCache( meta.nodes ); if ( geometries.length > 0 ) output.geometries = geometries; if ( materials.length > 0 ) output.materials = materials; if ( textures.length > 0 ) output.textures = textures; if ( images.length > 0 ) output.images = images; if ( shapes.length > 0 ) output.shapes = shapes; if ( skeletons.length > 0 ) output.skeletons = skeletons; if ( animations.length > 0 ) output.animations = animations; if ( nodes.length > 0 ) output.nodes = nodes; } output.object = object; return output; // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache( cache ) { const values = []; for ( const key in cache ) { const data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } } clone( recursive ) { return new this.constructor().copy( this, recursive ); } copy( source, recursive = true ) { this.name = source.name; this.up.copy( source.up ); this.position.copy( source.position ); this.rotation.order = source.rotation.order; this.quaternion.copy( source.quaternion ); this.scale.copy( source.scale ); this.matrix.copy( source.matrix ); this.matrixWorld.copy( source.matrixWorld ); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.layers.mask = source.layers.mask; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.userData = JSON.parse( JSON.stringify( source.userData ) ); if ( recursive === true ) { for ( let i = 0; i < source.children.length; i ++ ) { const child = source.children[ i ]; this.add( child.clone() ); } } return this; } } Object3D.DefaultUp = /*@__PURE__*/ new Vector3( 0, 1, 0 ); Object3D.DefaultMatrixAutoUpdate = true; const _v0$1 = /*@__PURE__*/ new Vector3(); const _v1$3 = /*@__PURE__*/ new Vector3(); const _v2$2 = /*@__PURE__*/ new Vector3(); const _v3$1 = /*@__PURE__*/ new Vector3(); const _vab = /*@__PURE__*/ new Vector3(); const _vac = /*@__PURE__*/ new Vector3(); const _vbc = /*@__PURE__*/ new Vector3(); const _vap = /*@__PURE__*/ new Vector3(); const _vbp = /*@__PURE__*/ new Vector3(); const _vcp = /*@__PURE__*/ new Vector3(); class Triangle { constructor( a = new Vector3(), b = new Vector3(), c = new Vector3() ) { this.a = a; this.b = b; this.c = c; } static getNormal( a, b, c, target ) { target.subVectors( c, b ); _v0$1.subVectors( a, b ); target.cross( _v0$1 ); const targetLengthSq = target.lengthSq(); if ( targetLengthSq > 0 ) { return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) ); } return target.set( 0, 0, 0 ); } // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html static getBarycoord( point, a, b, c, target ) { _v0$1.subVectors( c, a ); _v1$3.subVectors( b, a ); _v2$2.subVectors( point, a ); const dot00 = _v0$1.dot( _v0$1 ); const dot01 = _v0$1.dot( _v1$3 ); const dot02 = _v0$1.dot( _v2$2 ); const dot11 = _v1$3.dot( _v1$3 ); const dot12 = _v1$3.dot( _v2$2 ); const denom = ( dot00 * dot11 - dot01 * dot01 ); // collinear or singular triangle if ( denom === 0 ) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return target.set( - 2, - 1, - 1 ); } const invDenom = 1 / denom; const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; // barycentric coordinates must always sum to 1 return target.set( 1 - u - v, v, u ); } static containsPoint( point, a, b, c ) { this.getBarycoord( point, a, b, c, _v3$1 ); return ( _v3$1.x >= 0 ) && ( _v3$1.y >= 0 ) && ( ( _v3$1.x + _v3$1.y ) <= 1 ); } static getUV( point, p1, p2, p3, uv1, uv2, uv3, target ) { this.getBarycoord( point, p1, p2, p3, _v3$1 ); target.set( 0, 0 ); target.addScaledVector( uv1, _v3$1.x ); target.addScaledVector( uv2, _v3$1.y ); target.addScaledVector( uv3, _v3$1.z ); return target; } static isFrontFacing( a, b, c, direction ) { _v0$1.subVectors( c, b ); _v1$3.subVectors( a, b ); // strictly front facing return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false; } set( a, b, c ) { this.a.copy( a ); this.b.copy( b ); this.c.copy( c ); return this; } setFromPointsAndIndices( points, i0, i1, i2 ) { this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] ); return this; } setFromAttributeAndIndices( attribute, i0, i1, i2 ) { this.a.fromBufferAttribute( attribute, i0 ); this.b.fromBufferAttribute( attribute, i1 ); this.c.fromBufferAttribute( attribute, i2 ); return this; } clone() { return new this.constructor().copy( this ); } copy( triangle ) { this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c ); return this; } getArea() { _v0$1.subVectors( this.c, this.b ); _v1$3.subVectors( this.a, this.b ); return _v0$1.cross( _v1$3 ).length() * 0.5; } getMidpoint( target ) { return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); } getNormal( target ) { return Triangle.getNormal( this.a, this.b, this.c, target ); } getPlane( target ) { return target.setFromCoplanarPoints( this.a, this.b, this.c ); } getBarycoord( point, target ) { return Triangle.getBarycoord( point, this.a, this.b, this.c, target ); } getUV( point, uv1, uv2, uv3, target ) { return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target ); } containsPoint( point ) { return Triangle.containsPoint( point, this.a, this.b, this.c ); } isFrontFacing( direction ) { return Triangle.isFrontFacing( this.a, this.b, this.c, direction ); } intersectsBox( box ) { return box.intersectsTriangle( this ); } closestPointToPoint( p, target ) { const a = this.a, b = this.b, c = this.c; let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson, // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., // under the accompanying license; see chapter 5.1.5 for detailed explanation. // basically, we're distinguishing which of the voronoi regions of the triangle // the point lies in with the minimum amount of redundant computation. _vab.subVectors( b, a ); _vac.subVectors( c, a ); _vap.subVectors( p, a ); const d1 = _vab.dot( _vap ); const d2 = _vac.dot( _vap ); if ( d1 <= 0 && d2 <= 0 ) { // vertex region of A; barycentric coords (1, 0, 0) return target.copy( a ); } _vbp.subVectors( p, b ); const d3 = _vab.dot( _vbp ); const d4 = _vac.dot( _vbp ); if ( d3 >= 0 && d4 <= d3 ) { // vertex region of B; barycentric coords (0, 1, 0) return target.copy( b ); } const vc = d1 * d4 - d3 * d2; if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) { v = d1 / ( d1 - d3 ); // edge region of AB; barycentric coords (1-v, v, 0) return target.copy( a ).addScaledVector( _vab, v ); } _vcp.subVectors( p, c ); const d5 = _vab.dot( _vcp ); const d6 = _vac.dot( _vcp ); if ( d6 >= 0 && d5 <= d6 ) { // vertex region of C; barycentric coords (0, 0, 1) return target.copy( c ); } const vb = d5 * d2 - d1 * d6; if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) { w = d2 / ( d2 - d6 ); // edge region of AC; barycentric coords (1-w, 0, w) return target.copy( a ).addScaledVector( _vac, w ); } const va = d3 * d6 - d5 * d4; if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) { _vbc.subVectors( c, b ); w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) ); // edge region of BC; barycentric coords (0, 1-w, w) return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC } // face region const denom = 1 / ( va + vb + vc ); // u = va * denom v = vb * denom; w = vc * denom; return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w ); } equals( triangle ) { return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); } } let materialId = 0; class Material extends EventDispatcher { constructor() { super(); this.isMaterial = true; Object.defineProperty( this, 'id', { value: materialId ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'Material'; this.blending = NormalBlending; this.side = FrontSide; this.vertexColors = false; this.opacity = 1; this.transparent = false; this.blendSrc = SrcAlphaFactor; this.blendDst = OneMinusSrcAlphaFactor; this.blendEquation = AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.depthFunc = LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.stencilWriteMask = 0xff; this.stencilFunc = AlwaysStencilFunc; this.stencilRef = 0; this.stencilFuncMask = 0xff; this.stencilFail = KeepStencilOp; this.stencilZFail = KeepStencilOp; this.stencilZPass = KeepStencilOp; this.stencilWrite = false; this.clippingPlanes = null; this.clipIntersection = false; this.clipShadows = false; this.shadowSide = null; this.colorWrite = true; this.precision = null; // override the renderer's default precision for this material this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.dithering = false; this.alphaToCoverage = false; this.premultipliedAlpha = false; this.visible = true; this.toneMapped = true; this.userData = {}; this.version = 0; this._alphaTest = 0; } get alphaTest() { return this._alphaTest; } set alphaTest( value ) { if ( this._alphaTest > 0 !== value > 0 ) { this.version ++; } this._alphaTest = value; } onBuild( /* shaderobject, renderer */ ) {} onBeforeRender( /* renderer, scene, camera, geometry, object, group */ ) {} onBeforeCompile( /* shaderobject, renderer */ ) {} customProgramCacheKey() { return this.onBeforeCompile.toString(); } setValues( values ) { if ( values === undefined ) return; for ( const key in values ) { const newValue = values[ key ]; if ( newValue === undefined ) { console.warn( 'THREE.Material: \'' + key + '\' parameter is undefined.' ); continue; } // for backward compatibility if shading is set in the constructor if ( key === 'shading' ) { console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); this.flatShading = ( newValue === FlatShading ) ? true : false; continue; } const currentValue = this[ key ]; if ( currentValue === undefined ) { console.warn( 'THREE.' + this.type + ': \'' + key + '\' is not a property of this material.' ); continue; } if ( currentValue && currentValue.isColor ) { currentValue.set( newValue ); } else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) { currentValue.copy( newValue ); } else { this[ key ] = newValue; } } } toJSON( meta ) { const isRootObject = ( meta === undefined || typeof meta === 'string' ); if ( isRootObject ) { meta = { textures: {}, images: {} }; } const data = { metadata: { version: 4.5, type: 'Material', generator: 'Material.toJSON' } }; // standard Material serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.color && this.color.isColor ) data.color = this.color.getHex(); if ( this.roughness !== undefined ) data.roughness = this.roughness; if ( this.metalness !== undefined ) data.metalness = this.metalness; if ( this.sheen !== undefined ) data.sheen = this.sheen; if ( this.sheenColor && this.sheenColor.isColor ) data.sheenColor = this.sheenColor.getHex(); if ( this.sheenRoughness !== undefined ) data.sheenRoughness = this.sheenRoughness; if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex(); if ( this.emissiveIntensity && this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity; if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex(); if ( this.specularIntensity !== undefined ) data.specularIntensity = this.specularIntensity; if ( this.specularColor && this.specularColor.isColor ) data.specularColor = this.specularColor.getHex(); if ( this.shininess !== undefined ) data.shininess = this.shininess; if ( this.clearcoat !== undefined ) data.clearcoat = this.clearcoat; if ( this.clearcoatRoughness !== undefined ) data.clearcoatRoughness = this.clearcoatRoughness; if ( this.clearcoatMap && this.clearcoatMap.isTexture ) { data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid; } if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) { data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid; } if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) { data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid; data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); } if ( this.iridescence !== undefined ) data.iridescence = this.iridescence; if ( this.iridescenceIOR !== undefined ) data.iridescenceIOR = this.iridescenceIOR; if ( this.iridescenceThicknessRange !== undefined ) data.iridescenceThicknessRange = this.iridescenceThicknessRange; if ( this.iridescenceMap && this.iridescenceMap.isTexture ) { data.iridescenceMap = this.iridescenceMap.toJSON( meta ).uuid; } if ( this.iridescenceThicknessMap && this.iridescenceThicknessMap.isTexture ) { data.iridescenceThicknessMap = this.iridescenceThicknessMap.toJSON( meta ).uuid; } if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid; if ( this.matcap && this.matcap.isTexture ) data.matcap = this.matcap.toJSON( meta ).uuid; if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid; if ( this.lightMap && this.lightMap.isTexture ) { data.lightMap = this.lightMap.toJSON( meta ).uuid; data.lightMapIntensity = this.lightMapIntensity; } if ( this.aoMap && this.aoMap.isTexture ) { data.aoMap = this.aoMap.toJSON( meta ).uuid; data.aoMapIntensity = this.aoMapIntensity; } if ( this.bumpMap && this.bumpMap.isTexture ) { data.bumpMap = this.bumpMap.toJSON( meta ).uuid; data.bumpScale = this.bumpScale; } if ( this.normalMap && this.normalMap.isTexture ) { data.normalMap = this.normalMap.toJSON( meta ).uuid; data.normalMapType = this.normalMapType; data.normalScale = this.normalScale.toArray(); } if ( this.displacementMap && this.displacementMap.isTexture ) { data.displacementMap = this.displacementMap.toJSON( meta ).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid; if ( this.specularIntensityMap && this.specularIntensityMap.isTexture ) data.specularIntensityMap = this.specularIntensityMap.toJSON( meta ).uuid; if ( this.specularColorMap && this.specularColorMap.isTexture ) data.specularColorMap = this.specularColorMap.toJSON( meta ).uuid; if ( this.envMap && this.envMap.isTexture ) { data.envMap = this.envMap.toJSON( meta ).uuid; if ( this.combine !== undefined ) data.combine = this.combine; } if ( this.envMapIntensity !== undefined ) data.envMapIntensity = this.envMapIntensity; if ( this.reflectivity !== undefined ) data.reflectivity = this.reflectivity; if ( this.refractionRatio !== undefined ) data.refractionRatio = this.refractionRatio; if ( this.gradientMap && this.gradientMap.isTexture ) { data.gradientMap = this.gradientMap.toJSON( meta ).uuid; } if ( this.transmission !== undefined ) data.transmission = this.transmission; if ( this.transmissionMap && this.transmissionMap.isTexture ) data.transmissionMap = this.transmissionMap.toJSON( meta ).uuid; if ( this.thickness !== undefined ) data.thickness = this.thickness; if ( this.thicknessMap && this.thicknessMap.isTexture ) data.thicknessMap = this.thicknessMap.toJSON( meta ).uuid; if ( this.attenuationDistance !== undefined ) data.attenuationDistance = this.attenuationDistance; if ( this.attenuationColor !== undefined ) data.attenuationColor = this.attenuationColor.getHex(); if ( this.size !== undefined ) data.size = this.size; if ( this.shadowSide !== null ) data.shadowSide = this.shadowSide; if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation; if ( this.blending !== NormalBlending ) data.blending = this.blending; if ( this.side !== FrontSide ) data.side = this.side; if ( this.vertexColors ) data.vertexColors = true; if ( this.opacity < 1 ) data.opacity = this.opacity; if ( this.transparent === true ) data.transparent = this.transparent; data.depthFunc = this.depthFunc; data.depthTest = this.depthTest; data.depthWrite = this.depthWrite; data.colorWrite = this.colorWrite; data.stencilWrite = this.stencilWrite; data.stencilWriteMask = this.stencilWriteMask; data.stencilFunc = this.stencilFunc; data.stencilRef = this.stencilRef; data.stencilFuncMask = this.stencilFuncMask; data.stencilFail = this.stencilFail; data.stencilZFail = this.stencilZFail; data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial) if ( this.rotation !== undefined && this.rotation !== 0 ) data.rotation = this.rotation; if ( this.polygonOffset === true ) data.polygonOffset = true; if ( this.polygonOffsetFactor !== 0 ) data.polygonOffsetFactor = this.polygonOffsetFactor; if ( this.polygonOffsetUnits !== 0 ) data.polygonOffsetUnits = this.polygonOffsetUnits; if ( this.linewidth !== undefined && this.linewidth !== 1 ) data.linewidth = this.linewidth; if ( this.dashSize !== undefined ) data.dashSize = this.dashSize; if ( this.gapSize !== undefined ) data.gapSize = this.gapSize; if ( this.scale !== undefined ) data.scale = this.scale; if ( this.dithering === true ) data.dithering = true; if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest; if ( this.alphaToCoverage === true ) data.alphaToCoverage = this.alphaToCoverage; if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha; if ( this.wireframe === true ) data.wireframe = this.wireframe; if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth; if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap; if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin; if ( this.flatShading === true ) data.flatShading = this.flatShading; if ( this.visible === false ) data.visible = false; if ( this.toneMapped === false ) data.toneMapped = false; if ( this.fog === false ) data.fog = false; if ( JSON.stringify( this.userData ) !== '{}' ) data.userData = this.userData; // TODO: Copied from Object3D.toJSON function extractFromCache( cache ) { const values = []; for ( const key in cache ) { const data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } if ( isRootObject ) { const textures = extractFromCache( meta.textures ); const images = extractFromCache( meta.images ); if ( textures.length > 0 ) data.textures = textures; if ( images.length > 0 ) data.images = images; } return data; } clone() { return new this.constructor().copy( this ); } copy( source ) { this.name = source.name; this.blending = source.blending; this.side = source.side; this.vertexColors = source.vertexColors; this.opacity = source.opacity; this.transparent = source.transparent; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.stencilWriteMask = source.stencilWriteMask; this.stencilFunc = source.stencilFunc; this.stencilRef = source.stencilRef; this.stencilFuncMask = source.stencilFuncMask; this.stencilFail = source.stencilFail; this.stencilZFail = source.stencilZFail; this.stencilZPass = source.stencilZPass; this.stencilWrite = source.stencilWrite; const srcPlanes = source.clippingPlanes; let dstPlanes = null; if ( srcPlanes !== null ) { const n = srcPlanes.length; dstPlanes = new Array( n ); for ( let i = 0; i !== n; ++ i ) { dstPlanes[ i ] = srcPlanes[ i ].clone(); } } this.clippingPlanes = dstPlanes; this.clipIntersection = source.clipIntersection; this.clipShadows = source.clipShadows; this.shadowSide = source.shadowSide; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.dithering = source.dithering; this.alphaTest = source.alphaTest; this.alphaToCoverage = source.alphaToCoverage; this.premultipliedAlpha = source.premultipliedAlpha; this.visible = source.visible; this.toneMapped = source.toneMapped; this.userData = JSON.parse( JSON.stringify( source.userData ) ); return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } set needsUpdate( value ) { if ( value === true ) this.version ++; } } class MeshBasicMaterial extends Material { constructor( parameters ) { super(); this.isMeshBasicMaterial = true; this.type = 'MeshBasicMaterial'; this.color = new Color$2( 0xffffff ); // emissive this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.fog = source.fog; return this; } } const _vector$9 = /*@__PURE__*/ new Vector3(); const _vector2$1 = /*@__PURE__*/ new Vector2(); class BufferAttribute { constructor( array, itemSize, normalized ) { if ( Array.isArray( array ) ) { throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); } this.isBufferAttribute = true; this.name = ''; this.array = array; this.itemSize = itemSize; this.count = array !== undefined ? array.length / itemSize : 0; this.normalized = normalized === true; this.usage = StaticDrawUsage; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; } onUploadCallback() {} set needsUpdate( value ) { if ( value === true ) this.version ++; } setUsage( value ) { this.usage = value; return this; } copy( source ) { this.name = source.name; this.array = new source.array.constructor( source.array ); this.itemSize = source.itemSize; this.count = source.count; this.normalized = source.normalized; this.usage = source.usage; return this; } copyAt( index1, attribute, index2 ) { index1 *= this.itemSize; index2 *= attribute.itemSize; for ( let i = 0, l = this.itemSize; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; } copyArray( array ) { this.array.set( array ); return this; } copyColorsArray( colors ) { const array = this.array; let offset = 0; for ( let i = 0, l = colors.length; i < l; i ++ ) { let color = colors[ i ]; if ( color === undefined ) { console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i ); color = new Color$2(); } array[ offset ++ ] = color.r; array[ offset ++ ] = color.g; array[ offset ++ ] = color.b; } return this; } copyVector2sArray( vectors ) { const array = this.array; let offset = 0; for ( let i = 0, l = vectors.length; i < l; i ++ ) { let vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i ); vector = new Vector2(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; } return this; } copyVector3sArray( vectors ) { const array = this.array; let offset = 0; for ( let i = 0, l = vectors.length; i < l; i ++ ) { let vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i ); vector = new Vector3(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; } return this; } copyVector4sArray( vectors ) { const array = this.array; let offset = 0; for ( let i = 0, l = vectors.length; i < l; i ++ ) { let vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i ); vector = new Vector4(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; array[ offset ++ ] = vector.w; } return this; } applyMatrix3( m ) { if ( this.itemSize === 2 ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector2$1.fromBufferAttribute( this, i ); _vector2$1.applyMatrix3( m ); this.setXY( i, _vector2$1.x, _vector2$1.y ); } } else if ( this.itemSize === 3 ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.applyMatrix3( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } } return this; } applyMatrix4( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.applyMatrix4( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } applyNormalMatrix( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.applyNormalMatrix( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } transformDirection( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.transformDirection( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } set( value, offset = 0 ) { this.array.set( value, offset ); return this; } getX( index ) { return this.array[ index * this.itemSize ]; } setX( index, x ) { this.array[ index * this.itemSize ] = x; return this; } getY( index ) { return this.array[ index * this.itemSize + 1 ]; } setY( index, y ) { this.array[ index * this.itemSize + 1 ] = y; return this; } getZ( index ) { return this.array[ index * this.itemSize + 2 ]; } setZ( index, z ) { this.array[ index * this.itemSize + 2 ] = z; return this; } getW( index ) { return this.array[ index * this.itemSize + 3 ]; } setW( index, w ) { this.array[ index * this.itemSize + 3 ] = w; return this; } setXY( index, x, y ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; return this; } setXYZ( index, x, y, z ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; return this; } setXYZW( index, x, y, z, w ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; this.array[ index + 3 ] = w; return this; } onUpload( callback ) { this.onUploadCallback = callback; return this; } clone() { return new this.constructor( this.array, this.itemSize ).copy( this ); } toJSON() { const data = { itemSize: this.itemSize, type: this.array.constructor.name, array: Array.from( this.array ), normalized: this.normalized }; if ( this.name !== '' ) data.name = this.name; if ( this.usage !== StaticDrawUsage ) data.usage = this.usage; if ( this.updateRange.offset !== 0 || this.updateRange.count !== - 1 ) data.updateRange = this.updateRange; return data; } } class Uint16BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint16Array( array ), itemSize, normalized ); } } class Uint32BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint32Array( array ), itemSize, normalized ); } } class Float32BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Float32Array( array ), itemSize, normalized ); } } let _id$1 = 0; const _m1 = /*@__PURE__*/ new Matrix4(); const _obj = /*@__PURE__*/ new Object3D(); const _offset = /*@__PURE__*/ new Vector3(); const _box$1 = /*@__PURE__*/ new Box3(); const _boxMorphTargets = /*@__PURE__*/ new Box3(); const _vector$8 = /*@__PURE__*/ new Vector3(); class BufferGeometry extends EventDispatcher { constructor() { super(); this.isBufferGeometry = true; Object.defineProperty( this, 'id', { value: _id$1 ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'BufferGeometry'; this.index = null; this.attributes = {}; this.morphAttributes = {}; this.morphTargetsRelative = false; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; this.userData = {}; } getIndex() { return this.index; } setIndex( index ) { if ( Array.isArray( index ) ) { this.index = new ( arrayNeedsUint32( index ) ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 ); } else { this.index = index; } return this; } getAttribute( name ) { return this.attributes[ name ]; } setAttribute( name, attribute ) { this.attributes[ name ] = attribute; return this; } deleteAttribute( name ) { delete this.attributes[ name ]; return this; } hasAttribute( name ) { return this.attributes[ name ] !== undefined; } addGroup( start, count, materialIndex = 0 ) { this.groups.push( { start: start, count: count, materialIndex: materialIndex } ); } clearGroups() { this.groups = []; } setDrawRange( start, count ) { this.drawRange.start = start; this.drawRange.count = count; } applyMatrix4( matrix ) { const position = this.attributes.position; if ( position !== undefined ) { position.applyMatrix4( matrix ); position.needsUpdate = true; } const normal = this.attributes.normal; if ( normal !== undefined ) { const normalMatrix = new Matrix3().getNormalMatrix( matrix ); normal.applyNormalMatrix( normalMatrix ); normal.needsUpdate = true; } const tangent = this.attributes.tangent; if ( tangent !== undefined ) { tangent.transformDirection( matrix ); tangent.needsUpdate = true; } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } return this; } applyQuaternion( q ) { _m1.makeRotationFromQuaternion( q ); this.applyMatrix4( _m1 ); return this; } rotateX( angle ) { // rotate geometry around world x-axis _m1.makeRotationX( angle ); this.applyMatrix4( _m1 ); return this; } rotateY( angle ) { // rotate geometry around world y-axis _m1.makeRotationY( angle ); this.applyMatrix4( _m1 ); return this; } rotateZ( angle ) { // rotate geometry around world z-axis _m1.makeRotationZ( angle ); this.applyMatrix4( _m1 ); return this; } translate( x, y, z ) { // translate geometry _m1.makeTranslation( x, y, z ); this.applyMatrix4( _m1 ); return this; } scale( x, y, z ) { // scale geometry _m1.makeScale( x, y, z ); this.applyMatrix4( _m1 ); return this; } lookAt( vector ) { _obj.lookAt( vector ); _obj.updateMatrix(); this.applyMatrix4( _obj.matrix ); return this; } center() { this.computeBoundingBox(); this.boundingBox.getCenter( _offset ).negate(); this.translate( _offset.x, _offset.y, _offset.z ); return this; } setFromPoints( points ) { const position = []; for ( let i = 0, l = points.length; i < l; i ++ ) { const point = points[ i ]; position.push( point.x, point.y, point.z || 0 ); } this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) ); return this; } computeBoundingBox() { if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if ( position && position.isGLBufferAttribute ) { console.error( 'THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this ); this.boundingBox.set( new Vector3( - Infinity, - Infinity, - Infinity ), new Vector3( + Infinity, + Infinity, + Infinity ) ); return; } if ( position !== undefined ) { this.boundingBox.setFromBufferAttribute( position ); // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; _box$1.setFromBufferAttribute( morphAttribute ); if ( this.morphTargetsRelative ) { _vector$8.addVectors( this.boundingBox.min, _box$1.min ); this.boundingBox.expandByPoint( _vector$8 ); _vector$8.addVectors( this.boundingBox.max, _box$1.max ); this.boundingBox.expandByPoint( _vector$8 ); } else { this.boundingBox.expandByPoint( _box$1.min ); this.boundingBox.expandByPoint( _box$1.max ); } } } } else { this.boundingBox.makeEmpty(); } if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { console.error( 'THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ); } } computeBoundingSphere() { if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if ( position && position.isGLBufferAttribute ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this ); this.boundingSphere.set( new Vector3(), Infinity ); return; } if ( position ) { // first, find the center of the bounding sphere const center = this.boundingSphere.center; _box$1.setFromBufferAttribute( position ); // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; _boxMorphTargets.setFromBufferAttribute( morphAttribute ); if ( this.morphTargetsRelative ) { _vector$8.addVectors( _box$1.min, _boxMorphTargets.min ); _box$1.expandByPoint( _vector$8 ); _vector$8.addVectors( _box$1.max, _boxMorphTargets.max ); _box$1.expandByPoint( _vector$8 ); } else { _box$1.expandByPoint( _boxMorphTargets.min ); _box$1.expandByPoint( _boxMorphTargets.max ); } } } _box$1.getCenter( center ); // second, try to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case let maxRadiusSq = 0; for ( let i = 0, il = position.count; i < il; i ++ ) { _vector$8.fromBufferAttribute( position, i ); maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) ); } // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; const morphTargetsRelative = this.morphTargetsRelative; for ( let j = 0, jl = morphAttribute.count; j < jl; j ++ ) { _vector$8.fromBufferAttribute( morphAttribute, j ); if ( morphTargetsRelative ) { _offset.fromBufferAttribute( position, j ); _vector$8.add( _offset ); } maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) ); } } } this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); if ( isNaN( this.boundingSphere.radius ) ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ); } } } computeTangents() { const index = this.index; const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html // (per vertex tangents) if ( index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined ) { console.error( 'THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)' ); return; } const indices = index.array; const positions = attributes.position.array; const normals = attributes.normal.array; const uvs = attributes.uv.array; const nVertices = positions.length / 3; if ( this.hasAttribute( 'tangent' ) === false ) { this.setAttribute( 'tangent', new BufferAttribute( new Float32Array( 4 * nVertices ), 4 ) ); } const tangents = this.getAttribute( 'tangent' ).array; const tan1 = [], tan2 = []; for ( let i = 0; i < nVertices; i ++ ) { tan1[ i ] = new Vector3(); tan2[ i ] = new Vector3(); } const vA = new Vector3(), vB = new Vector3(), vC = new Vector3(), uvA = new Vector2(), uvB = new Vector2(), uvC = new Vector2(), sdir = new Vector3(), tdir = new Vector3(); function handleTriangle( a, b, c ) { vA.fromArray( positions, a * 3 ); vB.fromArray( positions, b * 3 ); vC.fromArray( positions, c * 3 ); uvA.fromArray( uvs, a * 2 ); uvB.fromArray( uvs, b * 2 ); uvC.fromArray( uvs, c * 2 ); vB.sub( vA ); vC.sub( vA ); uvB.sub( uvA ); uvC.sub( uvA ); const r = 1.0 / ( uvB.x * uvC.y - uvC.x * uvB.y ); // silently ignore degenerate uv triangles having coincident or colinear vertices if ( ! isFinite( r ) ) return; sdir.copy( vB ).multiplyScalar( uvC.y ).addScaledVector( vC, - uvB.y ).multiplyScalar( r ); tdir.copy( vC ).multiplyScalar( uvB.x ).addScaledVector( vB, - uvC.x ).multiplyScalar( r ); tan1[ a ].add( sdir ); tan1[ b ].add( sdir ); tan1[ c ].add( sdir ); tan2[ a ].add( tdir ); tan2[ b ].add( tdir ); tan2[ c ].add( tdir ); } let groups = this.groups; if ( groups.length === 0 ) { groups = [ { start: 0, count: indices.length } ]; } for ( let i = 0, il = groups.length; i < il; ++ i ) { const group = groups[ i ]; const start = group.start; const count = group.count; for ( let j = start, jl = start + count; j < jl; j += 3 ) { handleTriangle( indices[ j + 0 ], indices[ j + 1 ], indices[ j + 2 ] ); } } const tmp = new Vector3(), tmp2 = new Vector3(); const n = new Vector3(), n2 = new Vector3(); function handleVertex( v ) { n.fromArray( normals, v * 3 ); n2.copy( n ); const t = tan1[ v ]; // Gram-Schmidt orthogonalize tmp.copy( t ); tmp.sub( n.multiplyScalar( n.dot( t ) ) ).normalize(); // Calculate handedness tmp2.crossVectors( n2, t ); const test = tmp2.dot( tan2[ v ] ); const w = ( test < 0.0 ) ? - 1.0 : 1.0; tangents[ v * 4 ] = tmp.x; tangents[ v * 4 + 1 ] = tmp.y; tangents[ v * 4 + 2 ] = tmp.z; tangents[ v * 4 + 3 ] = w; } for ( let i = 0, il = groups.length; i < il; ++ i ) { const group = groups[ i ]; const start = group.start; const count = group.count; for ( let j = start, jl = start + count; j < jl; j += 3 ) { handleVertex( indices[ j + 0 ] ); handleVertex( indices[ j + 1 ] ); handleVertex( indices[ j + 2 ] ); } } } computeVertexNormals() { const index = this.index; const positionAttribute = this.getAttribute( 'position' ); if ( positionAttribute !== undefined ) { let normalAttribute = this.getAttribute( 'normal' ); if ( normalAttribute === undefined ) { normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 ); this.setAttribute( 'normal', normalAttribute ); } else { // reset existing normals to zero for ( let i = 0, il = normalAttribute.count; i < il; i ++ ) { normalAttribute.setXYZ( i, 0, 0, 0 ); } } const pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); const nA = new Vector3(), nB = new Vector3(), nC = new Vector3(); const cb = new Vector3(), ab = new Vector3(); // indexed elements if ( index ) { for ( let i = 0, il = index.count; i < il; i += 3 ) { const vA = index.getX( i + 0 ); const vB = index.getX( i + 1 ); const vC = index.getX( i + 2 ); pA.fromBufferAttribute( positionAttribute, vA ); pB.fromBufferAttribute( positionAttribute, vB ); pC.fromBufferAttribute( positionAttribute, vC ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); nA.fromBufferAttribute( normalAttribute, vA ); nB.fromBufferAttribute( normalAttribute, vB ); nC.fromBufferAttribute( normalAttribute, vC ); nA.add( cb ); nB.add( cb ); nC.add( cb ); normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z ); normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z ); normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z ); } } else { // non-indexed elements (unconnected triangle soup) for ( let i = 0, il = positionAttribute.count; i < il; i += 3 ) { pA.fromBufferAttribute( positionAttribute, i + 0 ); pB.fromBufferAttribute( positionAttribute, i + 1 ); pC.fromBufferAttribute( positionAttribute, i + 2 ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normalAttribute.setXYZ( i + 0, cb.x, cb.y, cb.z ); normalAttribute.setXYZ( i + 1, cb.x, cb.y, cb.z ); normalAttribute.setXYZ( i + 2, cb.x, cb.y, cb.z ); } } this.normalizeNormals(); normalAttribute.needsUpdate = true; } } merge( geometry, offset ) { if ( ! ( geometry && geometry.isBufferGeometry ) ) { console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry ); return; } if ( offset === undefined ) { offset = 0; console.warn( 'THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.' ); } const attributes = this.attributes; for ( const key in attributes ) { if ( geometry.attributes[ key ] === undefined ) continue; const attribute1 = attributes[ key ]; const attributeArray1 = attribute1.array; const attribute2 = geometry.attributes[ key ]; const attributeArray2 = attribute2.array; const attributeOffset = attribute2.itemSize * offset; const length = Math.min( attributeArray2.length, attributeArray1.length - attributeOffset ); for ( let i = 0, j = attributeOffset; i < length; i ++, j ++ ) { attributeArray1[ j ] = attributeArray2[ i ]; } } return this; } normalizeNormals() { const normals = this.attributes.normal; for ( let i = 0, il = normals.count; i < il; i ++ ) { _vector$8.fromBufferAttribute( normals, i ); _vector$8.normalize(); normals.setXYZ( i, _vector$8.x, _vector$8.y, _vector$8.z ); } } toNonIndexed() { function convertBufferAttribute( attribute, indices ) { const array = attribute.array; const itemSize = attribute.itemSize; const normalized = attribute.normalized; const array2 = new array.constructor( indices.length * itemSize ); let index = 0, index2 = 0; for ( let i = 0, l = indices.length; i < l; i ++ ) { if ( attribute.isInterleavedBufferAttribute ) { index = indices[ i ] * attribute.data.stride + attribute.offset; } else { index = indices[ i ] * itemSize; } for ( let j = 0; j < itemSize; j ++ ) { array2[ index2 ++ ] = array[ index ++ ]; } } return new BufferAttribute( array2, itemSize, normalized ); } // if ( this.index === null ) { console.warn( 'THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.' ); return this; } const geometry2 = new BufferGeometry(); const indices = this.index.array; const attributes = this.attributes; // attributes for ( const name in attributes ) { const attribute = attributes[ name ]; const newAttribute = convertBufferAttribute( attribute, indices ); geometry2.setAttribute( name, newAttribute ); } // morph attributes const morphAttributes = this.morphAttributes; for ( const name in morphAttributes ) { const morphArray = []; const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) { const attribute = morphAttribute[ i ]; const newAttribute = convertBufferAttribute( attribute, indices ); morphArray.push( newAttribute ); } geometry2.morphAttributes[ name ] = morphArray; } geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups const groups = this.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; geometry2.addGroup( group.start, group.count, group.materialIndex ); } return geometry2; } toJSON() { const data = { metadata: { version: 4.5, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } }; // standard BufferGeometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData; if ( this.parameters !== undefined ) { const parameters = this.parameters; for ( const key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } // for simplicity the code assumes attributes are not shared across geometries, see #15811 data.data = { attributes: {} }; const index = this.index; if ( index !== null ) { data.data.index = { type: index.array.constructor.name, array: Array.prototype.slice.call( index.array ) }; } const attributes = this.attributes; for ( const key in attributes ) { const attribute = attributes[ key ]; data.data.attributes[ key ] = attribute.toJSON( data.data ); } const morphAttributes = {}; let hasMorphAttributes = false; for ( const key in this.morphAttributes ) { const attributeArray = this.morphAttributes[ key ]; const array = []; for ( let i = 0, il = attributeArray.length; i < il; i ++ ) { const attribute = attributeArray[ i ]; array.push( attribute.toJSON( data.data ) ); } if ( array.length > 0 ) { morphAttributes[ key ] = array; hasMorphAttributes = true; } } if ( hasMorphAttributes ) { data.data.morphAttributes = morphAttributes; data.data.morphTargetsRelative = this.morphTargetsRelative; } const groups = this.groups; if ( groups.length > 0 ) { data.data.groups = JSON.parse( JSON.stringify( groups ) ); } const boundingSphere = this.boundingSphere; if ( boundingSphere !== null ) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; } clone() { return new this.constructor().copy( this ); } copy( source ) { // reset this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; // used for storing cloned, shared data const data = {}; // name this.name = source.name; // index const index = source.index; if ( index !== null ) { this.setIndex( index.clone( data ) ); } // attributes const attributes = source.attributes; for ( const name in attributes ) { const attribute = attributes[ name ]; this.setAttribute( name, attribute.clone( data ) ); } // morph attributes const morphAttributes = source.morphAttributes; for ( const name in morphAttributes ) { const array = []; const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes for ( let i = 0, l = morphAttribute.length; i < l; i ++ ) { array.push( morphAttribute[ i ].clone( data ) ); } this.morphAttributes[ name ] = array; } this.morphTargetsRelative = source.morphTargetsRelative; // groups const groups = source.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; this.addGroup( group.start, group.count, group.materialIndex ); } // bounding box const boundingBox = source.boundingBox; if ( boundingBox !== null ) { this.boundingBox = boundingBox.clone(); } // bounding sphere const boundingSphere = source.boundingSphere; if ( boundingSphere !== null ) { this.boundingSphere = boundingSphere.clone(); } // draw range this.drawRange.start = source.drawRange.start; this.drawRange.count = source.drawRange.count; // user data this.userData = source.userData; // geometry generator parameters if ( source.parameters !== undefined ) this.parameters = Object.assign( {}, source.parameters ); return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } } const _inverseMatrix$2 = /*@__PURE__*/ new Matrix4(); const _ray$2 = /*@__PURE__*/ new Ray(); const _sphere$3 = /*@__PURE__*/ new Sphere(); const _vA$1 = /*@__PURE__*/ new Vector3(); const _vB$1 = /*@__PURE__*/ new Vector3(); const _vC$1 = /*@__PURE__*/ new Vector3(); const _tempA = /*@__PURE__*/ new Vector3(); const _tempB = /*@__PURE__*/ new Vector3(); const _tempC = /*@__PURE__*/ new Vector3(); const _morphA = /*@__PURE__*/ new Vector3(); const _morphB = /*@__PURE__*/ new Vector3(); const _morphC = /*@__PURE__*/ new Vector3(); const _uvA$1 = /*@__PURE__*/ new Vector2(); const _uvB$1 = /*@__PURE__*/ new Vector2(); const _uvC$1 = /*@__PURE__*/ new Vector2(); const _intersectionPoint = /*@__PURE__*/ new Vector3(); const _intersectionPointWorld = /*@__PURE__*/ new Vector3(); class Mesh extends Object3D { constructor( geometry = new BufferGeometry(), material = new MeshBasicMaterial() ) { super(); this.isMesh = true; this.type = 'Mesh'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy( source, recursive ) { super.copy( source, recursive ); if ( source.morphTargetInfluences !== undefined ) { this.morphTargetInfluences = source.morphTargetInfluences.slice(); } if ( source.morphTargetDictionary !== undefined ) { this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary ); } this.material = source.material; this.geometry = source.geometry; return this; } updateMorphTargets() { const geometry = this.geometry; const morphAttributes = geometry.morphAttributes; const keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { const morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { const name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } raycast( raycaster, intersects ) { const geometry = this.geometry; const material = this.material; const matrixWorld = this.matrixWorld; if ( material === undefined ) return; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$3.copy( geometry.boundingSphere ); _sphere$3.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( _sphere$3 ) === false ) return; // _inverseMatrix$2.copy( matrixWorld ).invert(); _ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 ); // Check boundingBox before continuing if ( geometry.boundingBox !== null ) { if ( _ray$2.intersectsBox( geometry.boundingBox ) === false ) return; } let intersection; const index = geometry.index; const position = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; const uv = geometry.attributes.uv; const uv2 = geometry.attributes.uv2; const groups = geometry.groups; const drawRange = geometry.drawRange; if ( index !== null ) { // indexed buffer geometry if ( Array.isArray( material ) ) { for ( let i = 0, il = groups.length; i < il; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; const start = Math.max( group.start, drawRange.start ); const end = Math.min( index.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) ); for ( let j = start, jl = end; j < jl; j += 3 ) { const a = index.getX( j ); const b = index.getX( j + 1 ); const c = index.getX( j + 2 ); intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push( intersection ); } } } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, il = end; i < il; i += 3 ) { const a = index.getX( i ); const b = index.getX( i + 1 ); const c = index.getX( i + 2 ); intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics intersects.push( intersection ); } } } } else if ( position !== undefined ) { // non-indexed buffer geometry if ( Array.isArray( material ) ) { for ( let i = 0, il = groups.length; i < il; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; const start = Math.max( group.start, drawRange.start ); const end = Math.min( position.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) ); for ( let j = start, jl = end; j < jl; j += 3 ) { const a = j; const b = j + 1; const c = j + 2; intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push( intersection ); } } } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( position.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, il = end; i < il; i += 3 ) { const a = i; const b = i + 1; const c = i + 2; intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics intersects.push( intersection ); } } } } } } function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) { let intersect; if ( material.side === BackSide ) { intersect = ray.intersectTriangle( pC, pB, pA, true, point ); } else { intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point ); } if ( intersect === null ) return null; _intersectionPointWorld.copy( point ); _intersectionPointWorld.applyMatrix4( object.matrixWorld ); const distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld ); if ( distance < raycaster.near || distance > raycaster.far ) return null; return { distance: distance, point: _intersectionPointWorld.clone(), object: object }; } function checkBufferGeometryIntersection( object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ) { _vA$1.fromBufferAttribute( position, a ); _vB$1.fromBufferAttribute( position, b ); _vC$1.fromBufferAttribute( position, c ); const morphInfluences = object.morphTargetInfluences; if ( morphPosition && morphInfluences ) { _morphA.set( 0, 0, 0 ); _morphB.set( 0, 0, 0 ); _morphC.set( 0, 0, 0 ); for ( let i = 0, il = morphPosition.length; i < il; i ++ ) { const influence = morphInfluences[ i ]; const morphAttribute = morphPosition[ i ]; if ( influence === 0 ) continue; _tempA.fromBufferAttribute( morphAttribute, a ); _tempB.fromBufferAttribute( morphAttribute, b ); _tempC.fromBufferAttribute( morphAttribute, c ); if ( morphTargetsRelative ) { _morphA.addScaledVector( _tempA, influence ); _morphB.addScaledVector( _tempB, influence ); _morphC.addScaledVector( _tempC, influence ); } else { _morphA.addScaledVector( _tempA.sub( _vA$1 ), influence ); _morphB.addScaledVector( _tempB.sub( _vB$1 ), influence ); _morphC.addScaledVector( _tempC.sub( _vC$1 ), influence ); } } _vA$1.add( _morphA ); _vB$1.add( _morphB ); _vC$1.add( _morphC ); } if ( object.isSkinnedMesh ) { object.boneTransform( a, _vA$1 ); object.boneTransform( b, _vB$1 ); object.boneTransform( c, _vC$1 ); } const intersection = checkIntersection( object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint ); if ( intersection ) { if ( uv ) { _uvA$1.fromBufferAttribute( uv, a ); _uvB$1.fromBufferAttribute( uv, b ); _uvC$1.fromBufferAttribute( uv, c ); intersection.uv = Triangle.getUV( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ); } if ( uv2 ) { _uvA$1.fromBufferAttribute( uv2, a ); _uvB$1.fromBufferAttribute( uv2, b ); _uvC$1.fromBufferAttribute( uv2, c ); intersection.uv2 = Triangle.getUV( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ); } const face = { a: a, b: b, c: c, normal: new Vector3(), materialIndex: 0 }; Triangle.getNormal( _vA$1, _vB$1, _vC$1, face.normal ); intersection.face = face; } return intersection; } class BoxGeometry extends BufferGeometry { constructor( width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1 ) { super(); this.type = 'BoxGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; const scope = this; // segments widthSegments = Math.floor( widthSegments ); heightSegments = Math.floor( heightSegments ); depthSegments = Math.floor( depthSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let numberOfVertices = 0; let groupStart = 0; // build each side of the box geometry buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) { const segmentWidth = width / gridX; const segmentHeight = height / gridY; const widthHalf = width / 2; const heightHalf = height / 2; const depthHalf = depth / 2; const gridX1 = gridX + 1; const gridY1 = gridY + 1; let vertexCounter = 0; let groupCount = 0; const vector = new Vector3(); // generate vertices, normals and uvs for ( let iy = 0; iy < gridY1; iy ++ ) { const y = iy * segmentHeight - heightHalf; for ( let ix = 0; ix < gridX1; ix ++ ) { const x = ix * segmentWidth - widthHalf; // set values to correct vector component vector[ u ] = x * udir; vector[ v ] = y * vdir; vector[ w ] = depthHalf; // now apply vector to vertex buffer vertices.push( vector.x, vector.y, vector.z ); // set values to correct vector component vector[ u ] = 0; vector[ v ] = 0; vector[ w ] = depth > 0 ? 1 : - 1; // now apply vector to normal buffer normals.push( vector.x, vector.y, vector.z ); // uvs uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); // counters vertexCounter += 1; } } // indices // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for ( let iy = 0; iy < gridY; iy ++ ) { for ( let ix = 0; ix < gridX; ix ++ ) { const a = numberOfVertices + ix + gridX1 * iy; const b = numberOfVertices + ix + gridX1 * ( iy + 1 ); const c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 ); const d = numberOfVertices + ( ix + 1 ) + gridX1 * iy; // faces indices.push( a, b, d ); indices.push( b, c, d ); // increase counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, materialIndex ); // calculate new start value for groups groupStart += groupCount; // update total number of vertices numberOfVertices += vertexCounter; } } static fromJSON( data ) { return new BoxGeometry( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ); } } /** * Uniform Utilities */ function cloneUniforms( src ) { const dst = {}; for ( const u in src ) { dst[ u ] = {}; for ( const p in src[ u ] ) { const property = src[ u ][ p ]; if ( property && ( property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion ) ) { dst[ u ][ p ] = property.clone(); } else if ( Array.isArray( property ) ) { dst[ u ][ p ] = property.slice(); } else { dst[ u ][ p ] = property; } } } return dst; } function mergeUniforms( uniforms ) { const merged = {}; for ( let u = 0; u < uniforms.length; u ++ ) { const tmp = cloneUniforms( uniforms[ u ] ); for ( const p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; } function cloneUniformsGroups( src ) { const dst = []; for ( let u = 0; u < src.length; u ++ ) { dst.push( src[ u ].clone() ); } return dst; } // Legacy const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms }; var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}"; var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}"; class ShaderMaterial extends Material { constructor( parameters ) { super(); this.isShaderMaterial = true; this.type = 'ShaderMaterial'; this.defines = {}; this.uniforms = {}; this.uniformsGroups = []; this.vertexShader = default_vertex; this.fragmentShader = default_fragment; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.clipping = false; // set to use user-defined clipping planes this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD }; // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [ 1, 1, 1 ], 'uv': [ 0, 0 ], 'uv2': [ 0, 0 ] }; this.index0AttributeName = undefined; this.uniformsNeedUpdate = false; this.glslVersion = null; if ( parameters !== undefined ) { if ( parameters.attributes !== undefined ) { console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' ); } this.setValues( parameters ); } } copy( source ) { super.copy( source ); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = cloneUniforms( source.uniforms ); this.uniformsGroups = cloneUniformsGroups( source.uniformsGroups ); this.defines = Object.assign( {}, source.defines ); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.fog = source.fog; this.lights = source.lights; this.clipping = source.clipping; this.extensions = Object.assign( {}, source.extensions ); this.glslVersion = source.glslVersion; return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.glslVersion = this.glslVersion; data.uniforms = {}; for ( const name in this.uniforms ) { const uniform = this.uniforms[ name ]; const value = uniform.value; if ( value && value.isTexture ) { data.uniforms[ name ] = { type: 't', value: value.toJSON( meta ).uuid }; } else if ( value && value.isColor ) { data.uniforms[ name ] = { type: 'c', value: value.getHex() }; } else if ( value && value.isVector2 ) { data.uniforms[ name ] = { type: 'v2', value: value.toArray() }; } else if ( value && value.isVector3 ) { data.uniforms[ name ] = { type: 'v3', value: value.toArray() }; } else if ( value && value.isVector4 ) { data.uniforms[ name ] = { type: 'v4', value: value.toArray() }; } else if ( value && value.isMatrix3 ) { data.uniforms[ name ] = { type: 'm3', value: value.toArray() }; } else if ( value && value.isMatrix4 ) { data.uniforms[ name ] = { type: 'm4', value: value.toArray() }; } else { data.uniforms[ name ] = { value: value }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far } } if ( Object.keys( this.defines ).length > 0 ) data.defines = this.defines; data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; const extensions = {}; for ( const key in this.extensions ) { if ( this.extensions[ key ] === true ) extensions[ key ] = true; } if ( Object.keys( extensions ).length > 0 ) data.extensions = extensions; return data; } } class Camera extends Object3D { constructor() { super(); this.isCamera = true; this.type = 'Camera'; this.matrixWorldInverse = new Matrix4(); this.projectionMatrix = new Matrix4(); this.projectionMatrixInverse = new Matrix4(); } copy( source, recursive ) { super.copy( source, recursive ); this.matrixWorldInverse.copy( source.matrixWorldInverse ); this.projectionMatrix.copy( source.projectionMatrix ); this.projectionMatrixInverse.copy( source.projectionMatrixInverse ); return this; } getWorldDirection( target ) { this.updateWorldMatrix( true, false ); const e = this.matrixWorld.elements; return target.set( - e[ 8 ], - e[ 9 ], - e[ 10 ] ).normalize(); } updateMatrixWorld( force ) { super.updateMatrixWorld( force ); this.matrixWorldInverse.copy( this.matrixWorld ).invert(); } updateWorldMatrix( updateParents, updateChildren ) { super.updateWorldMatrix( updateParents, updateChildren ); this.matrixWorldInverse.copy( this.matrixWorld ).invert(); } clone() { return new this.constructor().copy( this ); } } class PerspectiveCamera extends Camera { constructor( fov = 50, aspect = 1, near = 0.1, far = 2000 ) { super(); this.isPerspectiveCamera = true; this.type = 'PerspectiveCamera'; this.fov = fov; this.zoom = 1; this.near = near; this.far = far; this.focus = 10; this.aspect = aspect; this.view = null; this.filmGauge = 35; // width of the film (default in millimeters) this.filmOffset = 0; // horizontal film offset (same unit as gauge) this.updateProjectionMatrix(); } copy( source, recursive ) { super.copy( source, recursive ); this.fov = source.fov; this.zoom = source.zoom; this.near = source.near; this.far = source.far; this.focus = source.focus; this.aspect = source.aspect; this.view = source.view === null ? null : Object.assign( {}, source.view ); this.filmGauge = source.filmGauge; this.filmOffset = source.filmOffset; return this; } /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength( focalLength ) { /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */ const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; this.fov = RAD2DEG * 2 * Math.atan( vExtentSlope ); this.updateProjectionMatrix(); } /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength() { const vExtentSlope = Math.tan( DEG2RAD * 0.5 * this.fov ); return 0.5 * this.getFilmHeight() / vExtentSlope; } getEffectiveFOV() { return RAD2DEG * 2 * Math.atan( Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom ); } getFilmWidth() { // film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min( this.aspect, 1 ); } getFilmHeight() { // film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max( this.aspect, 1 ); } /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * const w = 1920; * const h = 1080; * const fullWidth = w * 3; * const fullHeight = h * 2; * * --A-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset( fullWidth, fullHeight, x, y, width, height ) { this.aspect = fullWidth / fullHeight; if ( this.view === null ) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if ( this.view !== null ) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const near = this.near; let top = near * Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom; let height = 2 * top; let width = this.aspect * height; let left = - 0.5 * width; const view = this.view; if ( this.view !== null && this.view.enabled ) { const fullWidth = view.fullWidth, fullHeight = view.fullHeight; left += view.offsetX * width / fullWidth; top -= view.offsetY * height / fullHeight; width *= view.width / fullWidth; height *= view.height / fullHeight; } const skew = this.filmOffset; if ( skew !== 0 ) left += near * skew / this.getFilmWidth(); this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far ); this.projectionMatrixInverse.copy( this.projectionMatrix ).invert(); } toJSON( meta ) { const data = super.toJSON( meta ); data.object.fov = this.fov; data.object.zoom = this.zoom; data.object.near = this.near; data.object.far = this.far; data.object.focus = this.focus; data.object.aspect = this.aspect; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); data.object.filmGauge = this.filmGauge; data.object.filmOffset = this.filmOffset; return data; } } const fov = 90, aspect = 1; class CubeCamera extends Object3D { constructor( near, far, renderTarget ) { super(); this.type = 'CubeCamera'; if ( renderTarget.isWebGLCubeRenderTarget !== true ) { console.error( 'THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.' ); return; } this.renderTarget = renderTarget; const cameraPX = new PerspectiveCamera( fov, aspect, near, far ); cameraPX.layers = this.layers; cameraPX.up.set( 0, - 1, 0 ); cameraPX.lookAt( new Vector3( 1, 0, 0 ) ); this.add( cameraPX ); const cameraNX = new PerspectiveCamera( fov, aspect, near, far ); cameraNX.layers = this.layers; cameraNX.up.set( 0, - 1, 0 ); cameraNX.lookAt( new Vector3( - 1, 0, 0 ) ); this.add( cameraNX ); const cameraPY = new PerspectiveCamera( fov, aspect, near, far ); cameraPY.layers = this.layers; cameraPY.up.set( 0, 0, 1 ); cameraPY.lookAt( new Vector3( 0, 1, 0 ) ); this.add( cameraPY ); const cameraNY = new PerspectiveCamera( fov, aspect, near, far ); cameraNY.layers = this.layers; cameraNY.up.set( 0, 0, - 1 ); cameraNY.lookAt( new Vector3( 0, - 1, 0 ) ); this.add( cameraNY ); const cameraPZ = new PerspectiveCamera( fov, aspect, near, far ); cameraPZ.layers = this.layers; cameraPZ.up.set( 0, - 1, 0 ); cameraPZ.lookAt( new Vector3( 0, 0, 1 ) ); this.add( cameraPZ ); const cameraNZ = new PerspectiveCamera( fov, aspect, near, far ); cameraNZ.layers = this.layers; cameraNZ.up.set( 0, - 1, 0 ); cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) ); this.add( cameraNZ ); } update( renderer, scene ) { if ( this.parent === null ) this.updateMatrixWorld(); const renderTarget = this.renderTarget; const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = this.children; const currentRenderTarget = renderer.getRenderTarget(); const currentToneMapping = renderer.toneMapping; const currentXrEnabled = renderer.xr.enabled; renderer.toneMapping = NoToneMapping; renderer.xr.enabled = false; const generateMipmaps = renderTarget.texture.generateMipmaps; renderTarget.texture.generateMipmaps = false; renderer.setRenderTarget( renderTarget, 0 ); renderer.render( scene, cameraPX ); renderer.setRenderTarget( renderTarget, 1 ); renderer.render( scene, cameraNX ); renderer.setRenderTarget( renderTarget, 2 ); renderer.render( scene, cameraPY ); renderer.setRenderTarget( renderTarget, 3 ); renderer.render( scene, cameraNY ); renderer.setRenderTarget( renderTarget, 4 ); renderer.render( scene, cameraPZ ); renderTarget.texture.generateMipmaps = generateMipmaps; renderer.setRenderTarget( renderTarget, 5 ); renderer.render( scene, cameraNZ ); renderer.setRenderTarget( currentRenderTarget ); renderer.toneMapping = currentToneMapping; renderer.xr.enabled = currentXrEnabled; renderTarget.texture.needsPMREMUpdate = true; } } class CubeTexture extends Texture { constructor( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { images = images !== undefined ? images : []; mapping = mapping !== undefined ? mapping : CubeReflectionMapping; super( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.isCubeTexture = true; this.flipY = false; } get images() { return this.image; } set images( value ) { this.image = value; } } class WebGLCubeRenderTarget extends WebGLRenderTarget { constructor( size, options = {} ) { super( size, size, options ); this.isWebGLCubeRenderTarget = true; const image = { width: size, height: size, depth: 1 }; const images = [ image, image, image, image, image, image ]; this.texture = new CubeTexture( images, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding ); // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js) // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words, // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly. // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures). this.texture.isRenderTargetTexture = true; this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; } fromEquirectangularTexture( renderer, texture ) { this.texture.type = texture.type; this.texture.encoding = texture.encoding; this.texture.generateMipmaps = texture.generateMipmaps; this.texture.minFilter = texture.minFilter; this.texture.magFilter = texture.magFilter; const shader = { uniforms: { tEquirect: { value: null }, }, vertexShader: /* glsl */` varying vec3 vWorldDirection; vec3 transformDirection( in vec3 dir, in mat4 matrix ) { return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); } void main() { vWorldDirection = transformDirection( position, modelMatrix ); #include #include } `, fragmentShader: /* glsl */` uniform sampler2D tEquirect; varying vec3 vWorldDirection; #include void main() { vec3 direction = normalize( vWorldDirection ); vec2 sampleUV = equirectUv( direction ); gl_FragColor = texture2D( tEquirect, sampleUV ); } ` }; const geometry = new BoxGeometry( 5, 5, 5 ); const material = new ShaderMaterial( { name: 'CubemapFromEquirect', uniforms: cloneUniforms( shader.uniforms ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, side: BackSide, blending: NoBlending } ); material.uniforms.tEquirect.value = texture; const mesh = new Mesh( geometry, material ); const currentMinFilter = texture.minFilter; // Avoid blurred poles if ( texture.minFilter === LinearMipmapLinearFilter ) texture.minFilter = LinearFilter; const camera = new CubeCamera( 1, 10, this ); camera.update( renderer, mesh ); texture.minFilter = currentMinFilter; mesh.geometry.dispose(); mesh.material.dispose(); return this; } clear( renderer, color, depth, stencil ) { const currentRenderTarget = renderer.getRenderTarget(); for ( let i = 0; i < 6; i ++ ) { renderer.setRenderTarget( this, i ); renderer.clear( color, depth, stencil ); } renderer.setRenderTarget( currentRenderTarget ); } } const _vector1 = /*@__PURE__*/ new Vector3(); const _vector2 = /*@__PURE__*/ new Vector3(); const _normalMatrix = /*@__PURE__*/ new Matrix3(); class Plane { constructor( normal = new Vector3( 1, 0, 0 ), constant = 0 ) { this.isPlane = true; // normal is assumed to be normalized this.normal = normal; this.constant = constant; } set( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; } setComponents( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; } setFromNormalAndCoplanarPoint( normal, point ) { this.normal.copy( normal ); this.constant = - point.dot( this.normal ); return this; } setFromCoplanarPoints( a, b, c ) { const normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint( normal, a ); return this; } copy( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; } normalize() { // Note: will lead to a divide by zero if the plane is invalid. const inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; } negate() { this.constant *= - 1; this.normal.negate(); return this; } distanceToPoint( point ) { return this.normal.dot( point ) + this.constant; } distanceToSphere( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; } projectPoint( point, target ) { return target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point ); } intersectLine( line, target ) { const direction = line.delta( _vector1 ); const denominator = this.normal.dot( direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( this.distanceToPoint( line.start ) === 0 ) { return target.copy( line.start ); } // Unsure if this is the correct method to handle this case. return null; } const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return null; } return target.copy( direction ).multiplyScalar( t ).add( line.start ); } intersectsLine( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. const startSign = this.distanceToPoint( line.start ); const endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); } intersectsBox( box ) { return box.intersectsPlane( this ); } intersectsSphere( sphere ) { return sphere.intersectsPlane( this ); } coplanarPoint( target ) { return target.copy( this.normal ).multiplyScalar( - this.constant ); } applyMatrix4( matrix, optionalNormalMatrix ) { const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix ); const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix ); const normal = this.normal.applyMatrix3( normalMatrix ).normalize(); this.constant = - referencePoint.dot( normal ); return this; } translate( offset ) { this.constant -= offset.dot( this.normal ); return this; } equals( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); } clone() { return new this.constructor().copy( this ); } } const _sphere$2 = /*@__PURE__*/ new Sphere(); const _vector$7 = /*@__PURE__*/ new Vector3(); class Frustum { constructor( p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane() ) { this.planes = [ p0, p1, p2, p3, p4, p5 ]; } set( p0, p1, p2, p3, p4, p5 ) { const planes = this.planes; planes[ 0 ].copy( p0 ); planes[ 1 ].copy( p1 ); planes[ 2 ].copy( p2 ); planes[ 3 ].copy( p3 ); planes[ 4 ].copy( p4 ); planes[ 5 ].copy( p5 ); return this; } copy( frustum ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { planes[ i ].copy( frustum.planes[ i ] ); } return this; } setFromProjectionMatrix( m ) { const planes = this.planes; const me = m.elements; const me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; const me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; const me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; const me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); return this; } intersectsObject( object ) { const geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$2.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld ); return this.intersectsSphere( _sphere$2 ); } intersectsSprite( sprite ) { _sphere$2.center.set( 0, 0, 0 ); _sphere$2.radius = 0.7071067811865476; _sphere$2.applyMatrix4( sprite.matrixWorld ); return this.intersectsSphere( _sphere$2 ); } intersectsSphere( sphere ) { const planes = this.planes; const center = sphere.center; const negRadius = - sphere.radius; for ( let i = 0; i < 6; i ++ ) { const distance = planes[ i ].distanceToPoint( center ); if ( distance < negRadius ) { return false; } } return true; } intersectsBox( box ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { const plane = planes[ i ]; // corner at max distance _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x; _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y; _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z; if ( plane.distanceToPoint( _vector$7 ) < 0 ) { return false; } } return true; } containsPoint( point ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { if ( planes[ i ].distanceToPoint( point ) < 0 ) { return false; } } return true; } clone() { return new this.constructor().copy( this ); } } function WebGLAnimation() { let context = null; let isAnimating = false; let animationLoop = null; let requestId = null; function onAnimationFrame( time, frame ) { animationLoop( time, frame ); requestId = context.requestAnimationFrame( onAnimationFrame ); } return { start: function () { if ( isAnimating === true ) return; if ( animationLoop === null ) return; requestId = context.requestAnimationFrame( onAnimationFrame ); isAnimating = true; }, stop: function () { context.cancelAnimationFrame( requestId ); isAnimating = false; }, setAnimationLoop: function ( callback ) { animationLoop = callback; }, setContext: function ( value ) { context = value; } }; } function WebGLAttributes( gl, capabilities ) { const isWebGL2 = capabilities.isWebGL2; const buffers = new WeakMap(); function createBuffer( attribute, bufferType ) { const array = attribute.array; const usage = attribute.usage; const buffer = gl.createBuffer(); gl.bindBuffer( bufferType, buffer ); gl.bufferData( bufferType, array, usage ); attribute.onUploadCallback(); let type; if ( array instanceof Float32Array ) { type = 5126; } else if ( array instanceof Uint16Array ) { if ( attribute.isFloat16BufferAttribute ) { if ( isWebGL2 ) { type = 5131; } else { throw new Error( 'THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.' ); } } else { type = 5123; } } else if ( array instanceof Int16Array ) { type = 5122; } else if ( array instanceof Uint32Array ) { type = 5125; } else if ( array instanceof Int32Array ) { type = 5124; } else if ( array instanceof Int8Array ) { type = 5120; } else if ( array instanceof Uint8Array ) { type = 5121; } else if ( array instanceof Uint8ClampedArray ) { type = 5121; } else { throw new Error( 'THREE.WebGLAttributes: Unsupported buffer data format: ' + array ); } return { buffer: buffer, type: type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version }; } function updateBuffer( buffer, attribute, bufferType ) { const array = attribute.array; const updateRange = attribute.updateRange; gl.bindBuffer( bufferType, buffer ); if ( updateRange.count === - 1 ) { // Not using update ranges gl.bufferSubData( bufferType, 0, array ); } else { if ( isWebGL2 ) { gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count ); } else { gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) ); } updateRange.count = - 1; // reset range } } // function get( attribute ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; return buffers.get( attribute ); } function remove( attribute ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; const data = buffers.get( attribute ); if ( data ) { gl.deleteBuffer( data.buffer ); buffers.delete( attribute ); } } function update( attribute, bufferType ) { if ( attribute.isGLBufferAttribute ) { const cached = buffers.get( attribute ); if ( ! cached || cached.version < attribute.version ) { buffers.set( attribute, { buffer: attribute.buffer, type: attribute.type, bytesPerElement: attribute.elementSize, version: attribute.version } ); } return; } if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; const data = buffers.get( attribute ); if ( data === undefined ) { buffers.set( attribute, createBuffer( attribute, bufferType ) ); } else if ( data.version < attribute.version ) { updateBuffer( data.buffer, attribute, bufferType ); data.version = attribute.version; } } return { get: get, remove: remove, update: update }; } class PlaneGeometry extends BufferGeometry { constructor( width = 1, height = 1, widthSegments = 1, heightSegments = 1 ) { super(); this.type = 'PlaneGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; const width_half = width / 2; const height_half = height / 2; const gridX = Math.floor( widthSegments ); const gridY = Math.floor( heightSegments ); const gridX1 = gridX + 1; const gridY1 = gridY + 1; const segment_width = width / gridX; const segment_height = height / gridY; // const indices = []; const vertices = []; const normals = []; const uvs = []; for ( let iy = 0; iy < gridY1; iy ++ ) { const y = iy * segment_height - height_half; for ( let ix = 0; ix < gridX1; ix ++ ) { const x = ix * segment_width - width_half; vertices.push( x, - y, 0 ); normals.push( 0, 0, 1 ); uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); } } for ( let iy = 0; iy < gridY; iy ++ ) { for ( let ix = 0; ix < gridX; ix ++ ) { const a = ix + gridX1 * iy; const b = ix + gridX1 * ( iy + 1 ); const c = ( ix + 1 ) + gridX1 * ( iy + 1 ); const d = ( ix + 1 ) + gridX1 * iy; indices.push( a, b, d ); indices.push( b, c, d ); } } this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } static fromJSON( data ) { return new PlaneGeometry( data.width, data.height, data.widthSegments, data.heightSegments ); } } var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif"; var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var alphatest_fragment = "#ifdef USE_ALPHATEST\n\tif ( diffuseColor.a < alphaTest ) discard;\n#endif"; var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif"; var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif"; var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif"; var begin_vertex = "vec3 transformed = vec3( position );"; var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif"; var bsdfs = "vec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat F_Schlick( const in float f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nvec3 Schlick_to_F0( const in vec3 f, const in float f90, const in float dotVH ) {\n float x = clamp( 1.0 - dotVH, 0.0, 1.0 );\n float x2 = x * x;\n float x5 = clamp( x * x2 * x2, 0.0, 0.9999 );\n return ( f - vec3( f90 ) * x5 ) / ( 1.0 - x5 );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\n#ifdef USE_IRIDESCENCE\n\tvec3 BRDF_GGX_Iridescence( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float iridescence, const in vec3 iridescenceFresnel, const in float roughness ) {\n\t\tfloat alpha = pow2( roughness );\n\t\tvec3 halfDir = normalize( lightDir + viewDir );\n\t\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\t\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\t\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\t\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\t\tvec3 F = mix( F_Schlick( f0, f90, dotVH ), iridescenceFresnel, iridescence );\n\t\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\t\tfloat D = D_GGX( alpha, dotNH );\n\t\treturn F * ( V * D );\n\t}\n#endif\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenColor * ( D * V );\n}\n#endif"; var iridescence_fragment = "#ifdef USE_IRIDESCENCE\n\tconst mat3 XYZ_TO_REC709 = mat3(\n\t\t 3.2404542, -0.9692660, 0.0556434,\n\t\t-1.5371385, 1.8760108, -0.2040259,\n\t\t-0.4985314, 0.0415560, 1.0572252\n\t);\n\tvec3 Fresnel0ToIor( vec3 fresnel0 ) {\n\t\tvec3 sqrtF0 = sqrt( fresnel0 );\n\t\treturn ( vec3( 1.0 ) + sqrtF0 ) / ( vec3( 1.0 ) - sqrtF0 );\n\t}\n\tvec3 IorToFresnel0( vec3 transmittedIor, float incidentIor ) {\n\t\treturn pow2( ( transmittedIor - vec3( incidentIor ) ) / ( transmittedIor + vec3( incidentIor ) ) );\n\t}\n\tfloat IorToFresnel0( float transmittedIor, float incidentIor ) {\n\t\treturn pow2( ( transmittedIor - incidentIor ) / ( transmittedIor + incidentIor ));\n\t}\n\tvec3 evalSensitivity( float OPD, vec3 shift ) {\n\t\tfloat phase = 2.0 * PI * OPD * 1.0e-9;\n\t\tvec3 val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 );\n\t\tvec3 pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 );\n\t\tvec3 var = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 );\n\t\tvec3 xyz = val * sqrt( 2.0 * PI * var ) * cos( pos * phase + shift ) * exp( - pow2( phase ) * var );\n\t\txyz.x += 9.7470e-14 * sqrt( 2.0 * PI * 4.5282e+09 ) * cos( 2.2399e+06 * phase + shift[ 0 ] ) * exp( - 4.5282e+09 * pow2( phase ) );\n\t\txyz /= 1.0685e-7;\n\t\tvec3 rgb = XYZ_TO_REC709 * xyz;\n\t\treturn rgb;\n\t}\n\tvec3 evalIridescence( float outsideIOR, float eta2, float cosTheta1, float thinFilmThickness, vec3 baseF0 ) {\n\t\tvec3 I;\n\t\tfloat iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) );\n\t\tfloat sinTheta2Sq = pow2( outsideIOR / iridescenceIOR ) * ( 1.0 - pow2( cosTheta1 ) );\n\t\tfloat cosTheta2Sq = 1.0 - sinTheta2Sq;\n\t\tif ( cosTheta2Sq < 0.0 ) {\n\t\t\t return vec3( 1.0 );\n\t\t}\n\t\tfloat cosTheta2 = sqrt( cosTheta2Sq );\n\t\tfloat R0 = IorToFresnel0( iridescenceIOR, outsideIOR );\n\t\tfloat R12 = F_Schlick( R0, 1.0, cosTheta1 );\n\t\tfloat R21 = R12;\n\t\tfloat T121 = 1.0 - R12;\n\t\tfloat phi12 = 0.0;\n\t\tif ( iridescenceIOR < outsideIOR ) phi12 = PI;\n\t\tfloat phi21 = PI - phi12;\n\t\tvec3 baseIOR = Fresnel0ToIor( clamp( baseF0, 0.0, 0.9999 ) );\t\tvec3 R1 = IorToFresnel0( baseIOR, iridescenceIOR );\n\t\tvec3 R23 = F_Schlick( R1, 1.0, cosTheta2 );\n\t\tvec3 phi23 = vec3( 0.0 );\n\t\tif ( baseIOR[ 0 ] < iridescenceIOR ) phi23[ 0 ] = PI;\n\t\tif ( baseIOR[ 1 ] < iridescenceIOR ) phi23[ 1 ] = PI;\n\t\tif ( baseIOR[ 2 ] < iridescenceIOR ) phi23[ 2 ] = PI;\n\t\tfloat OPD = 2.0 * iridescenceIOR * thinFilmThickness * cosTheta2;\n\t\tvec3 phi = vec3( phi21 ) + phi23;\n\t\tvec3 R123 = clamp( R12 * R23, 1e-5, 0.9999 );\n\t\tvec3 r123 = sqrt( R123 );\n\t\tvec3 Rs = pow2( T121 ) * R23 / ( vec3( 1.0 ) - R123 );\n\t\tvec3 C0 = R12 + Rs;\n\t\tI = C0;\n\t\tvec3 Cm = Rs - T121;\n\t\tfor ( int m = 1; m <= 2; ++ m ) {\n\t\t\tCm *= r123;\n\t\t\tvec3 Sm = 2.0 * evalSensitivity( float( m ) * OPD, float( m ) * phi );\n\t\t\tI += Cm * Sm;\n\t\t}\n\t\treturn max( I, vec3( 0.0 ) );\n\t}\n#endif"; var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = dFdx( surf_pos.xyz );\n\t\tvec3 vSigmaY = dFdy( surf_pos.xyz );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif"; var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif"; var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif"; var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif"; var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif"; var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif"; var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif"; var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif"; var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif"; var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nvec3 pow2( const in vec3 x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat luminance( const in vec3 rgb ) {\n\tconst vec3 weights = vec3( 0.2126729, 0.7151522, 0.0721750 );\n\treturn dot( weights, rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}"; var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 2.0 ) + 1.0;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tuv.x += filterInt * 3.0 * cubeUV_minTileSize;\n\t\tuv.y += 4.0 * ( exp2( CUBEUV_MAX_MIP ) - faceSize );\n\t\tuv.x *= CUBEUV_TEXEL_WIDTH;\n\t\tuv.y *= CUBEUV_TEXEL_HEIGHT;\n\t\t#ifdef texture2DGradEXT\n\t\t\treturn texture2DGradEXT( envMap, uv, vec2( 0.0 ), vec2( 0.0 ) ).rgb;\n\t\t#else\n\t\t\treturn texture2D( envMap, uv ).rgb;\n\t\t#endif\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, CUBEUV_MAX_MIP );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif"; var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif"; var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif"; var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif"; var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif"; var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif"; var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );"; var encodings_pars_fragment = "vec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}"; var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif"; var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif"; var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif"; var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif"; var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif"; var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif"; var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif"; var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif"; var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif"; var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn vec3( texture2D( gradientMap, coord ).r );\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}"; var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif"; var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif"; var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry.normal );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry.normal );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry.normal );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif"; var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif"; var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec = reflect( - viewDir, normal );\n\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif"; var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;"; var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)"; var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;"; var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)"; var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularColorFactor = specularColor;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARCOLORMAP\n\t\t\tspecularColorFactor *= texture2D( specularColorMap, vUv ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularColorFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_IRIDESCENCE\n\tmaterial.iridescence = iridescence;\n\tmaterial.iridescenceIOR = iridescenceIOR;\n\t#ifdef USE_IRIDESCENCEMAP\n\t\tmaterial.iridescence *= texture2D( iridescenceMap, vUv ).r;\n\t#endif\n\t#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\t\tmaterial.iridescenceThickness = (iridescenceThicknessMaximum - iridescenceThicknessMinimum) * texture2D( iridescenceThicknessMap, vUv ).g + iridescenceThicknessMinimum;\n\t#else\n\t\tmaterial.iridescenceThickness = iridescenceThicknessMaximum;\n\t#endif\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheenColor;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tmaterial.sheenColor *= texture2D( sheenColorMap, vUv ).rgb;\n\t#endif\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tmaterial.sheenRoughness *= texture2D( sheenRoughnessMap, vUv ).a;\n\t#endif\n#endif"; var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_IRIDESCENCE\n\t\tfloat iridescence;\n\t\tfloat iridescenceIOR;\n\t\tfloat iridescenceThickness;\n\t\tvec3 iridescenceFresnel;\n\t\tvec3 iridescenceF0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenColor;\n\t\tfloat sheenRoughness;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec3 sheenSpecular = vec3( 0.0 );\nfloat IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat r2 = roughness * roughness;\n\tfloat a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;\n\tfloat b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;\n\tfloat DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );\n\treturn saturate( DG * RECIPROCAL_PI );\n}\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\n#ifdef USE_IRIDESCENCE\nvoid computeMultiscatteringIridescence( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float iridescence, const in vec3 iridescenceF0, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#else\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#endif\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\t#ifdef USE_IRIDESCENCE\n\t\tvec3 Fr = mix( specularColor, iridescenceF0, iridescence );\n\t#else\n\t\tvec3 Fr = specularColor;\n\t#endif\n\tvec3 FssEss = Fr * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = Fr + ( 1.0 - Fr ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenColor, material.sheenRoughness );\n\t#endif\n\t#ifdef USE_IRIDESCENCE\n\t\treflectedLight.directSpecular += irradiance * BRDF_GGX_Iridescence( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness );\n\t#else\n\t\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * material.sheenColor * IBLSheenBRDF( geometry.normal, geometry.viewDir, material.sheenRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\t#ifdef USE_IRIDESCENCE\n\t\tcomputeMultiscatteringIridescence( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness, singleScattering, multiScattering );\n\t#else\n\t\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\t#endif\n\tvec3 totalScattering = singleScattering + multiScattering;\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - max( max( totalScattering.r, totalScattering.g ), totalScattering.b ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}"; var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\n#ifdef USE_IRIDESCENCE\n\tfloat dotNVi = saturate( dot( normal, geometry.viewDir ) );\n\tif ( material.iridescenceThickness == 0.0 ) {\n\t\tmaterial.iridescence = 0.0;\n\t} else {\n\t\tmaterial.iridescence = saturate( material.iridescence );\n\t}\n\tif ( material.iridescence > 0.0 ) {\n\t\tmaterial.iridescenceFresnel = evalIridescence( 1.0, material.iridescenceIOR, dotNVi, material.iridescenceThickness, material.specularColor );\n\t\tmaterial.iridescenceF0 = Schlick_to_F0( material.iridescenceFresnel, 1.0, dotNVi );\n\t}\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry.normal );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif"; var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry.normal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif"; var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif"; var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif"; var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif"; var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif"; var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif"; var map_fragment = "#ifdef USE_MAP\n\tvec4 sampledDiffuseColor = texture2D( map, vUv );\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\tsampledDiffuseColor = vec4( mix( pow( sampledDiffuseColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), sampledDiffuseColor.rgb * 0.0773993808, vec3( lessThanEqual( sampledDiffuseColor.rgb, vec3( 0.04045 ) ) ) ), sampledDiffuseColor.w );\n\t#endif\n\tdiffuseColor *= sampledDiffuseColor;\n#endif"; var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif"; var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tdiffuseColor *= texture2D( map, uv );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif"; var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif"; var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif"; var morphcolor_vertex = "#if defined( USE_MORPHCOLORS ) && defined( MORPHTARGETS_TEXTURE )\n\tvColor *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t#if defined( USE_COLOR_ALPHA )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ) * morphTargetInfluences[ i ];\n\t\t#elif defined( USE_COLOR )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ).rgb * morphTargetInfluences[ i ];\n\t\t#endif\n\t}\n#endif"; var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1 ).xyz * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\t\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\t\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\t\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n\t#endif\n#endif"; var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t\tuniform sampler2DArray morphTargetsTexture;\n\t\tuniform ivec2 morphTargetsTextureSize;\n\t\tvec4 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset ) {\n\t\t\tint texelIndex = vertexIndex * MORPHTARGETS_TEXTURE_STRIDE + offset;\n\t\t\tint y = texelIndex / morphTargetsTextureSize.x;\n\t\t\tint x = texelIndex - y * morphTargetsTextureSize.x;\n\t\t\tivec3 morphUV = ivec3( x, y, morphTargetIndex );\n\t\t\treturn texelFetch( morphTargetsTexture, morphUV, 0 );\n\t\t}\n\t#else\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\tuniform float morphTargetInfluences[ 8 ];\n\t\t#else\n\t\t\tuniform float morphTargetInfluences[ 4 ];\n\t\t#endif\n\t#endif\n#endif"; var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0 ).xyz * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\t\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\t\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\t\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t\t#endif\n\t#endif\n#endif"; var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;"; var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif"; var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif"; var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = dFdx( eye_pos.xyz );\n\t\tvec3 q1 = dFdy( eye_pos.xyz );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif"; var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif"; var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif"; var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif"; var iridescence_pars_fragment = "#ifdef USE_IRIDESCENCEMAP\n\tuniform sampler2D iridescenceMap;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tuniform sampler2D iridescenceThicknessMap;\n#endif"; var output_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );"; var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}"; var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif"; var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;"; var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif"; var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif"; var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif"; var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif"; var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif"; var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif"; var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif"; var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}"; var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\tuniform highp sampler2D boneTexture;\n\tuniform int boneTextureSize;\n\tmat4 getBoneMatrix( const in float i ) {\n\t\tfloat j = i * 4.0;\n\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\ty = dy * ( y + 0.5 );\n\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\treturn bone;\n\t}\n#endif"; var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif"; var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif"; var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif"; var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif"; var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif"; var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }"; var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationColor, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = mix( transmissionAlpha, transmission.a, transmissionFactor );\n#endif"; var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( const in float roughness, const in float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef texture2DLodEXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( const in vec3 radiance, const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,\n\t\tconst in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,\n\t\tconst in mat4 viewMatrix, const in mat4 projMatrix, const in float ior, const in float thickness,\n\t\tconst in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif"; var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif"; var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif"; var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif"; var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif"; var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif"; var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif"; var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif"; const vertex$g = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}"; const fragment$g = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tgl_FragColor = texture2D( t2D, vUv );\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\tgl_FragColor = vec4( mix( pow( gl_FragColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), gl_FragColor.rgb * 0.0773993808, vec3( lessThanEqual( gl_FragColor.rgb, vec3( 0.04045 ) ) ) ), gl_FragColor.w );\n\t#endif\n\t#include \n\t#include \n}"; const vertex$f = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}"; const fragment$f = "#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}"; const vertex$e = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}"; const fragment$e = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}"; const vertex$d = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}"; const fragment$d = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}"; const vertex$c = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}"; const fragment$c = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\t#include \n\t#include \n}"; const vertex$b = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$b = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$a = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$a = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexel.rgb * lightMapIntensity * RECIPROCAL_PI;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$9 = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$9 = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$8 = "#define MATCAP\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}"; const fragment$8 = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t#else\n\t\tvec4 matcapColor = vec4( vec3( mix( 0.2, 0.8, uv.y ) ), 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$7 = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}"; const fragment$7 = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n\t#ifdef OPAQUE\n\t\tgl_FragColor.a = 1.0;\n\t#endif\n}"; const vertex$6 = "#define PHONG\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$6 = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$5 = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}"; const fragment$5 = "#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARCOLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include \n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$4 = "#define TOON\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}"; const fragment$4 = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$3 = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$3 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$2 = "#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$2 = "uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}"; const vertex$1 = "uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}"; const fragment$1 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; const ShaderChunk = { alphamap_fragment: alphamap_fragment, alphamap_pars_fragment: alphamap_pars_fragment, alphatest_fragment: alphatest_fragment, alphatest_pars_fragment: alphatest_pars_fragment, aomap_fragment: aomap_fragment, aomap_pars_fragment: aomap_pars_fragment, begin_vertex: begin_vertex, beginnormal_vertex: beginnormal_vertex, bsdfs: bsdfs, iridescence_fragment: iridescence_fragment, bumpmap_pars_fragment: bumpmap_pars_fragment, clipping_planes_fragment: clipping_planes_fragment, clipping_planes_pars_fragment: clipping_planes_pars_fragment, clipping_planes_pars_vertex: clipping_planes_pars_vertex, clipping_planes_vertex: clipping_planes_vertex, color_fragment: color_fragment, color_pars_fragment: color_pars_fragment, color_pars_vertex: color_pars_vertex, color_vertex: color_vertex, common: common, cube_uv_reflection_fragment: cube_uv_reflection_fragment, defaultnormal_vertex: defaultnormal_vertex, displacementmap_pars_vertex: displacementmap_pars_vertex, displacementmap_vertex: displacementmap_vertex, emissivemap_fragment: emissivemap_fragment, emissivemap_pars_fragment: emissivemap_pars_fragment, encodings_fragment: encodings_fragment, encodings_pars_fragment: encodings_pars_fragment, envmap_fragment: envmap_fragment, envmap_common_pars_fragment: envmap_common_pars_fragment, envmap_pars_fragment: envmap_pars_fragment, envmap_pars_vertex: envmap_pars_vertex, envmap_physical_pars_fragment: envmap_physical_pars_fragment, envmap_vertex: envmap_vertex, fog_vertex: fog_vertex, fog_pars_vertex: fog_pars_vertex, fog_fragment: fog_fragment, fog_pars_fragment: fog_pars_fragment, gradientmap_pars_fragment: gradientmap_pars_fragment, lightmap_fragment: lightmap_fragment, lightmap_pars_fragment: lightmap_pars_fragment, lights_lambert_vertex: lights_lambert_vertex, lights_pars_begin: lights_pars_begin, lights_toon_fragment: lights_toon_fragment, lights_toon_pars_fragment: lights_toon_pars_fragment, lights_phong_fragment: lights_phong_fragment, lights_phong_pars_fragment: lights_phong_pars_fragment, lights_physical_fragment: lights_physical_fragment, lights_physical_pars_fragment: lights_physical_pars_fragment, lights_fragment_begin: lights_fragment_begin, lights_fragment_maps: lights_fragment_maps, lights_fragment_end: lights_fragment_end, logdepthbuf_fragment: logdepthbuf_fragment, logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, logdepthbuf_vertex: logdepthbuf_vertex, map_fragment: map_fragment, map_pars_fragment: map_pars_fragment, map_particle_fragment: map_particle_fragment, map_particle_pars_fragment: map_particle_pars_fragment, metalnessmap_fragment: metalnessmap_fragment, metalnessmap_pars_fragment: metalnessmap_pars_fragment, morphcolor_vertex: morphcolor_vertex, morphnormal_vertex: morphnormal_vertex, morphtarget_pars_vertex: morphtarget_pars_vertex, morphtarget_vertex: morphtarget_vertex, normal_fragment_begin: normal_fragment_begin, normal_fragment_maps: normal_fragment_maps, normal_pars_fragment: normal_pars_fragment, normal_pars_vertex: normal_pars_vertex, normal_vertex: normal_vertex, normalmap_pars_fragment: normalmap_pars_fragment, clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin, clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps, clearcoat_pars_fragment: clearcoat_pars_fragment, iridescence_pars_fragment: iridescence_pars_fragment, output_fragment: output_fragment, packing: packing, premultiplied_alpha_fragment: premultiplied_alpha_fragment, project_vertex: project_vertex, dithering_fragment: dithering_fragment, dithering_pars_fragment: dithering_pars_fragment, roughnessmap_fragment: roughnessmap_fragment, roughnessmap_pars_fragment: roughnessmap_pars_fragment, shadowmap_pars_fragment: shadowmap_pars_fragment, shadowmap_pars_vertex: shadowmap_pars_vertex, shadowmap_vertex: shadowmap_vertex, shadowmask_pars_fragment: shadowmask_pars_fragment, skinbase_vertex: skinbase_vertex, skinning_pars_vertex: skinning_pars_vertex, skinning_vertex: skinning_vertex, skinnormal_vertex: skinnormal_vertex, specularmap_fragment: specularmap_fragment, specularmap_pars_fragment: specularmap_pars_fragment, tonemapping_fragment: tonemapping_fragment, tonemapping_pars_fragment: tonemapping_pars_fragment, transmission_fragment: transmission_fragment, transmission_pars_fragment: transmission_pars_fragment, uv_pars_fragment: uv_pars_fragment, uv_pars_vertex: uv_pars_vertex, uv_vertex: uv_vertex, uv2_pars_fragment: uv2_pars_fragment, uv2_pars_vertex: uv2_pars_vertex, uv2_vertex: uv2_vertex, worldpos_vertex: worldpos_vertex, background_vert: vertex$g, background_frag: fragment$g, cube_vert: vertex$f, cube_frag: fragment$f, depth_vert: vertex$e, depth_frag: fragment$e, distanceRGBA_vert: vertex$d, distanceRGBA_frag: fragment$d, equirect_vert: vertex$c, equirect_frag: fragment$c, linedashed_vert: vertex$b, linedashed_frag: fragment$b, meshbasic_vert: vertex$a, meshbasic_frag: fragment$a, meshlambert_vert: vertex$9, meshlambert_frag: fragment$9, meshmatcap_vert: vertex$8, meshmatcap_frag: fragment$8, meshnormal_vert: vertex$7, meshnormal_frag: fragment$7, meshphong_vert: vertex$6, meshphong_frag: fragment$6, meshphysical_vert: vertex$5, meshphysical_frag: fragment$5, meshtoon_vert: vertex$4, meshtoon_frag: fragment$4, points_vert: vertex$3, points_frag: fragment$3, shadow_vert: vertex$2, shadow_frag: fragment$2, sprite_vert: vertex$1, sprite_frag: fragment$1 }; /** * Uniforms library for shared webgl shaders */ const UniformsLib = { common: { diffuse: { value: /*@__PURE__*/ new Color$2( 0xffffff ) }, opacity: { value: 1.0 }, map: { value: null }, uvTransform: { value: /*@__PURE__*/ new Matrix3() }, uv2Transform: { value: /*@__PURE__*/ new Matrix3() }, alphaMap: { value: null }, alphaTest: { value: 0 } }, specularmap: { specularMap: { value: null }, }, envmap: { envMap: { value: null }, flipEnvMap: { value: - 1 }, reflectivity: { value: 1.0 }, // basic, lambert, phong ior: { value: 1.5 }, // physical refractionRatio: { value: 0.98 } // basic, lambert, phong }, aomap: { aoMap: { value: null }, aoMapIntensity: { value: 1 } }, lightmap: { lightMap: { value: null }, lightMapIntensity: { value: 1 } }, emissivemap: { emissiveMap: { value: null } }, bumpmap: { bumpMap: { value: null }, bumpScale: { value: 1 } }, normalmap: { normalMap: { value: null }, normalScale: { value: /*@__PURE__*/ new Vector2( 1, 1 ) } }, displacementmap: { displacementMap: { value: null }, displacementScale: { value: 1 }, displacementBias: { value: 0 } }, roughnessmap: { roughnessMap: { value: null } }, metalnessmap: { metalnessMap: { value: null } }, gradientmap: { gradientMap: { value: null } }, fog: { fogDensity: { value: 0.00025 }, fogNear: { value: 1 }, fogFar: { value: 2000 }, fogColor: { value: /*@__PURE__*/ new Color$2( 0xffffff ) } }, lights: { ambientLightColor: { value: [] }, lightProbe: { value: [] }, directionalLights: { value: [], properties: { direction: {}, color: {} } }, directionalLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] }, spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {} } }, spotLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, spotShadowMap: { value: [] }, spotShadowMatrix: { value: [] }, pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {} } }, pointLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {}, shadowCameraNear: {}, shadowCameraFar: {} } }, pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] }, hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } }, // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src rectAreaLights: { value: [], properties: { color: {}, position: {}, width: {}, height: {} } }, ltc_1: { value: null }, ltc_2: { value: null } }, points: { diffuse: { value: /*@__PURE__*/ new Color$2( 0xffffff ) }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, map: { value: null }, alphaMap: { value: null }, alphaTest: { value: 0 }, uvTransform: { value: /*@__PURE__*/ new Matrix3() } }, sprite: { diffuse: { value: /*@__PURE__*/ new Color$2( 0xffffff ) }, opacity: { value: 1.0 }, center: { value: /*@__PURE__*/ new Vector2( 0.5, 0.5 ) }, rotation: { value: 0.0 }, map: { value: null }, alphaMap: { value: null }, alphaTest: { value: 0 }, uvTransform: { value: /*@__PURE__*/ new Matrix3() } } }; const ShaderLib = { basic: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog ] ), vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag }, lambert: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color$2( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag }, phong: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color$2( 0x000000 ) }, specular: { value: /*@__PURE__*/ new Color$2( 0x111111 ) }, shininess: { value: 30 } } ] ), vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag }, standard: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color$2( 0x000000 ) }, roughness: { value: 1.0 }, metalness: { value: 0.0 }, envMapIntensity: { value: 1 } // temporary } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }, toon: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color$2( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshtoon_vert, fragmentShader: ShaderChunk.meshtoon_frag }, matcap: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, { matcap: { value: null } } ] ), vertexShader: ShaderChunk.meshmatcap_vert, fragmentShader: ShaderChunk.meshmatcap_frag }, points: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.points, UniformsLib.fog ] ), vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag }, dashed: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.fog, { scale: { value: 1 }, dashSize: { value: 1 }, totalSize: { value: 2 } } ] ), vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag }, depth: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.displacementmap ] ), vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag }, normal: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk.meshnormal_vert, fragmentShader: ShaderChunk.meshnormal_frag }, sprite: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.sprite, UniformsLib.fog ] ), vertexShader: ShaderChunk.sprite_vert, fragmentShader: ShaderChunk.sprite_frag }, background: { uniforms: { uvTransform: { value: /*@__PURE__*/ new Matrix3() }, t2D: { value: null }, }, vertexShader: ShaderChunk.background_vert, fragmentShader: ShaderChunk.background_frag }, cube: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.envmap, { opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag }, equirect: { uniforms: { tEquirect: { value: null }, }, vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag }, distanceRGBA: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.displacementmap, { referencePosition: { value: /*@__PURE__*/ new Vector3() }, nearDistance: { value: 1 }, farDistance: { value: 1000 } } ] ), vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag }, shadow: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.lights, UniformsLib.fog, { color: { value: /*@__PURE__*/ new Color$2( 0x00000 ) }, opacity: { value: 1.0 } }, ] ), vertexShader: ShaderChunk.shadow_vert, fragmentShader: ShaderChunk.shadow_frag } }; ShaderLib.physical = { uniforms: /*@__PURE__*/ mergeUniforms( [ ShaderLib.standard.uniforms, { clearcoat: { value: 0 }, clearcoatMap: { value: null }, clearcoatRoughness: { value: 0 }, clearcoatRoughnessMap: { value: null }, clearcoatNormalScale: { value: /*@__PURE__*/ new Vector2( 1, 1 ) }, clearcoatNormalMap: { value: null }, iridescence: { value: 0 }, iridescenceMap: { value: null }, iridescenceIOR: { value: 1.3 }, iridescenceThicknessMinimum: { value: 100 }, iridescenceThicknessMaximum: { value: 400 }, iridescenceThicknessMap: { value: null }, sheen: { value: 0 }, sheenColor: { value: /*@__PURE__*/ new Color$2( 0x000000 ) }, sheenColorMap: { value: null }, sheenRoughness: { value: 1 }, sheenRoughnessMap: { value: null }, transmission: { value: 0 }, transmissionMap: { value: null }, transmissionSamplerSize: { value: /*@__PURE__*/ new Vector2() }, transmissionSamplerMap: { value: null }, thickness: { value: 0 }, thicknessMap: { value: null }, attenuationDistance: { value: 0 }, attenuationColor: { value: /*@__PURE__*/ new Color$2( 0x000000 ) }, specularIntensity: { value: 1 }, specularIntensityMap: { value: null }, specularColor: { value: /*@__PURE__*/ new Color$2( 1, 1, 1 ) }, specularColorMap: { value: null }, } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }; function WebGLBackground( renderer, cubemaps, state, objects, alpha, premultipliedAlpha ) { const clearColor = new Color$2( 0x000000 ); let clearAlpha = alpha === true ? 0 : 1; let planeMesh; let boxMesh; let currentBackground = null; let currentBackgroundVersion = 0; let currentTonemapping = null; function render( renderList, scene ) { let forceClear = false; let background = scene.isScene === true ? scene.background : null; if ( background && background.isTexture ) { background = cubemaps.get( background ); } // Ignore background in AR // TODO: Reconsider this. const xr = renderer.xr; const session = xr.getSession && xr.getSession(); if ( session && session.environmentBlendMode === 'additive' ) { background = null; } if ( background === null ) { setClear( clearColor, clearAlpha ); } else if ( background && background.isColor ) { setClear( background, 1 ); forceClear = true; } if ( renderer.autoClear || forceClear ) { renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); } if ( background && ( background.isCubeTexture || background.mapping === CubeUVReflectionMapping ) ) { if ( boxMesh === undefined ) { boxMesh = new Mesh( new BoxGeometry( 1, 1, 1 ), new ShaderMaterial( { name: 'BackgroundCubeMaterial', uniforms: cloneUniforms( ShaderLib.cube.uniforms ), vertexShader: ShaderLib.cube.vertexShader, fragmentShader: ShaderLib.cube.fragmentShader, side: BackSide, depthTest: false, depthWrite: false, fog: false } ) ); boxMesh.geometry.deleteAttribute( 'normal' ); boxMesh.geometry.deleteAttribute( 'uv' ); boxMesh.onBeforeRender = function ( renderer, scene, camera ) { this.matrixWorld.copyPosition( camera.matrixWorld ); }; // enable code injection for non-built-in material Object.defineProperty( boxMesh.material, 'envMap', { get: function () { return this.uniforms.envMap.value; } } ); objects.update( boxMesh ); } boxMesh.material.uniforms.envMap.value = background; boxMesh.material.uniforms.flipEnvMap.value = ( background.isCubeTexture && background.isRenderTargetTexture === false ) ? - 1 : 1; if ( currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping ) { boxMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } boxMesh.layers.enableAll(); // push to the pre-sorted opaque render list renderList.unshift( boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null ); } else if ( background && background.isTexture ) { if ( planeMesh === undefined ) { planeMesh = new Mesh( new PlaneGeometry( 2, 2 ), new ShaderMaterial( { name: 'BackgroundMaterial', uniforms: cloneUniforms( ShaderLib.background.uniforms ), vertexShader: ShaderLib.background.vertexShader, fragmentShader: ShaderLib.background.fragmentShader, side: FrontSide, depthTest: false, depthWrite: false, fog: false } ) ); planeMesh.geometry.deleteAttribute( 'normal' ); // enable code injection for non-built-in material Object.defineProperty( planeMesh.material, 'map', { get: function () { return this.uniforms.t2D.value; } } ); objects.update( planeMesh ); } planeMesh.material.uniforms.t2D.value = background; if ( background.matrixAutoUpdate === true ) { background.updateMatrix(); } planeMesh.material.uniforms.uvTransform.value.copy( background.matrix ); if ( currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping ) { planeMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } planeMesh.layers.enableAll(); // push to the pre-sorted opaque render list renderList.unshift( planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null ); } } function setClear( color, alpha ) { state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha ); } return { getClearColor: function () { return clearColor; }, setClearColor: function ( color, alpha = 1 ) { clearColor.set( color ); clearAlpha = alpha; setClear( clearColor, clearAlpha ); }, getClearAlpha: function () { return clearAlpha; }, setClearAlpha: function ( alpha ) { clearAlpha = alpha; setClear( clearColor, clearAlpha ); }, render: render }; } function WebGLBindingStates( gl, extensions, attributes, capabilities ) { const maxVertexAttributes = gl.getParameter( 34921 ); const extension = capabilities.isWebGL2 ? null : extensions.get( 'OES_vertex_array_object' ); const vaoAvailable = capabilities.isWebGL2 || extension !== null; const bindingStates = {}; const defaultState = createBindingState( null ); let currentState = defaultState; let forceUpdate = false; function setup( object, material, program, geometry, index ) { let updateBuffers = false; if ( vaoAvailable ) { const state = getBindingState( geometry, program, material ); if ( currentState !== state ) { currentState = state; bindVertexArrayObject( currentState.object ); } updateBuffers = needsUpdate( object, geometry, program, index ); if ( updateBuffers ) saveCache( object, geometry, program, index ); } else { const wireframe = ( material.wireframe === true ); if ( currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe ) { currentState.geometry = geometry.id; currentState.program = program.id; currentState.wireframe = wireframe; updateBuffers = true; } } if ( index !== null ) { attributes.update( index, 34963 ); } if ( updateBuffers || forceUpdate ) { forceUpdate = false; setupVertexAttributes( object, material, program, geometry ); if ( index !== null ) { gl.bindBuffer( 34963, attributes.get( index ).buffer ); } } } function createVertexArrayObject() { if ( capabilities.isWebGL2 ) return gl.createVertexArray(); return extension.createVertexArrayOES(); } function bindVertexArrayObject( vao ) { if ( capabilities.isWebGL2 ) return gl.bindVertexArray( vao ); return extension.bindVertexArrayOES( vao ); } function deleteVertexArrayObject( vao ) { if ( capabilities.isWebGL2 ) return gl.deleteVertexArray( vao ); return extension.deleteVertexArrayOES( vao ); } function getBindingState( geometry, program, material ) { const wireframe = ( material.wireframe === true ); let programMap = bindingStates[ geometry.id ]; if ( programMap === undefined ) { programMap = {}; bindingStates[ geometry.id ] = programMap; } let stateMap = programMap[ program.id ]; if ( stateMap === undefined ) { stateMap = {}; programMap[ program.id ] = stateMap; } let state = stateMap[ wireframe ]; if ( state === undefined ) { state = createBindingState( createVertexArrayObject() ); stateMap[ wireframe ] = state; } return state; } function createBindingState( vao ) { const newAttributes = []; const enabledAttributes = []; const attributeDivisors = []; for ( let i = 0; i < maxVertexAttributes; i ++ ) { newAttributes[ i ] = 0; enabledAttributes[ i ] = 0; attributeDivisors[ i ] = 0; } return { // for backward compatibility on non-VAO support browser geometry: null, program: null, wireframe: false, newAttributes: newAttributes, enabledAttributes: enabledAttributes, attributeDivisors: attributeDivisors, object: vao, attributes: {}, index: null }; } function needsUpdate( object, geometry, program, index ) { const cachedAttributes = currentState.attributes; const geometryAttributes = geometry.attributes; let attributesNum = 0; const programAttributes = program.getAttributes(); for ( const name in programAttributes ) { const programAttribute = programAttributes[ name ]; if ( programAttribute.location >= 0 ) { const cachedAttribute = cachedAttributes[ name ]; let geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute === undefined ) { if ( name === 'instanceMatrix' && object.instanceMatrix ) geometryAttribute = object.instanceMatrix; if ( name === 'instanceColor' && object.instanceColor ) geometryAttribute = object.instanceColor; } if ( cachedAttribute === undefined ) return true; if ( cachedAttribute.attribute !== geometryAttribute ) return true; if ( geometryAttribute && cachedAttribute.data !== geometryAttribute.data ) return true; attributesNum ++; } } if ( currentState.attributesNum !== attributesNum ) return true; if ( currentState.index !== index ) return true; return false; } function saveCache( object, geometry, program, index ) { const cache = {}; const attributes = geometry.attributes; let attributesNum = 0; const programAttributes = program.getAttributes(); for ( const name in programAttributes ) { const programAttribute = programAttributes[ name ]; if ( programAttribute.location >= 0 ) { let attribute = attributes[ name ]; if ( attribute === undefined ) { if ( name === 'instanceMatrix' && object.instanceMatrix ) attribute = object.instanceMatrix; if ( name === 'instanceColor' && object.instanceColor ) attribute = object.instanceColor; } const data = {}; data.attribute = attribute; if ( attribute && attribute.data ) { data.data = attribute.data; } cache[ name ] = data; attributesNum ++; } } currentState.attributes = cache; currentState.attributesNum = attributesNum; currentState.index = index; } function initAttributes() { const newAttributes = currentState.newAttributes; for ( let i = 0, il = newAttributes.length; i < il; i ++ ) { newAttributes[ i ] = 0; } } function enableAttribute( attribute ) { enableAttributeAndDivisor( attribute, 0 ); } function enableAttributeAndDivisor( attribute, meshPerAttribute ) { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; const attributeDivisors = currentState.attributeDivisors; newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== meshPerAttribute ) { const extension = capabilities.isWebGL2 ? gl : extensions.get( 'ANGLE_instanced_arrays' ); extension[ capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE' ]( attribute, meshPerAttribute ); attributeDivisors[ attribute ] = meshPerAttribute; } } function disableUnusedAttributes() { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; for ( let i = 0, il = enabledAttributes.length; i < il; i ++ ) { if ( enabledAttributes[ i ] !== newAttributes[ i ] ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } } function vertexAttribPointer( index, size, type, normalized, stride, offset ) { if ( capabilities.isWebGL2 === true && ( type === 5124 || type === 5125 ) ) { gl.vertexAttribIPointer( index, size, type, stride, offset ); } else { gl.vertexAttribPointer( index, size, type, normalized, stride, offset ); } } function setupVertexAttributes( object, material, program, geometry ) { if ( capabilities.isWebGL2 === false && ( object.isInstancedMesh || geometry.isInstancedBufferGeometry ) ) { if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) return; } initAttributes(); const geometryAttributes = geometry.attributes; const programAttributes = program.getAttributes(); const materialDefaultAttributeValues = material.defaultAttributeValues; for ( const name in programAttributes ) { const programAttribute = programAttributes[ name ]; if ( programAttribute.location >= 0 ) { let geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute === undefined ) { if ( name === 'instanceMatrix' && object.instanceMatrix ) geometryAttribute = object.instanceMatrix; if ( name === 'instanceColor' && object.instanceColor ) geometryAttribute = object.instanceColor; } if ( geometryAttribute !== undefined ) { const normalized = geometryAttribute.normalized; const size = geometryAttribute.itemSize; const attribute = attributes.get( geometryAttribute ); // TODO Attribute may not be available on context restore if ( attribute === undefined ) continue; const buffer = attribute.buffer; const type = attribute.type; const bytesPerElement = attribute.bytesPerElement; if ( geometryAttribute.isInterleavedBufferAttribute ) { const data = geometryAttribute.data; const stride = data.stride; const offset = geometryAttribute.offset; if ( data.isInstancedInterleavedBuffer ) { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttributeAndDivisor( programAttribute.location + i, data.meshPerAttribute ); } if ( object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined ) { geometry._maxInstanceCount = data.meshPerAttribute * data.count; } } else { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttribute( programAttribute.location + i ); } } gl.bindBuffer( 34962, buffer ); for ( let i = 0; i < programAttribute.locationSize; i ++ ) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, ( offset + ( size / programAttribute.locationSize ) * i ) * bytesPerElement ); } } else { if ( geometryAttribute.isInstancedBufferAttribute ) { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttributeAndDivisor( programAttribute.location + i, geometryAttribute.meshPerAttribute ); } if ( object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined ) { geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; } } else { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttribute( programAttribute.location + i ); } } gl.bindBuffer( 34962, buffer ); for ( let i = 0; i < programAttribute.locationSize; i ++ ) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, ( size / programAttribute.locationSize ) * i * bytesPerElement ); } } } else if ( materialDefaultAttributeValues !== undefined ) { const value = materialDefaultAttributeValues[ name ]; if ( value !== undefined ) { switch ( value.length ) { case 2: gl.vertexAttrib2fv( programAttribute.location, value ); break; case 3: gl.vertexAttrib3fv( programAttribute.location, value ); break; case 4: gl.vertexAttrib4fv( programAttribute.location, value ); break; default: gl.vertexAttrib1fv( programAttribute.location, value ); } } } } } disableUnusedAttributes(); } function dispose() { reset(); for ( const geometryId in bindingStates ) { const programMap = bindingStates[ geometryId ]; for ( const programId in programMap ) { const stateMap = programMap[ programId ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ programId ]; } delete bindingStates[ geometryId ]; } } function releaseStatesOfGeometry( geometry ) { if ( bindingStates[ geometry.id ] === undefined ) return; const programMap = bindingStates[ geometry.id ]; for ( const programId in programMap ) { const stateMap = programMap[ programId ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ programId ]; } delete bindingStates[ geometry.id ]; } function releaseStatesOfProgram( program ) { for ( const geometryId in bindingStates ) { const programMap = bindingStates[ geometryId ]; if ( programMap[ program.id ] === undefined ) continue; const stateMap = programMap[ program.id ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ program.id ]; } } function reset() { resetDefaultState(); forceUpdate = true; if ( currentState === defaultState ) return; currentState = defaultState; bindVertexArrayObject( currentState.object ); } // for backward-compatibility function resetDefaultState() { defaultState.geometry = null; defaultState.program = null; defaultState.wireframe = false; } return { setup: setup, reset: reset, resetDefaultState: resetDefaultState, dispose: dispose, releaseStatesOfGeometry: releaseStatesOfGeometry, releaseStatesOfProgram: releaseStatesOfProgram, initAttributes: initAttributes, enableAttribute: enableAttribute, disableUnusedAttributes: disableUnusedAttributes }; } function WebGLBufferRenderer( gl, extensions, info, capabilities ) { const isWebGL2 = capabilities.isWebGL2; let mode; function setMode( value ) { mode = value; } function render( start, count ) { gl.drawArrays( mode, start, count ); info.update( count, mode, 1 ); } function renderInstances( start, count, primcount ) { if ( primcount === 0 ) return; let extension, methodName; if ( isWebGL2 ) { extension = gl; methodName = 'drawArraysInstanced'; } else { extension = extensions.get( 'ANGLE_instanced_arrays' ); methodName = 'drawArraysInstancedANGLE'; if ( extension === null ) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } extension[ methodName ]( mode, start, count, primcount ); info.update( count, mode, primcount ); } // this.setMode = setMode; this.render = render; this.renderInstances = renderInstances; } function WebGLCapabilities( gl, extensions, parameters ) { let maxAnisotropy; function getMaxAnisotropy() { if ( maxAnisotropy !== undefined ) return maxAnisotropy; if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); } else { maxAnisotropy = 0; } return maxAnisotropy; } function getMaxPrecision( precision ) { if ( precision === 'highp' ) { if ( gl.getShaderPrecisionFormat( 35633, 36338 ).precision > 0 && gl.getShaderPrecisionFormat( 35632, 36338 ).precision > 0 ) { return 'highp'; } precision = 'mediump'; } if ( precision === 'mediump' ) { if ( gl.getShaderPrecisionFormat( 35633, 36337 ).precision > 0 && gl.getShaderPrecisionFormat( 35632, 36337 ).precision > 0 ) { return 'mediump'; } } return 'lowp'; } const isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext ) || ( typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext ); let precision = parameters.precision !== undefined ? parameters.precision : 'highp'; const maxPrecision = getMaxPrecision( precision ); if ( maxPrecision !== precision ) { console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' ); precision = maxPrecision; } const drawBuffers = isWebGL2 || extensions.has( 'WEBGL_draw_buffers' ); const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true; const maxTextures = gl.getParameter( 34930 ); const maxVertexTextures = gl.getParameter( 35660 ); const maxTextureSize = gl.getParameter( 3379 ); const maxCubemapSize = gl.getParameter( 34076 ); const maxAttributes = gl.getParameter( 34921 ); const maxVertexUniforms = gl.getParameter( 36347 ); const maxVaryings = gl.getParameter( 36348 ); const maxFragmentUniforms = gl.getParameter( 36349 ); const vertexTextures = maxVertexTextures > 0; const floatFragmentTextures = isWebGL2 || extensions.has( 'OES_texture_float' ); const floatVertexTextures = vertexTextures && floatFragmentTextures; const maxSamples = isWebGL2 ? gl.getParameter( 36183 ) : 0; return { isWebGL2: isWebGL2, drawBuffers: drawBuffers, getMaxAnisotropy: getMaxAnisotropy, getMaxPrecision: getMaxPrecision, precision: precision, logarithmicDepthBuffer: logarithmicDepthBuffer, maxTextures: maxTextures, maxVertexTextures: maxVertexTextures, maxTextureSize: maxTextureSize, maxCubemapSize: maxCubemapSize, maxAttributes: maxAttributes, maxVertexUniforms: maxVertexUniforms, maxVaryings: maxVaryings, maxFragmentUniforms: maxFragmentUniforms, vertexTextures: vertexTextures, floatFragmentTextures: floatFragmentTextures, floatVertexTextures: floatVertexTextures, maxSamples: maxSamples }; } function WebGLClipping( properties ) { const scope = this; let globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false; const plane = new Plane(), viewNormalMatrix = new Matrix3(), uniform = { value: null, needsUpdate: false }; this.uniform = uniform; this.numPlanes = 0; this.numIntersection = 0; this.init = function ( planes, enableLocalClipping, camera ) { const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled; localClippingEnabled = enableLocalClipping; globalState = projectPlanes( planes, camera, 0 ); numGlobalPlanes = planes.length; return enabled; }; this.beginShadows = function () { renderingShadows = true; projectPlanes( null ); }; this.endShadows = function () { renderingShadows = false; resetGlobalState(); }; this.setState = function ( material, camera, useCache ) { const planes = material.clippingPlanes, clipIntersection = material.clipIntersection, clipShadows = material.clipShadows; const materialProperties = properties.get( material ); if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) { // there's no local clipping if ( renderingShadows ) { // there's no global clipping projectPlanes( null ); } else { resetGlobalState(); } } else { const nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4; let dstArray = materialProperties.clippingState || null; uniform.value = dstArray; // ensure unique state dstArray = projectPlanes( planes, camera, lGlobal, useCache ); for ( let i = 0; i !== lGlobal; ++ i ) { dstArray[ i ] = globalState[ i ]; } materialProperties.clippingState = dstArray; this.numIntersection = clipIntersection ? this.numPlanes : 0; this.numPlanes += nGlobal; } }; function resetGlobalState() { if ( uniform.value !== globalState ) { uniform.value = globalState; uniform.needsUpdate = numGlobalPlanes > 0; } scope.numPlanes = numGlobalPlanes; scope.numIntersection = 0; } function projectPlanes( planes, camera, dstOffset, skipTransform ) { const nPlanes = planes !== null ? planes.length : 0; let dstArray = null; if ( nPlanes !== 0 ) { dstArray = uniform.value; if ( skipTransform !== true || dstArray === null ) { const flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse; viewNormalMatrix.getNormalMatrix( viewMatrix ); if ( dstArray === null || dstArray.length < flatSize ) { dstArray = new Float32Array( flatSize ); } for ( let i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) { plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix ); plane.normal.toArray( dstArray, i4 ); dstArray[ i4 + 3 ] = plane.constant; } } uniform.value = dstArray; uniform.needsUpdate = true; } scope.numPlanes = nPlanes; scope.numIntersection = 0; return dstArray; } } function WebGLCubeMaps( renderer ) { let cubemaps = new WeakMap(); function mapTextureMapping( texture, mapping ) { if ( mapping === EquirectangularReflectionMapping ) { texture.mapping = CubeReflectionMapping; } else if ( mapping === EquirectangularRefractionMapping ) { texture.mapping = CubeRefractionMapping; } return texture; } function get( texture ) { if ( texture && texture.isTexture && texture.isRenderTargetTexture === false ) { const mapping = texture.mapping; if ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ) { if ( cubemaps.has( texture ) ) { const cubemap = cubemaps.get( texture ).texture; return mapTextureMapping( cubemap, texture.mapping ); } else { const image = texture.image; if ( image && image.height > 0 ) { const renderTarget = new WebGLCubeRenderTarget( image.height / 2 ); renderTarget.fromEquirectangularTexture( renderer, texture ); cubemaps.set( texture, renderTarget ); texture.addEventListener( 'dispose', onTextureDispose ); return mapTextureMapping( renderTarget.texture, texture.mapping ); } else { // image not yet ready. try the conversion next frame return null; } } } } return texture; } function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); const cubemap = cubemaps.get( texture ); if ( cubemap !== undefined ) { cubemaps.delete( texture ); cubemap.dispose(); } } function dispose() { cubemaps = new WeakMap(); } return { get: get, dispose: dispose }; } class OrthographicCamera extends Camera { constructor( left = - 1, right = 1, top = 1, bottom = - 1, near = 0.1, far = 2000 ) { super(); this.isOrthographicCamera = true; this.type = 'OrthographicCamera'; this.zoom = 1; this.view = null; this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = near; this.far = far; this.updateProjectionMatrix(); } copy( source, recursive ) { super.copy( source, recursive ); this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far; this.zoom = source.zoom; this.view = source.view === null ? null : Object.assign( {}, source.view ); return this; } setViewOffset( fullWidth, fullHeight, x, y, width, height ) { if ( this.view === null ) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if ( this.view !== null ) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const dx = ( this.right - this.left ) / ( 2 * this.zoom ); const dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); const cx = ( this.right + this.left ) / 2; const cy = ( this.top + this.bottom ) / 2; let left = cx - dx; let right = cx + dx; let top = cy + dy; let bottom = cy - dy; if ( this.view !== null && this.view.enabled ) { const scaleW = ( this.right - this.left ) / this.view.fullWidth / this.zoom; const scaleH = ( this.top - this.bottom ) / this.view.fullHeight / this.zoom; left += scaleW * this.view.offsetX; right = left + scaleW * this.view.width; top -= scaleH * this.view.offsetY; bottom = top - scaleH * this.view.height; } this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far ); this.projectionMatrixInverse.copy( this.projectionMatrix ).invert(); } toJSON( meta ) { const data = super.toJSON( meta ); data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); return data; } } const LOD_MIN = 4; // The standard deviations (radians) associated with the extra mips. These are // chosen to approximate a Trowbridge-Reitz distribution function times the // geometric shadowing function. These sigma values squared must match the // variance #defines in cube_uv_reflection_fragment.glsl.js. const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; // The maximum length of the blur for loop. Smaller sigmas will use fewer // samples and exit early, but not recompile the shader. const MAX_SAMPLES = 20; const _flatCamera = /*@__PURE__*/ new OrthographicCamera(); const _clearColor = /*@__PURE__*/ new Color$2(); let _oldTarget = null; // Golden Ratio const PHI = ( 1 + Math.sqrt( 5 ) ) / 2; const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the // same axis), used as axis directions evenly spread on a sphere. const _axisDirections = [ /*@__PURE__*/ new Vector3( 1, 1, 1 ), /*@__PURE__*/ new Vector3( - 1, 1, 1 ), /*@__PURE__*/ new Vector3( 1, 1, - 1 ), /*@__PURE__*/ new Vector3( - 1, 1, - 1 ), /*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ), /*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ), /*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ), /*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ), /*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ), /*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ) ]; /** * This class generates a Prefiltered, Mipmapped Radiance Environment Map * (PMREM) from a cubeMap environment texture. This allows different levels of * blur to be quickly accessed based on material roughness. It is packed into a * special CubeUV format that allows us to perform custom interpolation so that * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap * chain, it only goes down to the LOD_MIN level (above), and then creates extra * even more filtered 'mips' at the same LOD_MIN resolution, associated with * higher roughness levels. In this way we maintain resolution to smoothly * interpolate diffuse lighting while limiting sampling computation. * * Paper: Fast, Accurate Image-Based Lighting * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view */ class PMREMGenerator { constructor( renderer ) { this._renderer = renderer; this._pingPongRenderTarget = null; this._lodMax = 0; this._cubeSize = 0; this._lodPlanes = []; this._sizeLods = []; this._sigmas = []; this._blurMaterial = null; this._cubemapMaterial = null; this._equirectMaterial = null; this._compileMaterial( this._blurMaterial ); } /** * Generates a PMREM from a supplied Scene, which can be faster than using an * image if networking bandwidth is low. Optional sigma specifies a blur radius * in radians to be applied to the scene before PMREM generation. Optional near * and far planes ensure the scene is rendered in its entirety (the cubeCamera * is placed at the origin). */ fromScene( scene, sigma = 0, near = 0.1, far = 100 ) { _oldTarget = this._renderer.getRenderTarget(); this._setSize( 256 ); const cubeUVRenderTarget = this._allocateTargets(); cubeUVRenderTarget.depthBuffer = true; this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget ); if ( sigma > 0 ) { this._blur( cubeUVRenderTarget, 0, 0, sigma ); } this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } /** * Generates a PMREM from an equirectangular texture, which can be either LDR * or HDR. The ideal input image size is 1k (1024 x 512), * as this matches best with the 256 x 256 cubemap output. */ fromEquirectangular( equirectangular, renderTarget = null ) { return this._fromTexture( equirectangular, renderTarget ); } /** * Generates a PMREM from an cubemap texture, which can be either LDR * or HDR. The ideal input cube size is 256 x 256, * as this matches best with the 256 x 256 cubemap output. */ fromCubemap( cubemap, renderTarget = null ) { return this._fromTexture( cubemap, renderTarget ); } /** * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileCubemapShader() { if ( this._cubemapMaterial === null ) { this._cubemapMaterial = _getCubemapMaterial(); this._compileMaterial( this._cubemapMaterial ); } } /** * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileEquirectangularShader() { if ( this._equirectMaterial === null ) { this._equirectMaterial = _getEquirectMaterial(); this._compileMaterial( this._equirectMaterial ); } } /** * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on * one of them will cause any others to also become unusable. */ dispose() { this._dispose(); if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose(); if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose(); } // private interface _setSize( cubeSize ) { this._lodMax = Math.floor( Math.log2( cubeSize ) ); this._cubeSize = Math.pow( 2, this._lodMax ); } _dispose() { if ( this._blurMaterial !== null ) this._blurMaterial.dispose(); if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose(); for ( let i = 0; i < this._lodPlanes.length; i ++ ) { this._lodPlanes[ i ].dispose(); } } _cleanup( outputTarget ) { this._renderer.setRenderTarget( _oldTarget ); outputTarget.scissorTest = false; _setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); } _fromTexture( texture, renderTarget ) { if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) { this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) ); } else { // Equirectangular this._setSize( texture.image.width / 4 ); } _oldTarget = this._renderer.getRenderTarget(); const cubeUVRenderTarget = renderTarget || this._allocateTargets(); this._textureToCubeUV( texture, cubeUVRenderTarget ); this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } _allocateTargets() { const width = 3 * Math.max( this._cubeSize, 16 * 7 ); const height = 4 * this._cubeSize; const params = { magFilter: LinearFilter, minFilter: LinearFilter, generateMipmaps: false, type: HalfFloatType, format: RGBAFormat, encoding: LinearEncoding, depthBuffer: false }; const cubeUVRenderTarget = _createRenderTarget( width, height, params ); if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width ) { if ( this._pingPongRenderTarget !== null ) { this._dispose(); } this._pingPongRenderTarget = _createRenderTarget( width, height, params ); const { _lodMax } = this; ( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas } = _createPlanes( _lodMax ) ); this._blurMaterial = _getBlurShader( _lodMax, width, height ); } return cubeUVRenderTarget; } _compileMaterial( material ) { const tmpMesh = new Mesh( this._lodPlanes[ 0 ], material ); this._renderer.compile( tmpMesh, _flatCamera ); } _sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) { const fov = 90; const aspect = 1; const cubeCamera = new PerspectiveCamera( fov, aspect, near, far ); const upSign = [ 1, - 1, 1, 1, 1, 1 ]; const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ]; const renderer = this._renderer; const originalAutoClear = renderer.autoClear; const toneMapping = renderer.toneMapping; renderer.getClearColor( _clearColor ); renderer.toneMapping = NoToneMapping; renderer.autoClear = false; const backgroundMaterial = new MeshBasicMaterial( { name: 'PMREM.Background', side: BackSide, depthWrite: false, depthTest: false, } ); const backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial ); let useSolidColor = false; const background = scene.background; if ( background ) { if ( background.isColor ) { backgroundMaterial.color.copy( background ); scene.background = null; useSolidColor = true; } } else { backgroundMaterial.color.copy( _clearColor ); useSolidColor = true; } for ( let i = 0; i < 6; i ++ ) { const col = i % 3; if ( col === 0 ) { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( forwardSign[ i ], 0, 0 ); } else if ( col === 1 ) { cubeCamera.up.set( 0, 0, upSign[ i ] ); cubeCamera.lookAt( 0, forwardSign[ i ], 0 ); } else { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( 0, 0, forwardSign[ i ] ); } const size = this._cubeSize; _setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size ); renderer.setRenderTarget( cubeUVRenderTarget ); if ( useSolidColor ) { renderer.render( backgroundBox, cubeCamera ); } renderer.render( scene, cubeCamera ); } backgroundBox.geometry.dispose(); backgroundBox.material.dispose(); renderer.toneMapping = toneMapping; renderer.autoClear = originalAutoClear; scene.background = background; } _textureToCubeUV( texture, cubeUVRenderTarget ) { const renderer = this._renderer; const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ); if ( isCubeTexture ) { if ( this._cubemapMaterial === null ) { this._cubemapMaterial = _getCubemapMaterial(); } this._cubemapMaterial.uniforms.flipEnvMap.value = ( texture.isRenderTargetTexture === false ) ? - 1 : 1; } else { if ( this._equirectMaterial === null ) { this._equirectMaterial = _getEquirectMaterial(); } } const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial; const mesh = new Mesh( this._lodPlanes[ 0 ], material ); const uniforms = material.uniforms; uniforms[ 'envMap' ].value = texture; const size = this._cubeSize; _setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size ); renderer.setRenderTarget( cubeUVRenderTarget ); renderer.render( mesh, _flatCamera ); } _applyPMREM( cubeUVRenderTarget ) { const renderer = this._renderer; const autoClear = renderer.autoClear; renderer.autoClear = false; for ( let i = 1; i < this._lodPlanes.length; i ++ ) { const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] ); const poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ]; this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); } renderer.autoClear = autoClear; } /** * This is a two-pass Gaussian blur for a cubemap. Normally this is done * vertically and horizontally, but this breaks down on a cube. Here we apply * the blur latitudinally (around the poles), and then longitudinally (towards * the poles) to approximate the orthogonally-separable blur. It is least * accurate at the poles, but still does a decent job. */ _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { const pingPongRenderTarget = this._pingPongRenderTarget; this._halfBlur( cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis ); this._halfBlur( pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis ); } _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { const renderer = this._renderer; const blurMaterial = this._blurMaterial; if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { console.error( 'blur direction must be either latitudinal or longitudinal!' ); } // Number of standard deviations at which to cut off the discrete approximation. const STANDARD_DEVIATIONS = 3; const blurMesh = new Mesh( this._lodPlanes[ lodOut ], blurMaterial ); const blurUniforms = blurMaterial.uniforms; const pixels = this._sizeLods[ lodIn ] - 1; const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 ); const sigmaPixels = sigmaRadians / radiansPerPixel; const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES; if ( samples > MAX_SAMPLES ) { console.warn( `sigmaRadians, ${ sigmaRadians}, is too large and will clip, as it requested ${ samples} samples when the maximum is set to ${MAX_SAMPLES}` ); } const weights = []; let sum = 0; for ( let i = 0; i < MAX_SAMPLES; ++ i ) { const x = i / sigmaPixels; const weight = Math.exp( - x * x / 2 ); weights.push( weight ); if ( i === 0 ) { sum += weight; } else if ( i < samples ) { sum += 2 * weight; } } for ( let i = 0; i < weights.length; i ++ ) { weights[ i ] = weights[ i ] / sum; } blurUniforms[ 'envMap' ].value = targetIn.texture; blurUniforms[ 'samples' ].value = samples; blurUniforms[ 'weights' ].value = weights; blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal'; if ( poleAxis ) { blurUniforms[ 'poleAxis' ].value = poleAxis; } const { _lodMax } = this; blurUniforms[ 'dTheta' ].value = radiansPerPixel; blurUniforms[ 'mipInt' ].value = _lodMax - lodIn; const outputSize = this._sizeLods[ lodOut ]; const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 ); const y = 4 * ( this._cubeSize - outputSize ); _setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize ); renderer.setRenderTarget( targetOut ); renderer.render( blurMesh, _flatCamera ); } } function _createPlanes( lodMax ) { const lodPlanes = []; const sizeLods = []; const sigmas = []; let lod = lodMax; const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; for ( let i = 0; i < totalLods; i ++ ) { const sizeLod = Math.pow( 2, lod ); sizeLods.push( sizeLod ); let sigma = 1.0 / sizeLod; if ( i > lodMax - LOD_MIN ) { sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ]; } else if ( i === 0 ) { sigma = 0; } sigmas.push( sigma ); const texelSize = 1.0 / ( sizeLod - 2 ); const min = - texelSize; const max = 1 + texelSize; const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; const cubeFaces = 6; const vertices = 6; const positionSize = 3; const uvSize = 2; const faceIndexSize = 1; const position = new Float32Array( positionSize * vertices * cubeFaces ); const uv = new Float32Array( uvSize * vertices * cubeFaces ); const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); for ( let face = 0; face < cubeFaces; face ++ ) { const x = ( face % 3 ) * 2 / 3 - 1; const y = face > 2 ? 0 : - 1; const coordinates = [ x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0 ]; position.set( coordinates, positionSize * vertices * face ); uv.set( uv1, uvSize * vertices * face ); const fill = [ face, face, face, face, face, face ]; faceIndex.set( fill, faceIndexSize * vertices * face ); } const planes = new BufferGeometry(); planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); lodPlanes.push( planes ); if ( lod > LOD_MIN ) { lod --; } } return { lodPlanes, sizeLods, sigmas }; } function _createRenderTarget( width, height, params ) { const cubeUVRenderTarget = new WebGLRenderTarget( width, height, params ); cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; cubeUVRenderTarget.scissorTest = true; return cubeUVRenderTarget; } function _setViewport( target, x, y, width, height ) { target.viewport.set( x, y, width, height ); target.scissor.set( x, y, width, height ); } function _getBlurShader( lodMax, width, height ) { const weights = new Float32Array( MAX_SAMPLES ); const poleAxis = new Vector3( 0, 1, 0 ); const shaderMaterial = new ShaderMaterial( { name: 'SphericalGaussianBlur', defines: { 'n': MAX_SAMPLES, 'CUBEUV_TEXEL_WIDTH': 1.0 / width, 'CUBEUV_TEXEL_HEIGHT': 1.0 / height, 'CUBEUV_MAX_MIP': `${lodMax}.0`, }, uniforms: { 'envMap': { value: null }, 'samples': { value: 1 }, 'weights': { value: weights }, 'latitudinal': { value: false }, 'dTheta': { value: 0 }, 'mipInt': { value: 0 }, 'poleAxis': { value: poleAxis } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform int samples; uniform float weights[ n ]; uniform bool latitudinal; uniform float dTheta; uniform float mipInt; uniform vec3 poleAxis; #define ENVMAP_TYPE_CUBE_UV #include vec3 getSample( float theta, vec3 axis ) { float cosTheta = cos( theta ); // Rodrigues' axis-angle rotation vec3 sampleDirection = vOutputDirection * cosTheta + cross( axis, vOutputDirection ) * sin( theta ) + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); return bilinearCubeUV( envMap, sampleDirection, mipInt ); } void main() { vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); if ( all( equal( axis, vec3( 0.0 ) ) ) ) { axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); } axis = normalize( axis ); gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); for ( int i = 1; i < n; i++ ) { if ( i >= samples ) { break; } float theta = dTheta * float( i ); gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); } } `, blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getEquirectMaterial() { return new ShaderMaterial( { name: 'EquirectangularToCubeUV', uniforms: { 'envMap': { value: null } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; #include void main() { vec3 outputDirection = normalize( vOutputDirection ); vec2 uv = equirectUv( outputDirection ); gl_FragColor = vec4( texture2D ( envMap, uv ).rgb, 1.0 ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); } function _getCubemapMaterial() { return new ShaderMaterial( { name: 'CubemapToCubeUV', uniforms: { 'envMap': { value: null }, 'flipEnvMap': { value: - 1 } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; uniform float flipEnvMap; varying vec3 vOutputDirection; uniform samplerCube envMap; void main() { gl_FragColor = textureCube( envMap, vec3( flipEnvMap * vOutputDirection.x, vOutputDirection.yz ) ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); } function _getCommonVertexShader() { return /* glsl */` precision mediump float; precision mediump int; attribute float faceIndex; varying vec3 vOutputDirection; // RH coordinate system; PMREM face-indexing convention vec3 getDirection( vec2 uv, float face ) { uv = 2.0 * uv - 1.0; vec3 direction = vec3( uv, 1.0 ); if ( face == 0.0 ) { direction = direction.zyx; // ( 1, v, u ) pos x } else if ( face == 1.0 ) { direction = direction.xzy; direction.xz *= -1.0; // ( -u, 1, -v ) pos y } else if ( face == 2.0 ) { direction.x *= -1.0; // ( -u, v, 1 ) pos z } else if ( face == 3.0 ) { direction = direction.zyx; direction.xz *= -1.0; // ( -1, v, -u ) neg x } else if ( face == 4.0 ) { direction = direction.xzy; direction.xy *= -1.0; // ( -u, -1, v ) neg y } else if ( face == 5.0 ) { direction.z *= -1.0; // ( u, v, -1 ) neg z } return direction; } void main() { vOutputDirection = getDirection( uv, faceIndex ); gl_Position = vec4( position, 1.0 ); } `; } function WebGLCubeUVMaps( renderer ) { let cubeUVmaps = new WeakMap(); let pmremGenerator = null; function get( texture ) { if ( texture && texture.isTexture ) { const mapping = texture.mapping; const isEquirectMap = ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ); const isCubeMap = ( mapping === CubeReflectionMapping || mapping === CubeRefractionMapping ); // equirect/cube map to cubeUV conversion if ( isEquirectMap || isCubeMap ) { if ( texture.isRenderTargetTexture && texture.needsPMREMUpdate === true ) { texture.needsPMREMUpdate = false; let renderTarget = cubeUVmaps.get( texture ); if ( pmremGenerator === null ) pmremGenerator = new PMREMGenerator( renderer ); renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular( texture, renderTarget ) : pmremGenerator.fromCubemap( texture, renderTarget ); cubeUVmaps.set( texture, renderTarget ); return renderTarget.texture; } else { if ( cubeUVmaps.has( texture ) ) { return cubeUVmaps.get( texture ).texture; } else { const image = texture.image; if ( ( isEquirectMap && image && image.height > 0 ) || ( isCubeMap && image && isCubeTextureComplete( image ) ) ) { if ( pmremGenerator === null ) pmremGenerator = new PMREMGenerator( renderer ); const renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular( texture ) : pmremGenerator.fromCubemap( texture ); cubeUVmaps.set( texture, renderTarget ); texture.addEventListener( 'dispose', onTextureDispose ); return renderTarget.texture; } else { // image not yet ready. try the conversion next frame return null; } } } } } return texture; } function isCubeTextureComplete( image ) { let count = 0; const length = 6; for ( let i = 0; i < length; i ++ ) { if ( image[ i ] !== undefined ) count ++; } return count === length; } function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); const cubemapUV = cubeUVmaps.get( texture ); if ( cubemapUV !== undefined ) { cubeUVmaps.delete( texture ); cubemapUV.dispose(); } } function dispose() { cubeUVmaps = new WeakMap(); if ( pmremGenerator !== null ) { pmremGenerator.dispose(); pmremGenerator = null; } } return { get: get, dispose: dispose }; } function WebGLExtensions( gl ) { const extensions = {}; function getExtension( name ) { if ( extensions[ name ] !== undefined ) { return extensions[ name ]; } let extension; switch ( name ) { case 'WEBGL_depth_texture': extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' ); break; case 'EXT_texture_filter_anisotropic': extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); break; case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); break; case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); break; default: extension = gl.getExtension( name ); } extensions[ name ] = extension; return extension; } return { has: function ( name ) { return getExtension( name ) !== null; }, init: function ( capabilities ) { if ( capabilities.isWebGL2 ) { getExtension( 'EXT_color_buffer_float' ); } else { getExtension( 'WEBGL_depth_texture' ); getExtension( 'OES_texture_float' ); getExtension( 'OES_texture_half_float' ); getExtension( 'OES_texture_half_float_linear' ); getExtension( 'OES_standard_derivatives' ); getExtension( 'OES_element_index_uint' ); getExtension( 'OES_vertex_array_object' ); getExtension( 'ANGLE_instanced_arrays' ); } getExtension( 'OES_texture_float_linear' ); getExtension( 'EXT_color_buffer_half_float' ); getExtension( 'WEBGL_multisampled_render_to_texture' ); }, get: function ( name ) { const extension = getExtension( name ); if ( extension === null ) { console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' ); } return extension; } }; } function WebGLGeometries( gl, attributes, info, bindingStates ) { const geometries = {}; const wireframeAttributes = new WeakMap(); function onGeometryDispose( event ) { const geometry = event.target; if ( geometry.index !== null ) { attributes.remove( geometry.index ); } for ( const name in geometry.attributes ) { attributes.remove( geometry.attributes[ name ] ); } geometry.removeEventListener( 'dispose', onGeometryDispose ); delete geometries[ geometry.id ]; const attribute = wireframeAttributes.get( geometry ); if ( attribute ) { attributes.remove( attribute ); wireframeAttributes.delete( geometry ); } bindingStates.releaseStatesOfGeometry( geometry ); if ( geometry.isInstancedBufferGeometry === true ) { delete geometry._maxInstanceCount; } // info.memory.geometries --; } function get( object, geometry ) { if ( geometries[ geometry.id ] === true ) return geometry; geometry.addEventListener( 'dispose', onGeometryDispose ); geometries[ geometry.id ] = true; info.memory.geometries ++; return geometry; } function update( geometry ) { const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates. for ( const name in geometryAttributes ) { attributes.update( geometryAttributes[ name ], 34962 ); } // morph targets const morphAttributes = geometry.morphAttributes; for ( const name in morphAttributes ) { const array = morphAttributes[ name ]; for ( let i = 0, l = array.length; i < l; i ++ ) { attributes.update( array[ i ], 34962 ); } } } function updateWireframeAttribute( geometry ) { const indices = []; const geometryIndex = geometry.index; const geometryPosition = geometry.attributes.position; let version = 0; if ( geometryIndex !== null ) { const array = geometryIndex.array; version = geometryIndex.version; for ( let i = 0, l = array.length; i < l; i += 3 ) { const a = array[ i + 0 ]; const b = array[ i + 1 ]; const c = array[ i + 2 ]; indices.push( a, b, b, c, c, a ); } } else { const array = geometryPosition.array; version = geometryPosition.version; for ( let i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) { const a = i + 0; const b = i + 1; const c = i + 2; indices.push( a, b, b, c, c, a ); } } const attribute = new ( arrayNeedsUint32( indices ) ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 ); attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates // const previousAttribute = wireframeAttributes.get( geometry ); if ( previousAttribute ) attributes.remove( previousAttribute ); // wireframeAttributes.set( geometry, attribute ); } function getWireframeAttribute( geometry ) { const currentAttribute = wireframeAttributes.get( geometry ); if ( currentAttribute ) { const geometryIndex = geometry.index; if ( geometryIndex !== null ) { // if the attribute is obsolete, create a new one if ( currentAttribute.version < geometryIndex.version ) { updateWireframeAttribute( geometry ); } } } else { updateWireframeAttribute( geometry ); } return wireframeAttributes.get( geometry ); } return { get: get, update: update, getWireframeAttribute: getWireframeAttribute }; } function WebGLIndexedBufferRenderer( gl, extensions, info, capabilities ) { const isWebGL2 = capabilities.isWebGL2; let mode; function setMode( value ) { mode = value; } let type, bytesPerElement; function setIndex( value ) { type = value.type; bytesPerElement = value.bytesPerElement; } function render( start, count ) { gl.drawElements( mode, count, type, start * bytesPerElement ); info.update( count, mode, 1 ); } function renderInstances( start, count, primcount ) { if ( primcount === 0 ) return; let extension, methodName; if ( isWebGL2 ) { extension = gl; methodName = 'drawElementsInstanced'; } else { extension = extensions.get( 'ANGLE_instanced_arrays' ); methodName = 'drawElementsInstancedANGLE'; if ( extension === null ) { console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } extension[ methodName ]( mode, count, type, start * bytesPerElement, primcount ); info.update( count, mode, primcount ); } // this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances; } function WebGLInfo( gl ) { const memory = { geometries: 0, textures: 0 }; const render = { frame: 0, calls: 0, triangles: 0, points: 0, lines: 0 }; function update( count, mode, instanceCount ) { render.calls ++; switch ( mode ) { case 4: render.triangles += instanceCount * ( count / 3 ); break; case 1: render.lines += instanceCount * ( count / 2 ); break; case 3: render.lines += instanceCount * ( count - 1 ); break; case 2: render.lines += instanceCount * count; break; case 0: render.points += instanceCount * count; break; default: console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode ); break; } } function reset() { render.frame ++; render.calls = 0; render.triangles = 0; render.points = 0; render.lines = 0; } return { memory: memory, render: render, programs: null, autoReset: true, reset: reset, update: update }; } function numericalSort( a, b ) { return a[ 0 ] - b[ 0 ]; } function absNumericalSort( a, b ) { return Math.abs( b[ 1 ] ) - Math.abs( a[ 1 ] ); } function denormalize( morph, attribute ) { let denominator = 1; const array = attribute.isInterleavedBufferAttribute ? attribute.data.array : attribute.array; if ( array instanceof Int8Array ) denominator = 127; else if ( array instanceof Uint8Array ) denominator = 255; else if ( array instanceof Uint16Array ) denominator = 65535; else if ( array instanceof Int16Array ) denominator = 32767; else if ( array instanceof Int32Array ) denominator = 2147483647; else console.error( 'THREE.WebGLMorphtargets: Unsupported morph attribute data type: ', array ); morph.divideScalar( denominator ); } function WebGLMorphtargets( gl, capabilities, textures ) { const influencesList = {}; const morphInfluences = new Float32Array( 8 ); const morphTextures = new WeakMap(); const morph = new Vector4(); const workInfluences = []; for ( let i = 0; i < 8; i ++ ) { workInfluences[ i ] = [ i, 0 ]; } function update( object, geometry, material, program ) { const objectInfluences = object.morphTargetInfluences; if ( capabilities.isWebGL2 === true ) { // instead of using attributes, the WebGL 2 code path encodes morph targets // into an array of data textures. Each layer represents a single morph target. const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; let entry = morphTextures.get( geometry ); if ( entry === undefined || entry.count !== morphTargetsCount ) { if ( entry !== undefined ) entry.texture.dispose(); const hasMorphPosition = geometry.morphAttributes.position !== undefined; const hasMorphNormals = geometry.morphAttributes.normal !== undefined; const hasMorphColors = geometry.morphAttributes.color !== undefined; const morphTargets = geometry.morphAttributes.position || []; const morphNormals = geometry.morphAttributes.normal || []; const morphColors = geometry.morphAttributes.color || []; let vertexDataCount = 0; if ( hasMorphPosition === true ) vertexDataCount = 1; if ( hasMorphNormals === true ) vertexDataCount = 2; if ( hasMorphColors === true ) vertexDataCount = 3; let width = geometry.attributes.position.count * vertexDataCount; let height = 1; if ( width > capabilities.maxTextureSize ) { height = Math.ceil( width / capabilities.maxTextureSize ); width = capabilities.maxTextureSize; } const buffer = new Float32Array( width * height * 4 * morphTargetsCount ); const texture = new DataArrayTexture( buffer, width, height, morphTargetsCount ); texture.type = FloatType; texture.needsUpdate = true; // fill buffer const vertexDataStride = vertexDataCount * 4; for ( let i = 0; i < morphTargetsCount; i ++ ) { const morphTarget = morphTargets[ i ]; const morphNormal = morphNormals[ i ]; const morphColor = morphColors[ i ]; const offset = width * height * 4 * i; for ( let j = 0; j < morphTarget.count; j ++ ) { const stride = j * vertexDataStride; if ( hasMorphPosition === true ) { morph.fromBufferAttribute( morphTarget, j ); if ( morphTarget.normalized === true ) denormalize( morph, morphTarget ); buffer[ offset + stride + 0 ] = morph.x; buffer[ offset + stride + 1 ] = morph.y; buffer[ offset + stride + 2 ] = morph.z; buffer[ offset + stride + 3 ] = 0; } if ( hasMorphNormals === true ) { morph.fromBufferAttribute( morphNormal, j ); if ( morphNormal.normalized === true ) denormalize( morph, morphNormal ); buffer[ offset + stride + 4 ] = morph.x; buffer[ offset + stride + 5 ] = morph.y; buffer[ offset + stride + 6 ] = morph.z; buffer[ offset + stride + 7 ] = 0; } if ( hasMorphColors === true ) { morph.fromBufferAttribute( morphColor, j ); if ( morphColor.normalized === true ) denormalize( morph, morphColor ); buffer[ offset + stride + 8 ] = morph.x; buffer[ offset + stride + 9 ] = morph.y; buffer[ offset + stride + 10 ] = morph.z; buffer[ offset + stride + 11 ] = ( morphColor.itemSize === 4 ) ? morph.w : 1; } } } entry = { count: morphTargetsCount, texture: texture, size: new Vector2( width, height ) }; morphTextures.set( geometry, entry ); function disposeTexture() { texture.dispose(); morphTextures.delete( geometry ); geometry.removeEventListener( 'dispose', disposeTexture ); } geometry.addEventListener( 'dispose', disposeTexture ); } // let morphInfluencesSum = 0; for ( let i = 0; i < objectInfluences.length; i ++ ) { morphInfluencesSum += objectInfluences[ i ]; } const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence ); program.getUniforms().setValue( gl, 'morphTargetInfluences', objectInfluences ); program.getUniforms().setValue( gl, 'morphTargetsTexture', entry.texture, textures ); program.getUniforms().setValue( gl, 'morphTargetsTextureSize', entry.size ); } else { // When object doesn't have morph target influences defined, we treat it as a 0-length array // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences const length = objectInfluences === undefined ? 0 : objectInfluences.length; let influences = influencesList[ geometry.id ]; if ( influences === undefined || influences.length !== length ) { // initialise list influences = []; for ( let i = 0; i < length; i ++ ) { influences[ i ] = [ i, 0 ]; } influencesList[ geometry.id ] = influences; } // Collect influences for ( let i = 0; i < length; i ++ ) { const influence = influences[ i ]; influence[ 0 ] = i; influence[ 1 ] = objectInfluences[ i ]; } influences.sort( absNumericalSort ); for ( let i = 0; i < 8; i ++ ) { if ( i < length && influences[ i ][ 1 ] ) { workInfluences[ i ][ 0 ] = influences[ i ][ 0 ]; workInfluences[ i ][ 1 ] = influences[ i ][ 1 ]; } else { workInfluences[ i ][ 0 ] = Number.MAX_SAFE_INTEGER; workInfluences[ i ][ 1 ] = 0; } } workInfluences.sort( numericalSort ); const morphTargets = geometry.morphAttributes.position; const morphNormals = geometry.morphAttributes.normal; let morphInfluencesSum = 0; for ( let i = 0; i < 8; i ++ ) { const influence = workInfluences[ i ]; const index = influence[ 0 ]; const value = influence[ 1 ]; if ( index !== Number.MAX_SAFE_INTEGER && value ) { if ( morphTargets && geometry.getAttribute( 'morphTarget' + i ) !== morphTargets[ index ] ) { geometry.setAttribute( 'morphTarget' + i, morphTargets[ index ] ); } if ( morphNormals && geometry.getAttribute( 'morphNormal' + i ) !== morphNormals[ index ] ) { geometry.setAttribute( 'morphNormal' + i, morphNormals[ index ] ); } morphInfluences[ i ] = value; morphInfluencesSum += value; } else { if ( morphTargets && geometry.hasAttribute( 'morphTarget' + i ) === true ) { geometry.deleteAttribute( 'morphTarget' + i ); } if ( morphNormals && geometry.hasAttribute( 'morphNormal' + i ) === true ) { geometry.deleteAttribute( 'morphNormal' + i ); } morphInfluences[ i ] = 0; } } // GLSL shader uses formula baseinfluence * base + sum(target * influence) // This allows us to switch between absolute morphs and relative morphs without changing shader code // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence) const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence ); program.getUniforms().setValue( gl, 'morphTargetInfluences', morphInfluences ); } } return { update: update }; } function WebGLObjects( gl, geometries, attributes, info ) { let updateMap = new WeakMap(); function update( object ) { const frame = info.render.frame; const geometry = object.geometry; const buffergeometry = geometries.get( object, geometry ); // Update once per frame if ( updateMap.get( buffergeometry ) !== frame ) { geometries.update( buffergeometry ); updateMap.set( buffergeometry, frame ); } if ( object.isInstancedMesh ) { if ( object.hasEventListener( 'dispose', onInstancedMeshDispose ) === false ) { object.addEventListener( 'dispose', onInstancedMeshDispose ); } attributes.update( object.instanceMatrix, 34962 ); if ( object.instanceColor !== null ) { attributes.update( object.instanceColor, 34962 ); } } return buffergeometry; } function dispose() { updateMap = new WeakMap(); } function onInstancedMeshDispose( event ) { const instancedMesh = event.target; instancedMesh.removeEventListener( 'dispose', onInstancedMeshDispose ); attributes.remove( instancedMesh.instanceMatrix ); if ( instancedMesh.instanceColor !== null ) attributes.remove( instancedMesh.instanceColor ); } return { update: update, dispose: dispose }; } /** * Uniforms of a program. * Those form a tree structure with a special top-level container for the root, * which you get by calling 'new WebGLUniforms( gl, program )'. * * * Properties of inner nodes including the top-level container: * * .seq - array of nested uniforms * .map - nested uniforms by name * * * Methods of all nodes except the top-level container: * * .setValue( gl, value, [textures] ) * * uploads a uniform value(s) * the 'textures' parameter is needed for sampler uniforms * * * Static methods of the top-level container (textures factorizations): * * .upload( gl, seq, values, textures ) * * sets uniforms in 'seq' to 'values[id].value' * * .seqWithValue( seq, values ) : filteredSeq * * filters 'seq' entries with corresponding entry in values * * * Methods of the top-level container (textures factorizations): * * .setValue( gl, name, value, textures ) * * sets uniform with name 'name' to 'value' * * .setOptional( gl, obj, prop ) * * like .set for an optional property of the object * */ const emptyTexture = /*@__PURE__*/ new Texture(); const emptyArrayTexture = /*@__PURE__*/ new DataArrayTexture(); const empty3dTexture = /*@__PURE__*/ new Data3DTexture(); const emptyCubeTexture = /*@__PURE__*/ new CubeTexture(); // --- Utilities --- // Array Caches (provide typed arrays for temporary by size) const arrayCacheF32 = []; const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms const mat4array = new Float32Array( 16 ); const mat3array = new Float32Array( 9 ); const mat2array = new Float32Array( 4 ); // Flattening for arrays of vectors and matrices function flatten( array, nBlocks, blockSize ) { const firstElem = array[ 0 ]; if ( firstElem <= 0 || firstElem > 0 ) return array; // unoptimized: ! isNaN( firstElem ) // see http://jacksondunstan.com/articles/983 const n = nBlocks * blockSize; let r = arrayCacheF32[ n ]; if ( r === undefined ) { r = new Float32Array( n ); arrayCacheF32[ n ] = r; } if ( nBlocks !== 0 ) { firstElem.toArray( r, 0 ); for ( let i = 1, offset = 0; i !== nBlocks; ++ i ) { offset += blockSize; array[ i ].toArray( r, offset ); } } return r; } function arraysEqual( a, b ) { if ( a.length !== b.length ) return false; for ( let i = 0, l = a.length; i < l; i ++ ) { if ( a[ i ] !== b[ i ] ) return false; } return true; } function copyArray( a, b ) { for ( let i = 0, l = b.length; i < l; i ++ ) { a[ i ] = b[ i ]; } } // Texture unit allocation function allocTexUnits( textures, n ) { let r = arrayCacheI32[ n ]; if ( r === undefined ) { r = new Int32Array( n ); arrayCacheI32[ n ] = r; } for ( let i = 0; i !== n; ++ i ) { r[ i ] = textures.allocateTextureUnit(); } return r; } // --- Setters --- // Note: Defining these methods externally, because they come in a bunch // and this way their names minify. // Single scalar function setValueV1f( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1f( this.addr, v ); cache[ 0 ] = v; } // Single float vector (from flat array or THREE.VectorN) function setValueV2f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { gl.uniform2f( this.addr, v.x, v.y ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform2fv( this.addr, v ); copyArray( cache, v ); } } function setValueV3f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { gl.uniform3f( this.addr, v.x, v.y, v.z ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; } } else if ( v.r !== undefined ) { if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) { gl.uniform3f( this.addr, v.r, v.g, v.b ); cache[ 0 ] = v.r; cache[ 1 ] = v.g; cache[ 2 ] = v.b; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform3fv( this.addr, v ); copyArray( cache, v ); } } function setValueV4f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { gl.uniform4f( this.addr, v.x, v.y, v.z, v.w ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; cache[ 3 ] = v.w; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform4fv( this.addr, v ); copyArray( cache, v ); } } // Single matrix (from flat array or THREE.MatrixN) function setValueM2( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix2fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat2array.set( elements ); gl.uniformMatrix2fv( this.addr, false, mat2array ); copyArray( cache, elements ); } } function setValueM3( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix3fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat3array.set( elements ); gl.uniformMatrix3fv( this.addr, false, mat3array ); copyArray( cache, elements ); } } function setValueM4( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix4fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat4array.set( elements ); gl.uniformMatrix4fv( this.addr, false, mat4array ); copyArray( cache, elements ); } } // Single integer / boolean function setValueV1i( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1i( this.addr, v ); cache[ 0 ] = v; } // Single integer / boolean vector (from flat array) function setValueV2i( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform2iv( this.addr, v ); copyArray( cache, v ); } function setValueV3i( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform3iv( this.addr, v ); copyArray( cache, v ); } function setValueV4i( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform4iv( this.addr, v ); copyArray( cache, v ); } // Single unsigned integer function setValueV1ui( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1ui( this.addr, v ); cache[ 0 ] = v; } // Single unsigned integer vector (from flat array) function setValueV2ui( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform2uiv( this.addr, v ); copyArray( cache, v ); } function setValueV3ui( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform3uiv( this.addr, v ); copyArray( cache, v ); } function setValueV4ui( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform4uiv( this.addr, v ); copyArray( cache, v ); } // Single texture (2D / Cube) function setValueT1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTexture2D( v || emptyTexture, unit ); } function setValueT3D1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTexture3D( v || empty3dTexture, unit ); } function setValueT6( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTextureCube( v || emptyCubeTexture, unit ); } function setValueT2DArray1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTexture2DArray( v || emptyArrayTexture, unit ); } // Helper to pick the right setter for the singular case function getSingularSetter( type ) { switch ( type ) { case 0x1406: return setValueV1f; // FLOAT case 0x8b50: return setValueV2f; // _VEC2 case 0x8b51: return setValueV3f; // _VEC3 case 0x8b52: return setValueV4f; // _VEC4 case 0x8b5a: return setValueM2; // _MAT2 case 0x8b5b: return setValueM3; // _MAT3 case 0x8b5c: return setValueM4; // _MAT4 case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4 case 0x1405: return setValueV1ui; // UINT case 0x8dc6: return setValueV2ui; // _VEC2 case 0x8dc7: return setValueV3ui; // _VEC3 case 0x8dc8: return setValueV4ui; // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1; case 0x8b5f: // SAMPLER_3D case 0x8dcb: // INT_SAMPLER_3D case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D return setValueT3D1; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6; case 0x8dc1: // SAMPLER_2D_ARRAY case 0x8dcf: // INT_SAMPLER_2D_ARRAY case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW return setValueT2DArray1; } } // Array of scalars function setValueV1fArray( gl, v ) { gl.uniform1fv( this.addr, v ); } // Array of vectors (from flat array or array of THREE.VectorN) function setValueV2fArray( gl, v ) { const data = flatten( v, this.size, 2 ); gl.uniform2fv( this.addr, data ); } function setValueV3fArray( gl, v ) { const data = flatten( v, this.size, 3 ); gl.uniform3fv( this.addr, data ); } function setValueV4fArray( gl, v ) { const data = flatten( v, this.size, 4 ); gl.uniform4fv( this.addr, data ); } // Array of matrices (from flat array or array of THREE.MatrixN) function setValueM2Array( gl, v ) { const data = flatten( v, this.size, 4 ); gl.uniformMatrix2fv( this.addr, false, data ); } function setValueM3Array( gl, v ) { const data = flatten( v, this.size, 9 ); gl.uniformMatrix3fv( this.addr, false, data ); } function setValueM4Array( gl, v ) { const data = flatten( v, this.size, 16 ); gl.uniformMatrix4fv( this.addr, false, data ); } // Array of integer / boolean function setValueV1iArray( gl, v ) { gl.uniform1iv( this.addr, v ); } // Array of integer / boolean vectors (from flat array) function setValueV2iArray( gl, v ) { gl.uniform2iv( this.addr, v ); } function setValueV3iArray( gl, v ) { gl.uniform3iv( this.addr, v ); } function setValueV4iArray( gl, v ) { gl.uniform4iv( this.addr, v ); } // Array of unsigned integer function setValueV1uiArray( gl, v ) { gl.uniform1uiv( this.addr, v ); } // Array of unsigned integer vectors (from flat array) function setValueV2uiArray( gl, v ) { gl.uniform2uiv( this.addr, v ); } function setValueV3uiArray( gl, v ) { gl.uniform3uiv( this.addr, v ); } function setValueV4uiArray( gl, v ) { gl.uniform4uiv( this.addr, v ); } // Array of textures (2D / 3D / Cube / 2DArray) function setValueT1Array( gl, v, textures ) { const n = v.length; const units = allocTexUnits( textures, n ); gl.uniform1iv( this.addr, units ); for ( let i = 0; i !== n; ++ i ) { textures.setTexture2D( v[ i ] || emptyTexture, units[ i ] ); } } function setValueT3DArray( gl, v, textures ) { const n = v.length; const units = allocTexUnits( textures, n ); gl.uniform1iv( this.addr, units ); for ( let i = 0; i !== n; ++ i ) { textures.setTexture3D( v[ i ] || empty3dTexture, units[ i ] ); } } function setValueT6Array( gl, v, textures ) { const n = v.length; const units = allocTexUnits( textures, n ); gl.uniform1iv( this.addr, units ); for ( let i = 0; i !== n; ++ i ) { textures.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] ); } } function setValueT2DArrayArray( gl, v, textures ) { const n = v.length; const units = allocTexUnits( textures, n ); gl.uniform1iv( this.addr, units ); for ( let i = 0; i !== n; ++ i ) { textures.setTexture2DArray( v[ i ] || emptyArrayTexture, units[ i ] ); } } // Helper to pick the right setter for a pure (bottom-level) array function getPureArraySetter( type ) { switch ( type ) { case 0x1406: return setValueV1fArray; // FLOAT case 0x8b50: return setValueV2fArray; // _VEC2 case 0x8b51: return setValueV3fArray; // _VEC3 case 0x8b52: return setValueV4fArray; // _VEC4 case 0x8b5a: return setValueM2Array; // _MAT2 case 0x8b5b: return setValueM3Array; // _MAT3 case 0x8b5c: return setValueM4Array; // _MAT4 case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4 case 0x1405: return setValueV1uiArray; // UINT case 0x8dc6: return setValueV2uiArray; // _VEC2 case 0x8dc7: return setValueV3uiArray; // _VEC3 case 0x8dc8: return setValueV4uiArray; // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1Array; case 0x8b5f: // SAMPLER_3D case 0x8dcb: // INT_SAMPLER_3D case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D return setValueT3DArray; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6Array; case 0x8dc1: // SAMPLER_2D_ARRAY case 0x8dcf: // INT_SAMPLER_2D_ARRAY case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW return setValueT2DArrayArray; } } // --- Uniform Classes --- class SingleUniform { constructor( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.cache = []; this.setValue = getSingularSetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } } class PureArrayUniform { constructor( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.cache = []; this.size = activeInfo.size; this.setValue = getPureArraySetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } } class StructuredUniform { constructor( id ) { this.id = id; this.seq = []; this.map = {}; } setValue( gl, value, textures ) { const seq = this.seq; for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ]; u.setValue( gl, value[ u.id ], textures ); } } } // --- Top-level --- // Parser - builds up the property tree from the path strings const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts // - the identifier (member name or array index) // - followed by an optional right bracket (found when array index) // - followed by an optional left bracket or dot (type of subscript) // // Note: These portions can be read in a non-overlapping fashion and // allow straightforward parsing of the hierarchy that WebGL encodes // in the uniform names. function addUniform( container, uniformObject ) { container.seq.push( uniformObject ); container.map[ uniformObject.id ] = uniformObject; } function parseUniform( activeInfo, addr, container ) { const path = activeInfo.name, pathLength = path.length; // reset RegExp object, because of the early exit of a previous run RePathPart.lastIndex = 0; while ( true ) { const match = RePathPart.exec( path ), matchEnd = RePathPart.lastIndex; let id = match[ 1 ]; const idIsIndex = match[ 2 ] === ']', subscript = match[ 3 ]; if ( idIsIndex ) id = id | 0; // convert to integer if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) { // bare name or "pure" bottom-level array "[0]" suffix addUniform( container, subscript === undefined ? new SingleUniform( id, activeInfo, addr ) : new PureArrayUniform( id, activeInfo, addr ) ); break; } else { // step into inner node / create it in case it doesn't exist const map = container.map; let next = map[ id ]; if ( next === undefined ) { next = new StructuredUniform( id ); addUniform( container, next ); } container = next; } } } // Root Container class WebGLUniforms { constructor( gl, program ) { this.seq = []; this.map = {}; const n = gl.getProgramParameter( program, 35718 ); for ( let i = 0; i < n; ++ i ) { const info = gl.getActiveUniform( program, i ), addr = gl.getUniformLocation( program, info.name ); parseUniform( info, addr, this ); } } setValue( gl, name, value, textures ) { const u = this.map[ name ]; if ( u !== undefined ) u.setValue( gl, value, textures ); } setOptional( gl, object, name ) { const v = object[ name ]; if ( v !== undefined ) this.setValue( gl, name, v ); } static upload( gl, seq, values, textures ) { for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ], v = values[ u.id ]; if ( v.needsUpdate !== false ) { // note: always updating when .needsUpdate is undefined u.setValue( gl, v.value, textures ); } } } static seqWithValue( seq, values ) { const r = []; for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ]; if ( u.id in values ) r.push( u ); } return r; } } function WebGLShader( gl, type, string ) { const shader = gl.createShader( type ); gl.shaderSource( shader, string ); gl.compileShader( shader ); return shader; } let programIdCount = 0; function handleSource( string, errorLine ) { const lines = string.split( '\n' ); const lines2 = []; const from = Math.max( errorLine - 6, 0 ); const to = Math.min( errorLine + 6, lines.length ); for ( let i = from; i < to; i ++ ) { const line = i + 1; lines2.push( `${line === errorLine ? '>' : ' '} ${line}: ${lines[ i ]}` ); } return lines2.join( '\n' ); } function getEncodingComponents( encoding ) { switch ( encoding ) { case LinearEncoding: return [ 'Linear', '( value )' ]; case sRGBEncoding: return [ 'sRGB', '( value )' ]; default: console.warn( 'THREE.WebGLProgram: Unsupported encoding:', encoding ); return [ 'Linear', '( value )' ]; } } function getShaderErrors( gl, shader, type ) { const status = gl.getShaderParameter( shader, 35713 ); const errors = gl.getShaderInfoLog( shader ).trim(); if ( status && errors === '' ) return ''; const errorMatches = /ERROR: 0:(\d+)/.exec( errors ); if ( errorMatches ) { // --enable-privileged-webgl-extension // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); const errorLine = parseInt( errorMatches[ 1 ] ); return type.toUpperCase() + '\n\n' + errors + '\n\n' + handleSource( gl.getShaderSource( shader ), errorLine ); } else { return errors; } } function getTexelEncodingFunction( functionName, encoding ) { const components = getEncodingComponents( encoding ); return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[ 0 ] + components[ 1 ] + '; }'; } function getToneMappingFunction( functionName, toneMapping ) { let toneMappingName; switch ( toneMapping ) { case LinearToneMapping: toneMappingName = 'Linear'; break; case ReinhardToneMapping: toneMappingName = 'Reinhard'; break; case CineonToneMapping: toneMappingName = 'OptimizedCineon'; break; case ACESFilmicToneMapping: toneMappingName = 'ACESFilmic'; break; case CustomToneMapping: toneMappingName = 'Custom'; break; default: console.warn( 'THREE.WebGLProgram: Unsupported toneMapping:', toneMapping ); toneMappingName = 'Linear'; } return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }'; } function generateExtensions( parameters ) { const chunks = [ ( parameters.extensionDerivatives || !! parameters.envMapCubeUVHeight || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ) ? '#extension GL_OES_standard_derivatives : enable' : '', ( parameters.extensionFragDepth || parameters.logarithmicDepthBuffer ) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', ( parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ) ? '#extension GL_EXT_draw_buffers : require' : '', ( parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission ) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : '' ]; return chunks.filter( filterEmptyLine ).join( '\n' ); } function generateDefines( defines ) { const chunks = []; for ( const name in defines ) { const value = defines[ name ]; if ( value === false ) continue; chunks.push( '#define ' + name + ' ' + value ); } return chunks.join( '\n' ); } function fetchAttributeLocations( gl, program ) { const attributes = {}; const n = gl.getProgramParameter( program, 35721 ); for ( let i = 0; i < n; i ++ ) { const info = gl.getActiveAttrib( program, i ); const name = info.name; let locationSize = 1; if ( info.type === 35674 ) locationSize = 2; if ( info.type === 35675 ) locationSize = 3; if ( info.type === 35676 ) locationSize = 4; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); attributes[ name ] = { type: info.type, location: gl.getAttribLocation( program, name ), locationSize: locationSize }; } return attributes; } function filterEmptyLine( string ) { return string !== ''; } function replaceLightNums( string, parameters ) { return string .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) .replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights ) .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights ) .replace( /NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows ) .replace( /NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows ) .replace( /NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows ); } function replaceClippingPlaneNums( string, parameters ) { return string .replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes ) .replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) ); } // Resolve Includes const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm; function resolveIncludes( string ) { return string.replace( includePattern, includeReplacer ); } function includeReplacer( match, include ) { const string = ShaderChunk[ include ]; if ( string === undefined ) { throw new Error( 'Can not resolve #include <' + include + '>' ); } return resolveIncludes( string ); } // Unroll Loops const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g; const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g; function unrollLoops( string ) { return string .replace( unrollLoopPattern, loopReplacer ) .replace( deprecatedUnrollLoopPattern, deprecatedLoopReplacer ); } function deprecatedLoopReplacer( match, start, end, snippet ) { console.warn( 'WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.' ); return loopReplacer( match, start, end, snippet ); } function loopReplacer( match, start, end, snippet ) { let string = ''; for ( let i = parseInt( start ); i < parseInt( end ); i ++ ) { string += snippet .replace( /\[\s*i\s*\]/g, '[ ' + i + ' ]' ) .replace( /UNROLLED_LOOP_INDEX/g, i ); } return string; } // function generatePrecision( parameters ) { let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;'; if ( parameters.precision === 'highp' ) { precisionstring += '\n#define HIGH_PRECISION'; } else if ( parameters.precision === 'mediump' ) { precisionstring += '\n#define MEDIUM_PRECISION'; } else if ( parameters.precision === 'lowp' ) { precisionstring += '\n#define LOW_PRECISION'; } return precisionstring; } function generateShadowMapTypeDefine( parameters ) { let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; if ( parameters.shadowMapType === PCFShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; } else if ( parameters.shadowMapType === PCFSoftShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; } else if ( parameters.shadowMapType === VSMShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM'; } return shadowMapTypeDefine; } function generateEnvMapTypeDefine( parameters ) { let envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; if ( parameters.envMap ) { switch ( parameters.envMapMode ) { case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; break; case CubeUVReflectionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; break; } } return envMapTypeDefine; } function generateEnvMapModeDefine( parameters ) { let envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; if ( parameters.envMap ) { switch ( parameters.envMapMode ) { case CubeRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; break; } } return envMapModeDefine; } function generateEnvMapBlendingDefine( parameters ) { let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE'; if ( parameters.envMap ) { switch ( parameters.combine ) { case MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; break; case MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; break; case AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; break; } } return envMapBlendingDefine; } function generateCubeUVSize( parameters ) { const imageHeight = parameters.envMapCubeUVHeight; if ( imageHeight === null ) return null; const maxMip = Math.log2( imageHeight ) - 2; const texelHeight = 1.0 / imageHeight; const texelWidth = 1.0 / ( 3 * Math.max( Math.pow( 2, maxMip ), 7 * 16 ) ); return { texelWidth, texelHeight, maxMip }; } function WebGLProgram( renderer, cacheKey, parameters, bindingStates ) { // TODO Send this event to Three.js DevTools // console.log( 'WebGLProgram', cacheKey ); const gl = renderer.getContext(); const defines = parameters.defines; let vertexShader = parameters.vertexShader; let fragmentShader = parameters.fragmentShader; const shadowMapTypeDefine = generateShadowMapTypeDefine( parameters ); const envMapTypeDefine = generateEnvMapTypeDefine( parameters ); const envMapModeDefine = generateEnvMapModeDefine( parameters ); const envMapBlendingDefine = generateEnvMapBlendingDefine( parameters ); const envMapCubeUVSize = generateCubeUVSize( parameters ); const customExtensions = parameters.isWebGL2 ? '' : generateExtensions( parameters ); const customDefines = generateDefines( defines ); const program = gl.createProgram(); let prefixVertex, prefixFragment; let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : ''; if ( parameters.isRawShaderMaterial ) { prefixVertex = [ customDefines ].filter( filterEmptyLine ).join( '\n' ); if ( prefixVertex.length > 0 ) { prefixVertex += '\n'; } prefixFragment = [ customExtensions, customDefines ].filter( filterEmptyLine ).join( '\n' ); if ( prefixFragment.length > 0 ) { prefixFragment += '\n'; } } else { prefixVertex = [ generatePrecision( parameters ), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', ( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '', ( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.iridescenceMap ? '#define USE_IRIDESCENCEMAP' : '', parameters.iridescenceThicknessMap ? '#define USE_IRIDESCENCE_THICKNESSMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularColorMap ? '#define USE_SPECULARCOLORMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.sheenColorMap ? '#define USE_SHEENCOLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEENROUGHNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', ( parameters.morphColors && parameters.isWebGL2 ) ? '#define USE_MORPHCOLORS' : '', ( parameters.morphTargetsCount > 0 && parameters.isWebGL2 ) ? '#define MORPHTARGETS_TEXTURE' : '', ( parameters.morphTargetsCount > 0 && parameters.isWebGL2 ) ? '#define MORPHTARGETS_TEXTURE_STRIDE ' + parameters.morphTextureStride : '', ( parameters.morphTargetsCount > 0 && parameters.isWebGL2 ) ? '#define MORPHTARGETS_COUNT ' + parameters.morphTargetsCount : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#if ( defined( USE_MORPHTARGETS ) && ! defined( MORPHTARGETS_TEXTURE ) )', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n' ].filter( filterEmptyLine ).join( '\n' ); prefixFragment = [ customExtensions, generatePrecision( parameters ), '#define SHADER_NAME ' + parameters.shaderName, customDefines, ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', ( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', envMapCubeUVSize ? '#define CUBEUV_TEXEL_WIDTH ' + envMapCubeUVSize.texelWidth : '', envMapCubeUVSize ? '#define CUBEUV_TEXEL_HEIGHT ' + envMapCubeUVSize.texelHeight : '', envMapCubeUVSize ? '#define CUBEUV_MAX_MIP ' + envMapCubeUVSize.maxMip + '.0' : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '', ( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.iridescence ? '#define USE_IRIDESCENCE' : '', parameters.iridescenceMap ? '#define USE_IRIDESCENCEMAP' : '', parameters.iridescenceThicknessMap ? '#define USE_IRIDESCENCE_THICKNESSMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularColorMap ? '#define USE_SPECULARCOLORMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.sheenColorMap ? '#define USE_SHEENCOLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEENROUGHNESSMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.decodeVideoTexture ? '#define DECODE_VIDEO_TEXTURE' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', ( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '', ( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below ( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '', parameters.dithering ? '#define DITHERING' : '', parameters.opaque ? '#define OPAQUE' : '', ShaderChunk[ 'encodings_pars_fragment' ], // this code is required here because it is used by the various encoding/decoding function defined below getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputEncoding ), parameters.useDepthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n' ].filter( filterEmptyLine ).join( '\n' ); } vertexShader = resolveIncludes( vertexShader ); vertexShader = replaceLightNums( vertexShader, parameters ); vertexShader = replaceClippingPlaneNums( vertexShader, parameters ); fragmentShader = resolveIncludes( fragmentShader ); fragmentShader = replaceLightNums( fragmentShader, parameters ); fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters ); vertexShader = unrollLoops( vertexShader ); fragmentShader = unrollLoops( fragmentShader ); if ( parameters.isWebGL2 && parameters.isRawShaderMaterial !== true ) { // GLSL 3.0 conversion for built-in materials and ShaderMaterial versionString = '#version 300 es\n'; prefixVertex = [ 'precision mediump sampler2DArray;', '#define attribute in', '#define varying out', '#define texture2D texture' ].join( '\n' ) + '\n' + prefixVertex; prefixFragment = [ '#define varying in', ( parameters.glslVersion === GLSL3 ) ? '' : 'layout(location = 0) out highp vec4 pc_fragColor;', ( parameters.glslVersion === GLSL3 ) ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad' ].join( '\n' ) + '\n' + prefixFragment; } const vertexGlsl = versionString + prefixVertex + vertexShader; const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); const glVertexShader = WebGLShader( gl, 35633, vertexGlsl ); const glFragmentShader = WebGLShader( gl, 35632, fragmentGlsl ); gl.attachShader( program, glVertexShader ); gl.attachShader( program, glFragmentShader ); // Force a particular attribute to index 0. if ( parameters.index0AttributeName !== undefined ) { gl.bindAttribLocation( program, 0, parameters.index0AttributeName ); } else if ( parameters.morphTargets === true ) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation( program, 0, 'position' ); } gl.linkProgram( program ); // check for link errors if ( renderer.debug.checkShaderErrors ) { const programLog = gl.getProgramInfoLog( program ).trim(); const vertexLog = gl.getShaderInfoLog( glVertexShader ).trim(); const fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim(); let runnable = true; let haveDiagnostics = true; if ( gl.getProgramParameter( program, 35714 ) === false ) { runnable = false; const vertexErrors = getShaderErrors( gl, glVertexShader, 'vertex' ); const fragmentErrors = getShaderErrors( gl, glFragmentShader, 'fragment' ); console.error( 'THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter( program, 35715 ) + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors ); } else if ( programLog !== '' ) { console.warn( 'THREE.WebGLProgram: Program Info Log:', programLog ); } else if ( vertexLog === '' || fragmentLog === '' ) { haveDiagnostics = false; } if ( haveDiagnostics ) { this.diagnostics = { runnable: runnable, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } }; } } // Clean up // Crashes in iOS9 and iOS10. #18402 // gl.detachShader( program, glVertexShader ); // gl.detachShader( program, glFragmentShader ); gl.deleteShader( glVertexShader ); gl.deleteShader( glFragmentShader ); // set up caching for uniform locations let cachedUniforms; this.getUniforms = function () { if ( cachedUniforms === undefined ) { cachedUniforms = new WebGLUniforms( gl, program ); } return cachedUniforms; }; // set up caching for attribute locations let cachedAttributes; this.getAttributes = function () { if ( cachedAttributes === undefined ) { cachedAttributes = fetchAttributeLocations( gl, program ); } return cachedAttributes; }; // free resource this.destroy = function () { bindingStates.releaseStatesOfProgram( this ); gl.deleteProgram( program ); this.program = undefined; }; // this.name = parameters.shaderName; this.id = programIdCount ++; this.cacheKey = cacheKey; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; } let _id = 0; class WebGLShaderCache { constructor() { this.shaderCache = new Map(); this.materialCache = new Map(); } update( material ) { const vertexShader = material.vertexShader; const fragmentShader = material.fragmentShader; const vertexShaderStage = this._getShaderStage( vertexShader ); const fragmentShaderStage = this._getShaderStage( fragmentShader ); const materialShaders = this._getShaderCacheForMaterial( material ); if ( materialShaders.has( vertexShaderStage ) === false ) { materialShaders.add( vertexShaderStage ); vertexShaderStage.usedTimes ++; } if ( materialShaders.has( fragmentShaderStage ) === false ) { materialShaders.add( fragmentShaderStage ); fragmentShaderStage.usedTimes ++; } return this; } remove( material ) { const materialShaders = this.materialCache.get( material ); for ( const shaderStage of materialShaders ) { shaderStage.usedTimes --; if ( shaderStage.usedTimes === 0 ) this.shaderCache.delete( shaderStage.code ); } this.materialCache.delete( material ); return this; } getVertexShaderID( material ) { return this._getShaderStage( material.vertexShader ).id; } getFragmentShaderID( material ) { return this._getShaderStage( material.fragmentShader ).id; } dispose() { this.shaderCache.clear(); this.materialCache.clear(); } _getShaderCacheForMaterial( material ) { const cache = this.materialCache; if ( cache.has( material ) === false ) { cache.set( material, new Set() ); } return cache.get( material ); } _getShaderStage( code ) { const cache = this.shaderCache; if ( cache.has( code ) === false ) { const stage = new WebGLShaderStage( code ); cache.set( code, stage ); } return cache.get( code ); } } class WebGLShaderStage { constructor( code ) { this.id = _id ++; this.code = code; this.usedTimes = 0; } } function WebGLPrograms( renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping ) { const _programLayers = new Layers(); const _customShaders = new WebGLShaderCache(); const programs = []; const isWebGL2 = capabilities.isWebGL2; const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer; const vertexTextures = capabilities.vertexTextures; let precision = capabilities.precision; const shaderIDs = { MeshDepthMaterial: 'depth', MeshDistanceMaterial: 'distanceRGBA', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshToonMaterial: 'toon', MeshStandardMaterial: 'physical', MeshPhysicalMaterial: 'physical', MeshMatcapMaterial: 'matcap', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points', ShadowMaterial: 'shadow', SpriteMaterial: 'sprite' }; function getParameters( material, lights, shadows, scene, object ) { const fog = scene.fog; const geometry = object.geometry; const environment = material.isMeshStandardMaterial ? scene.environment : null; const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment ); const envMapCubeUVHeight = ( !! envMap ) && ( envMap.mapping === CubeUVReflectionMapping ) ? envMap.image.height : null; const shaderID = shaderIDs[ material.type ]; // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) if ( material.precision !== null ) { precision = capabilities.getMaxPrecision( material.precision ); if ( precision !== material.precision ) { console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ); } } // const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; let morphTextureStride = 0; if ( geometry.morphAttributes.position !== undefined ) morphTextureStride = 1; if ( geometry.morphAttributes.normal !== undefined ) morphTextureStride = 2; if ( geometry.morphAttributes.color !== undefined ) morphTextureStride = 3; // let vertexShader, fragmentShader; let customVertexShaderID, customFragmentShaderID; if ( shaderID ) { const shader = ShaderLib[ shaderID ]; vertexShader = shader.vertexShader; fragmentShader = shader.fragmentShader; } else { vertexShader = material.vertexShader; fragmentShader = material.fragmentShader; _customShaders.update( material ); customVertexShaderID = _customShaders.getVertexShaderID( material ); customFragmentShaderID = _customShaders.getFragmentShaderID( material ); } const currentRenderTarget = renderer.getRenderTarget(); const useAlphaTest = material.alphaTest > 0; const useClearcoat = material.clearcoat > 0; const useIridescence = material.iridescence > 0; const parameters = { isWebGL2: isWebGL2, shaderID: shaderID, shaderName: material.type, vertexShader: vertexShader, fragmentShader: fragmentShader, defines: material.defines, customVertexShaderID: customVertexShaderID, customFragmentShaderID: customFragmentShaderID, isRawShaderMaterial: material.isRawShaderMaterial === true, glslVersion: material.glslVersion, precision: precision, instancing: object.isInstancedMesh === true, instancingColor: object.isInstancedMesh === true && object.instanceColor !== null, supportsVertexTextures: vertexTextures, outputEncoding: ( currentRenderTarget === null ) ? renderer.outputEncoding : ( currentRenderTarget.isXRRenderTarget === true ? currentRenderTarget.texture.encoding : LinearEncoding ), map: !! material.map, matcap: !! material.matcap, envMap: !! envMap, envMapMode: envMap && envMap.mapping, envMapCubeUVHeight: envMapCubeUVHeight, lightMap: !! material.lightMap, aoMap: !! material.aoMap, emissiveMap: !! material.emissiveMap, bumpMap: !! material.bumpMap, normalMap: !! material.normalMap, objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap, tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap, decodeVideoTexture: !! material.map && ( material.map.isVideoTexture === true ) && ( material.map.encoding === sRGBEncoding ), clearcoat: useClearcoat, clearcoatMap: useClearcoat && !! material.clearcoatMap, clearcoatRoughnessMap: useClearcoat && !! material.clearcoatRoughnessMap, clearcoatNormalMap: useClearcoat && !! material.clearcoatNormalMap, iridescence: useIridescence, iridescenceMap: useIridescence && !! material.iridescenceMap, iridescenceThicknessMap: useIridescence && !! material.iridescenceThicknessMap, displacementMap: !! material.displacementMap, roughnessMap: !! material.roughnessMap, metalnessMap: !! material.metalnessMap, specularMap: !! material.specularMap, specularIntensityMap: !! material.specularIntensityMap, specularColorMap: !! material.specularColorMap, opaque: material.transparent === false && material.blending === NormalBlending, alphaMap: !! material.alphaMap, alphaTest: useAlphaTest, gradientMap: !! material.gradientMap, sheen: material.sheen > 0, sheenColorMap: !! material.sheenColorMap, sheenRoughnessMap: !! material.sheenRoughnessMap, transmission: material.transmission > 0, transmissionMap: !! material.transmissionMap, thicknessMap: !! material.thicknessMap, combine: material.combine, vertexTangents: ( !! material.normalMap && !! geometry.attributes.tangent ), vertexColors: material.vertexColors, vertexAlphas: material.vertexColors === true && !! geometry.attributes.color && geometry.attributes.color.itemSize === 4, vertexUvs: !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatMap || !! material.clearcoatRoughnessMap || !! material.clearcoatNormalMap || !! material.iridescenceMap || !! material.iridescenceThicknessMap || !! material.displacementMap || !! material.transmissionMap || !! material.thicknessMap || !! material.specularIntensityMap || !! material.specularColorMap || !! material.sheenColorMap || !! material.sheenRoughnessMap, uvsVertexOnly: ! ( !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatNormalMap || !! material.iridescenceMap || !! material.iridescenceThicknessMap || material.transmission > 0 || !! material.transmissionMap || !! material.thicknessMap || !! material.specularIntensityMap || !! material.specularColorMap || material.sheen > 0 || !! material.sheenColorMap || !! material.sheenRoughnessMap ) && !! material.displacementMap, fog: !! fog, useFog: material.fog === true, fogExp2: ( fog && fog.isFogExp2 ), flatShading: !! material.flatShading, sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: logarithmicDepthBuffer, skinning: object.isSkinnedMesh === true, morphTargets: geometry.morphAttributes.position !== undefined, morphNormals: geometry.morphAttributes.normal !== undefined, morphColors: geometry.morphAttributes.color !== undefined, morphTargetsCount: morphTargetsCount, morphTextureStride: morphTextureStride, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length, numDirLightShadows: lights.directionalShadowMap.length, numPointLightShadows: lights.pointShadowMap.length, numSpotLightShadows: lights.spotShadowMap.length, numClippingPlanes: clipping.numPlanes, numClipIntersection: clipping.numIntersection, dithering: material.dithering, shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping, physicallyCorrectLights: renderer.physicallyCorrectLights, premultipliedAlpha: material.premultipliedAlpha, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide, useDepthPacking: !! material.depthPacking, depthPacking: material.depthPacking || 0, index0AttributeName: material.index0AttributeName, extensionDerivatives: material.extensions && material.extensions.derivatives, extensionFragDepth: material.extensions && material.extensions.fragDepth, extensionDrawBuffers: material.extensions && material.extensions.drawBuffers, extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD, rendererExtensionFragDepth: isWebGL2 || extensions.has( 'EXT_frag_depth' ), rendererExtensionDrawBuffers: isWebGL2 || extensions.has( 'WEBGL_draw_buffers' ), rendererExtensionShaderTextureLod: isWebGL2 || extensions.has( 'EXT_shader_texture_lod' ), customProgramCacheKey: material.customProgramCacheKey() }; return parameters; } function getProgramCacheKey( parameters ) { const array = []; if ( parameters.shaderID ) { array.push( parameters.shaderID ); } else { array.push( parameters.customVertexShaderID ); array.push( parameters.customFragmentShaderID ); } if ( parameters.defines !== undefined ) { for ( const name in parameters.defines ) { array.push( name ); array.push( parameters.defines[ name ] ); } } if ( parameters.isRawShaderMaterial === false ) { getProgramCacheKeyParameters( array, parameters ); getProgramCacheKeyBooleans( array, parameters ); array.push( renderer.outputEncoding ); } array.push( parameters.customProgramCacheKey ); return array.join(); } function getProgramCacheKeyParameters( array, parameters ) { array.push( parameters.precision ); array.push( parameters.outputEncoding ); array.push( parameters.envMapMode ); array.push( parameters.envMapCubeUVHeight ); array.push( parameters.combine ); array.push( parameters.vertexUvs ); array.push( parameters.fogExp2 ); array.push( parameters.sizeAttenuation ); array.push( parameters.morphTargetsCount ); array.push( parameters.morphAttributeCount ); array.push( parameters.numDirLights ); array.push( parameters.numPointLights ); array.push( parameters.numSpotLights ); array.push( parameters.numHemiLights ); array.push( parameters.numRectAreaLights ); array.push( parameters.numDirLightShadows ); array.push( parameters.numPointLightShadows ); array.push( parameters.numSpotLightShadows ); array.push( parameters.shadowMapType ); array.push( parameters.toneMapping ); array.push( parameters.numClippingPlanes ); array.push( parameters.numClipIntersection ); array.push( parameters.depthPacking ); } function getProgramCacheKeyBooleans( array, parameters ) { _programLayers.disableAll(); if ( parameters.isWebGL2 ) _programLayers.enable( 0 ); if ( parameters.supportsVertexTextures ) _programLayers.enable( 1 ); if ( parameters.instancing ) _programLayers.enable( 2 ); if ( parameters.instancingColor ) _programLayers.enable( 3 ); if ( parameters.map ) _programLayers.enable( 4 ); if ( parameters.matcap ) _programLayers.enable( 5 ); if ( parameters.envMap ) _programLayers.enable( 6 ); if ( parameters.lightMap ) _programLayers.enable( 7 ); if ( parameters.aoMap ) _programLayers.enable( 8 ); if ( parameters.emissiveMap ) _programLayers.enable( 9 ); if ( parameters.bumpMap ) _programLayers.enable( 10 ); if ( parameters.normalMap ) _programLayers.enable( 11 ); if ( parameters.objectSpaceNormalMap ) _programLayers.enable( 12 ); if ( parameters.tangentSpaceNormalMap ) _programLayers.enable( 13 ); if ( parameters.clearcoat ) _programLayers.enable( 14 ); if ( parameters.clearcoatMap ) _programLayers.enable( 15 ); if ( parameters.clearcoatRoughnessMap ) _programLayers.enable( 16 ); if ( parameters.clearcoatNormalMap ) _programLayers.enable( 17 ); if ( parameters.iridescence ) _programLayers.enable( 18 ); if ( parameters.iridescenceMap ) _programLayers.enable( 19 ); if ( parameters.iridescenceThicknessMap ) _programLayers.enable( 20 ); if ( parameters.displacementMap ) _programLayers.enable( 21 ); if ( parameters.specularMap ) _programLayers.enable( 22 ); if ( parameters.roughnessMap ) _programLayers.enable( 23 ); if ( parameters.metalnessMap ) _programLayers.enable( 24 ); if ( parameters.gradientMap ) _programLayers.enable( 25 ); if ( parameters.alphaMap ) _programLayers.enable( 26 ); if ( parameters.alphaTest ) _programLayers.enable( 27 ); if ( parameters.vertexColors ) _programLayers.enable( 28 ); if ( parameters.vertexAlphas ) _programLayers.enable( 29 ); if ( parameters.vertexUvs ) _programLayers.enable( 30 ); if ( parameters.vertexTangents ) _programLayers.enable( 31 ); if ( parameters.uvsVertexOnly ) _programLayers.enable( 32 ); if ( parameters.fog ) _programLayers.enable( 33 ); array.push( _programLayers.mask ); _programLayers.disableAll(); if ( parameters.useFog ) _programLayers.enable( 0 ); if ( parameters.flatShading ) _programLayers.enable( 1 ); if ( parameters.logarithmicDepthBuffer ) _programLayers.enable( 2 ); if ( parameters.skinning ) _programLayers.enable( 3 ); if ( parameters.morphTargets ) _programLayers.enable( 4 ); if ( parameters.morphNormals ) _programLayers.enable( 5 ); if ( parameters.morphColors ) _programLayers.enable( 6 ); if ( parameters.premultipliedAlpha ) _programLayers.enable( 7 ); if ( parameters.shadowMapEnabled ) _programLayers.enable( 8 ); if ( parameters.physicallyCorrectLights ) _programLayers.enable( 9 ); if ( parameters.doubleSided ) _programLayers.enable( 10 ); if ( parameters.flipSided ) _programLayers.enable( 11 ); if ( parameters.useDepthPacking ) _programLayers.enable( 12 ); if ( parameters.dithering ) _programLayers.enable( 13 ); if ( parameters.specularIntensityMap ) _programLayers.enable( 14 ); if ( parameters.specularColorMap ) _programLayers.enable( 15 ); if ( parameters.transmission ) _programLayers.enable( 16 ); if ( parameters.transmissionMap ) _programLayers.enable( 17 ); if ( parameters.thicknessMap ) _programLayers.enable( 18 ); if ( parameters.sheen ) _programLayers.enable( 19 ); if ( parameters.sheenColorMap ) _programLayers.enable( 20 ); if ( parameters.sheenRoughnessMap ) _programLayers.enable( 21 ); if ( parameters.decodeVideoTexture ) _programLayers.enable( 22 ); if ( parameters.opaque ) _programLayers.enable( 23 ); array.push( _programLayers.mask ); } function getUniforms( material ) { const shaderID = shaderIDs[ material.type ]; let uniforms; if ( shaderID ) { const shader = ShaderLib[ shaderID ]; uniforms = UniformsUtils.clone( shader.uniforms ); } else { uniforms = material.uniforms; } return uniforms; } function acquireProgram( parameters, cacheKey ) { let program; // Check if code has been already compiled for ( let p = 0, pl = programs.length; p < pl; p ++ ) { const preexistingProgram = programs[ p ]; if ( preexistingProgram.cacheKey === cacheKey ) { program = preexistingProgram; ++ program.usedTimes; break; } } if ( program === undefined ) { program = new WebGLProgram( renderer, cacheKey, parameters, bindingStates ); programs.push( program ); } return program; } function releaseProgram( program ) { if ( -- program.usedTimes === 0 ) { // Remove from unordered set const i = programs.indexOf( program ); programs[ i ] = programs[ programs.length - 1 ]; programs.pop(); // Free WebGL resources program.destroy(); } } function releaseShaderCache( material ) { _customShaders.remove( material ); } function dispose() { _customShaders.dispose(); } return { getParameters: getParameters, getProgramCacheKey: getProgramCacheKey, getUniforms: getUniforms, acquireProgram: acquireProgram, releaseProgram: releaseProgram, releaseShaderCache: releaseShaderCache, // Exposed for resource monitoring & error feedback via renderer.info: programs: programs, dispose: dispose }; } function WebGLProperties() { let properties = new WeakMap(); function get( object ) { let map = properties.get( object ); if ( map === undefined ) { map = {}; properties.set( object, map ); } return map; } function remove( object ) { properties.delete( object ); } function update( object, key, value ) { properties.get( object )[ key ] = value; } function dispose() { properties = new WeakMap(); } return { get: get, remove: remove, update: update, dispose: dispose }; } function painterSortStable( a, b ) { if ( a.groupOrder !== b.groupOrder ) { return a.groupOrder - b.groupOrder; } else if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.material.id !== b.material.id ) { return a.material.id - b.material.id; } else if ( a.z !== b.z ) { return a.z - b.z; } else { return a.id - b.id; } } function reversePainterSortStable( a, b ) { if ( a.groupOrder !== b.groupOrder ) { return a.groupOrder - b.groupOrder; } else if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.z !== b.z ) { return b.z - a.z; } else { return a.id - b.id; } } function WebGLRenderList() { const renderItems = []; let renderItemsIndex = 0; const opaque = []; const transmissive = []; const transparent = []; function init() { renderItemsIndex = 0; opaque.length = 0; transmissive.length = 0; transparent.length = 0; } function getNextRenderItem( object, geometry, material, groupOrder, z, group ) { let renderItem = renderItems[ renderItemsIndex ]; if ( renderItem === undefined ) { renderItem = { id: object.id, object: object, geometry: geometry, material: material, groupOrder: groupOrder, renderOrder: object.renderOrder, z: z, group: group }; renderItems[ renderItemsIndex ] = renderItem; } else { renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.groupOrder = groupOrder; renderItem.renderOrder = object.renderOrder; renderItem.z = z; renderItem.group = group; } renderItemsIndex ++; return renderItem; } function push( object, geometry, material, groupOrder, z, group ) { const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); if ( material.transmission > 0.0 ) { transmissive.push( renderItem ); } else if ( material.transparent === true ) { transparent.push( renderItem ); } else { opaque.push( renderItem ); } } function unshift( object, geometry, material, groupOrder, z, group ) { const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); if ( material.transmission > 0.0 ) { transmissive.unshift( renderItem ); } else if ( material.transparent === true ) { transparent.unshift( renderItem ); } else { opaque.unshift( renderItem ); } } function sort( customOpaqueSort, customTransparentSort ) { if ( opaque.length > 1 ) opaque.sort( customOpaqueSort || painterSortStable ); if ( transmissive.length > 1 ) transmissive.sort( customTransparentSort || reversePainterSortStable ); if ( transparent.length > 1 ) transparent.sort( customTransparentSort || reversePainterSortStable ); } function finish() { // Clear references from inactive renderItems in the list for ( let i = renderItemsIndex, il = renderItems.length; i < il; i ++ ) { const renderItem = renderItems[ i ]; if ( renderItem.id === null ) break; renderItem.id = null; renderItem.object = null; renderItem.geometry = null; renderItem.material = null; renderItem.group = null; } } return { opaque: opaque, transmissive: transmissive, transparent: transparent, init: init, push: push, unshift: unshift, finish: finish, sort: sort }; } function WebGLRenderLists() { let lists = new WeakMap(); function get( scene, renderCallDepth ) { let list; if ( lists.has( scene ) === false ) { list = new WebGLRenderList(); lists.set( scene, [ list ] ); } else { if ( renderCallDepth >= lists.get( scene ).length ) { list = new WebGLRenderList(); lists.get( scene ).push( list ); } else { list = lists.get( scene )[ renderCallDepth ]; } } return list; } function dispose() { lists = new WeakMap(); } return { get: get, dispose: dispose }; } function UniformsCache() { const lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } let uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { direction: new Vector3(), color: new Color$2() }; break; case 'SpotLight': uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color$2(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0 }; break; case 'PointLight': uniforms = { position: new Vector3(), color: new Color$2(), distance: 0, decay: 0 }; break; case 'HemisphereLight': uniforms = { direction: new Vector3(), skyColor: new Color$2(), groundColor: new Color$2() }; break; case 'RectAreaLight': uniforms = { color: new Color$2(), position: new Vector3(), halfWidth: new Vector3(), halfHeight: new Vector3() }; break; } lights[ light.id ] = uniforms; return uniforms; } }; } function ShadowUniformsCache() { const lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } let uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'SpotLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'PointLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2(), shadowCameraNear: 1, shadowCameraFar: 1000 }; break; // TODO (abelnation): set RectAreaLight shadow uniforms } lights[ light.id ] = uniforms; return uniforms; } }; } let nextVersion = 0; function shadowCastingLightsFirst( lightA, lightB ) { return ( lightB.castShadow ? 1 : 0 ) - ( lightA.castShadow ? 1 : 0 ); } function WebGLLights( extensions, capabilities ) { const cache = new UniformsCache(); const shadowCache = ShadowUniformsCache(); const state = { version: 0, hash: { directionalLength: - 1, pointLength: - 1, spotLength: - 1, rectAreaLength: - 1, hemiLength: - 1, numDirectionalShadows: - 1, numPointShadows: - 1, numSpotShadows: - 1 }, ambient: [ 0, 0, 0 ], probe: [], directional: [], directionalShadow: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotShadow: [], spotShadowMap: [], spotShadowMatrix: [], rectArea: [], rectAreaLTC1: null, rectAreaLTC2: null, point: [], pointShadow: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [] }; for ( let i = 0; i < 9; i ++ ) state.probe.push( new Vector3() ); const vector3 = new Vector3(); const matrix4 = new Matrix4(); const matrix42 = new Matrix4(); function setup( lights, physicallyCorrectLights ) { let r = 0, g = 0, b = 0; for ( let i = 0; i < 9; i ++ ) state.probe[ i ].set( 0, 0, 0 ); let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; let numDirectionalShadows = 0; let numPointShadows = 0; let numSpotShadows = 0; lights.sort( shadowCastingLightsFirst ); // artist-friendly light intensity scaling factor const scaleFactor = ( physicallyCorrectLights !== true ) ? Math.PI : 1; for ( let i = 0, l = lights.length; i < l; i ++ ) { const light = lights[ i ]; const color = light.color; const intensity = light.intensity; const distance = light.distance; const shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null; if ( light.isAmbientLight ) { r += color.r * intensity * scaleFactor; g += color.g * intensity * scaleFactor; b += color.b * intensity * scaleFactor; } else if ( light.isLightProbe ) { for ( let j = 0; j < 9; j ++ ) { state.probe[ j ].addScaledVector( light.sh.coefficients[ j ], intensity ); } } else if ( light.isDirectionalLight ) { const uniforms = cache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity * scaleFactor ); if ( light.castShadow ) { const shadow = light.shadow; const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.directionalShadow[ directionalLength ] = shadowUniforms; state.directionalShadowMap[ directionalLength ] = shadowMap; state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; numDirectionalShadows ++; } state.directional[ directionalLength ] = uniforms; directionalLength ++; } else if ( light.isSpotLight ) { const uniforms = cache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.color.copy( color ).multiplyScalar( intensity * scaleFactor ); uniforms.distance = distance; uniforms.coneCos = Math.cos( light.angle ); uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) ); uniforms.decay = light.decay; if ( light.castShadow ) { const shadow = light.shadow; const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.spotShadow[ spotLength ] = shadowUniforms; state.spotShadowMap[ spotLength ] = shadowMap; state.spotShadowMatrix[ spotLength ] = light.shadow.matrix; numSpotShadows ++; } state.spot[ spotLength ] = uniforms; spotLength ++; } else if ( light.isRectAreaLight ) { const uniforms = cache.get( light ); // (a) intensity is the total visible light emitted //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) ); // (b) intensity is the brightness of the light uniforms.color.copy( color ).multiplyScalar( intensity ); uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); state.rectArea[ rectAreaLength ] = uniforms; rectAreaLength ++; } else if ( light.isPointLight ) { const uniforms = cache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity * scaleFactor ); uniforms.distance = light.distance; uniforms.decay = light.decay; if ( light.castShadow ) { const shadow = light.shadow; const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; shadowUniforms.shadowCameraNear = shadow.camera.near; shadowUniforms.shadowCameraFar = shadow.camera.far; state.pointShadow[ pointLength ] = shadowUniforms; state.pointShadowMap[ pointLength ] = shadowMap; state.pointShadowMatrix[ pointLength ] = light.shadow.matrix; numPointShadows ++; } state.point[ pointLength ] = uniforms; pointLength ++; } else if ( light.isHemisphereLight ) { const uniforms = cache.get( light ); uniforms.skyColor.copy( light.color ).multiplyScalar( intensity * scaleFactor ); uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity * scaleFactor ); state.hemi[ hemiLength ] = uniforms; hemiLength ++; } } if ( rectAreaLength > 0 ) { if ( capabilities.isWebGL2 ) { // WebGL 2 state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; } else { // WebGL 1 if ( extensions.has( 'OES_texture_float_linear' ) === true ) { state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; } else if ( extensions.has( 'OES_texture_half_float_linear' ) === true ) { state.rectAreaLTC1 = UniformsLib.LTC_HALF_1; state.rectAreaLTC2 = UniformsLib.LTC_HALF_2; } else { console.error( 'THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.' ); } } } state.ambient[ 0 ] = r; state.ambient[ 1 ] = g; state.ambient[ 2 ] = b; const hash = state.hash; if ( hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows ) { state.directional.length = directionalLength; state.spot.length = spotLength; state.rectArea.length = rectAreaLength; state.point.length = pointLength; state.hemi.length = hemiLength; state.directionalShadow.length = numDirectionalShadows; state.directionalShadowMap.length = numDirectionalShadows; state.pointShadow.length = numPointShadows; state.pointShadowMap.length = numPointShadows; state.spotShadow.length = numSpotShadows; state.spotShadowMap.length = numSpotShadows; state.directionalShadowMatrix.length = numDirectionalShadows; state.pointShadowMatrix.length = numPointShadows; state.spotShadowMatrix.length = numSpotShadows; hash.directionalLength = directionalLength; hash.pointLength = pointLength; hash.spotLength = spotLength; hash.rectAreaLength = rectAreaLength; hash.hemiLength = hemiLength; hash.numDirectionalShadows = numDirectionalShadows; hash.numPointShadows = numPointShadows; hash.numSpotShadows = numSpotShadows; state.version = nextVersion ++; } } function setupView( lights, camera ) { let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; const viewMatrix = camera.matrixWorldInverse; for ( let i = 0, l = lights.length; i < l; i ++ ) { const light = lights[ i ]; if ( light.isDirectionalLight ) { const uniforms = state.directional[ directionalLength ]; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( vector3 ); uniforms.direction.transformDirection( viewMatrix ); directionalLength ++; } else if ( light.isSpotLight ) { const uniforms = state.spot[ spotLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( vector3 ); uniforms.direction.transformDirection( viewMatrix ); spotLength ++; } else if ( light.isRectAreaLight ) { const uniforms = state.rectArea[ rectAreaLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); // extract local rotation of light to derive width/height half vectors matrix42.identity(); matrix4.copy( light.matrixWorld ); matrix4.premultiply( viewMatrix ); matrix42.extractRotation( matrix4 ); uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); uniforms.halfWidth.applyMatrix4( matrix42 ); uniforms.halfHeight.applyMatrix4( matrix42 ); rectAreaLength ++; } else if ( light.isPointLight ) { const uniforms = state.point[ pointLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); pointLength ++; } else if ( light.isHemisphereLight ) { const uniforms = state.hemi[ hemiLength ]; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); uniforms.direction.transformDirection( viewMatrix ); hemiLength ++; } } } return { setup: setup, setupView: setupView, state: state }; } function WebGLRenderState( extensions, capabilities ) { const lights = new WebGLLights( extensions, capabilities ); const lightsArray = []; const shadowsArray = []; function init() { lightsArray.length = 0; shadowsArray.length = 0; } function pushLight( light ) { lightsArray.push( light ); } function pushShadow( shadowLight ) { shadowsArray.push( shadowLight ); } function setupLights( physicallyCorrectLights ) { lights.setup( lightsArray, physicallyCorrectLights ); } function setupLightsView( camera ) { lights.setupView( lightsArray, camera ); } const state = { lightsArray: lightsArray, shadowsArray: shadowsArray, lights: lights }; return { init: init, state: state, setupLights: setupLights, setupLightsView: setupLightsView, pushLight: pushLight, pushShadow: pushShadow }; } function WebGLRenderStates( extensions, capabilities ) { let renderStates = new WeakMap(); function get( scene, renderCallDepth = 0 ) { let renderState; if ( renderStates.has( scene ) === false ) { renderState = new WebGLRenderState( extensions, capabilities ); renderStates.set( scene, [ renderState ] ); } else { if ( renderCallDepth >= renderStates.get( scene ).length ) { renderState = new WebGLRenderState( extensions, capabilities ); renderStates.get( scene ).push( renderState ); } else { renderState = renderStates.get( scene )[ renderCallDepth ]; } } return renderState; } function dispose() { renderStates = new WeakMap(); } return { get: get, dispose: dispose }; } class MeshDepthMaterial extends Material { constructor( parameters ) { super(); this.isMeshDepthMaterial = true; this.type = 'MeshDepthMaterial'; this.depthPacking = BasicDepthPacking; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.depthPacking = source.depthPacking; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; } } class MeshDistanceMaterial extends Material { constructor( parameters ) { super(); this.isMeshDistanceMaterial = true; this.type = 'MeshDistanceMaterial'; this.referencePosition = new Vector3(); this.nearDistance = 1; this.farDistance = 1000; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.referencePosition.copy( source.referencePosition ); this.nearDistance = source.nearDistance; this.farDistance = source.farDistance; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; return this; } } const vertex$h = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}"; const fragment$h = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n\tconst float samples = float( VSM_SAMPLES );\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"; function WebGLShadowMap( _renderer, _objects, _capabilities ) { let _frustum = new Frustum(); const _shadowMapSize = new Vector2(), _viewportSize = new Vector2(), _viewport = new Vector4(), _depthMaterial = new MeshDepthMaterial( { depthPacking: RGBADepthPacking } ), _distanceMaterial = new MeshDistanceMaterial(), _materialCache = {}, _maxTextureSize = _capabilities.maxTextureSize; const shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide }; const shadowMaterialVertical = new ShaderMaterial( { defines: { VSM_SAMPLES: 8 }, uniforms: { shadow_pass: { value: null }, resolution: { value: new Vector2() }, radius: { value: 4.0 } }, vertexShader: vertex$h, fragmentShader: fragment$h } ); const shadowMaterialHorizontal = shadowMaterialVertical.clone(); shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1; const fullScreenTri = new BufferGeometry(); fullScreenTri.setAttribute( 'position', new BufferAttribute( new Float32Array( [ - 1, - 1, 0.5, 3, - 1, 0.5, - 1, 3, 0.5 ] ), 3 ) ); const fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical ); const scope = this; this.enabled = false; this.autoUpdate = true; this.needsUpdate = false; this.type = PCFShadowMap; this.render = function ( lights, scene, camera ) { if ( scope.enabled === false ) return; if ( scope.autoUpdate === false && scope.needsUpdate === false ) return; if ( lights.length === 0 ) return; const currentRenderTarget = _renderer.getRenderTarget(); const activeCubeFace = _renderer.getActiveCubeFace(); const activeMipmapLevel = _renderer.getActiveMipmapLevel(); const _state = _renderer.state; // Set GL state for depth map. _state.setBlending( NoBlending ); _state.buffers.color.setClear( 1, 1, 1, 1 ); _state.buffers.depth.setTest( true ); _state.setScissorTest( false ); // render depth map for ( let i = 0, il = lights.length; i < il; i ++ ) { const light = lights[ i ]; const shadow = light.shadow; if ( shadow === undefined ) { console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' ); continue; } if ( shadow.autoUpdate === false && shadow.needsUpdate === false ) continue; _shadowMapSize.copy( shadow.mapSize ); const shadowFrameExtents = shadow.getFrameExtents(); _shadowMapSize.multiply( shadowFrameExtents ); _viewportSize.copy( shadow.mapSize ); if ( _shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize ) { if ( _shadowMapSize.x > _maxTextureSize ) { _viewportSize.x = Math.floor( _maxTextureSize / shadowFrameExtents.x ); _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x; shadow.mapSize.x = _viewportSize.x; } if ( _shadowMapSize.y > _maxTextureSize ) { _viewportSize.y = Math.floor( _maxTextureSize / shadowFrameExtents.y ); _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y; shadow.mapSize.y = _viewportSize.y; } } if ( shadow.map === null ) { const pars = ( this.type !== VSMShadowMap ) ? { minFilter: NearestFilter, magFilter: NearestFilter } : {}; shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); shadow.map.texture.name = light.name + '.shadowMap'; shadow.camera.updateProjectionMatrix(); } _renderer.setRenderTarget( shadow.map ); _renderer.clear(); const viewportCount = shadow.getViewportCount(); for ( let vp = 0; vp < viewportCount; vp ++ ) { const viewport = shadow.getViewport( vp ); _viewport.set( _viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w ); _state.viewport( _viewport ); shadow.updateMatrices( light, vp ); _frustum = shadow.getFrustum(); renderObject( scene, camera, shadow.camera, light, this.type ); } // do blur pass for VSM if ( shadow.isPointLightShadow !== true && this.type === VSMShadowMap ) { VSMPass( shadow, camera ); } shadow.needsUpdate = false; } scope.needsUpdate = false; _renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel ); }; function VSMPass( shadow, camera ) { const geometry = _objects.update( fullScreenMesh ); if ( shadowMaterialVertical.defines.VSM_SAMPLES !== shadow.blurSamples ) { shadowMaterialVertical.defines.VSM_SAMPLES = shadow.blurSamples; shadowMaterialHorizontal.defines.VSM_SAMPLES = shadow.blurSamples; shadowMaterialVertical.needsUpdate = true; shadowMaterialHorizontal.needsUpdate = true; } if ( shadow.mapPass === null ) { shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y ); } // vertical pass shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture; shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize; shadowMaterialVertical.uniforms.radius.value = shadow.radius; _renderer.setRenderTarget( shadow.mapPass ); _renderer.clear(); _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null ); // horizontal pass shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture; shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize; shadowMaterialHorizontal.uniforms.radius.value = shadow.radius; _renderer.setRenderTarget( shadow.map ); _renderer.clear(); _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null ); } function getDepthMaterial( object, material, light, shadowCameraNear, shadowCameraFar, type ) { let result = null; const customMaterial = ( light.isPointLight === true ) ? object.customDistanceMaterial : object.customDepthMaterial; if ( customMaterial !== undefined ) { result = customMaterial; } else { result = ( light.isPointLight === true ) ? _distanceMaterial : _depthMaterial; } if ( ( _renderer.localClippingEnabled && material.clipShadows === true && Array.isArray( material.clippingPlanes ) && material.clippingPlanes.length !== 0 ) || ( material.displacementMap && material.displacementScale !== 0 ) || ( material.alphaMap && material.alphaTest > 0 ) ) { // in this case we need a unique material instance reflecting the // appropriate state const keyA = result.uuid, keyB = material.uuid; let materialsForVariant = _materialCache[ keyA ]; if ( materialsForVariant === undefined ) { materialsForVariant = {}; _materialCache[ keyA ] = materialsForVariant; } let cachedMaterial = materialsForVariant[ keyB ]; if ( cachedMaterial === undefined ) { cachedMaterial = result.clone(); materialsForVariant[ keyB ] = cachedMaterial; } result = cachedMaterial; } result.visible = material.visible; result.wireframe = material.wireframe; if ( type === VSMShadowMap ) { result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side; } else { result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ]; } result.alphaMap = material.alphaMap; result.alphaTest = material.alphaTest; result.clipShadows = material.clipShadows; result.clippingPlanes = material.clippingPlanes; result.clipIntersection = material.clipIntersection; result.displacementMap = material.displacementMap; result.displacementScale = material.displacementScale; result.displacementBias = material.displacementBias; result.wireframeLinewidth = material.wireframeLinewidth; result.linewidth = material.linewidth; if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) { result.referencePosition.setFromMatrixPosition( light.matrixWorld ); result.nearDistance = shadowCameraNear; result.farDistance = shadowCameraFar; } return result; } function renderObject( object, camera, shadowCamera, light, type ) { if ( object.visible === false ) return; const visible = object.layers.test( camera.layers ); if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) { if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) { object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); const geometry = _objects.update( object ); const material = object.material; if ( Array.isArray( material ) ) { const groups = geometry.groups; for ( let k = 0, kl = groups.length; k < kl; k ++ ) { const group = groups[ k ]; const groupMaterial = material[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { const depthMaterial = getDepthMaterial( object, groupMaterial, light, shadowCamera.near, shadowCamera.far, type ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ); } } } else if ( material.visible ) { const depthMaterial = getDepthMaterial( object, material, light, shadowCamera.near, shadowCamera.far, type ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null ); } } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { renderObject( children[ i ], camera, shadowCamera, light, type ); } } } function WebGLState( gl, extensions, capabilities ) { const isWebGL2 = capabilities.isWebGL2; function ColorBuffer() { let locked = false; const color = new Vector4(); let currentColorMask = null; const currentColorClear = new Vector4( 0, 0, 0, 0 ); return { setMask: function ( colorMask ) { if ( currentColorMask !== colorMask && ! locked ) { gl.colorMask( colorMask, colorMask, colorMask, colorMask ); currentColorMask = colorMask; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( r, g, b, a, premultipliedAlpha ) { if ( premultipliedAlpha === true ) { r *= a; g *= a; b *= a; } color.set( r, g, b, a ); if ( currentColorClear.equals( color ) === false ) { gl.clearColor( r, g, b, a ); currentColorClear.copy( color ); } }, reset: function () { locked = false; currentColorMask = null; currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state } }; } function DepthBuffer() { let locked = false; let currentDepthMask = null; let currentDepthFunc = null; let currentDepthClear = null; return { setTest: function ( depthTest ) { if ( depthTest ) { enable( 2929 ); } else { disable( 2929 ); } }, setMask: function ( depthMask ) { if ( currentDepthMask !== depthMask && ! locked ) { gl.depthMask( depthMask ); currentDepthMask = depthMask; } }, setFunc: function ( depthFunc ) { if ( currentDepthFunc !== depthFunc ) { if ( depthFunc ) { switch ( depthFunc ) { case NeverDepth: gl.depthFunc( 512 ); break; case AlwaysDepth: gl.depthFunc( 519 ); break; case LessDepth: gl.depthFunc( 513 ); break; case LessEqualDepth: gl.depthFunc( 515 ); break; case EqualDepth: gl.depthFunc( 514 ); break; case GreaterEqualDepth: gl.depthFunc( 518 ); break; case GreaterDepth: gl.depthFunc( 516 ); break; case NotEqualDepth: gl.depthFunc( 517 ); break; default: gl.depthFunc( 515 ); } } else { gl.depthFunc( 515 ); } currentDepthFunc = depthFunc; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( depth ) { if ( currentDepthClear !== depth ) { gl.clearDepth( depth ); currentDepthClear = depth; } }, reset: function () { locked = false; currentDepthMask = null; currentDepthFunc = null; currentDepthClear = null; } }; } function StencilBuffer() { let locked = false; let currentStencilMask = null; let currentStencilFunc = null; let currentStencilRef = null; let currentStencilFuncMask = null; let currentStencilFail = null; let currentStencilZFail = null; let currentStencilZPass = null; let currentStencilClear = null; return { setTest: function ( stencilTest ) { if ( ! locked ) { if ( stencilTest ) { enable( 2960 ); } else { disable( 2960 ); } } }, setMask: function ( stencilMask ) { if ( currentStencilMask !== stencilMask && ! locked ) { gl.stencilMask( stencilMask ); currentStencilMask = stencilMask; } }, setFunc: function ( stencilFunc, stencilRef, stencilMask ) { if ( currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask ) { gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilFuncMask = stencilMask; } }, setOp: function ( stencilFail, stencilZFail, stencilZPass ) { if ( currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass ) { gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( stencil ) { if ( currentStencilClear !== stencil ) { gl.clearStencil( stencil ); currentStencilClear = stencil; } }, reset: function () { locked = false; currentStencilMask = null; currentStencilFunc = null; currentStencilRef = null; currentStencilFuncMask = null; currentStencilFail = null; currentStencilZFail = null; currentStencilZPass = null; currentStencilClear = null; } }; } // const colorBuffer = new ColorBuffer(); const depthBuffer = new DepthBuffer(); const stencilBuffer = new StencilBuffer(); const uboBindings = new WeakMap(); const uboProgamMap = new WeakMap(); let enabledCapabilities = {}; let currentBoundFramebuffers = {}; let currentDrawbuffers = new WeakMap(); let defaultDrawbuffers = []; let currentProgram = null; let currentBlendingEnabled = false; let currentBlending = null; let currentBlendEquation = null; let currentBlendSrc = null; let currentBlendDst = null; let currentBlendEquationAlpha = null; let currentBlendSrcAlpha = null; let currentBlendDstAlpha = null; let currentPremultipledAlpha = false; let currentFlipSided = null; let currentCullFace = null; let currentLineWidth = null; let currentPolygonOffsetFactor = null; let currentPolygonOffsetUnits = null; const maxTextures = gl.getParameter( 35661 ); let lineWidthAvailable = false; let version = 0; const glVersion = gl.getParameter( 7938 ); if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) { version = parseFloat( /^WebGL (\d)/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 1.0 ); } else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) { version = parseFloat( /^OpenGL ES (\d)/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 2.0 ); } let currentTextureSlot = null; let currentBoundTextures = {}; const scissorParam = gl.getParameter( 3088 ); const viewportParam = gl.getParameter( 2978 ); const currentScissor = new Vector4().fromArray( scissorParam ); const currentViewport = new Vector4().fromArray( viewportParam ); function createTexture( type, target, count ) { const data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4. const texture = gl.createTexture(); gl.bindTexture( type, texture ); gl.texParameteri( type, 10241, 9728 ); gl.texParameteri( type, 10240, 9728 ); for ( let i = 0; i < count; i ++ ) { gl.texImage2D( target + i, 0, 6408, 1, 1, 0, 6408, 5121, data ); } return texture; } const emptyTextures = {}; emptyTextures[ 3553 ] = createTexture( 3553, 3553, 1 ); emptyTextures[ 34067 ] = createTexture( 34067, 34069, 6 ); // init colorBuffer.setClear( 0, 0, 0, 1 ); depthBuffer.setClear( 1 ); stencilBuffer.setClear( 0 ); enable( 2929 ); depthBuffer.setFunc( LessEqualDepth ); setFlipSided( false ); setCullFace( CullFaceBack ); enable( 2884 ); setBlending( NoBlending ); // function enable( id ) { if ( enabledCapabilities[ id ] !== true ) { gl.enable( id ); enabledCapabilities[ id ] = true; } } function disable( id ) { if ( enabledCapabilities[ id ] !== false ) { gl.disable( id ); enabledCapabilities[ id ] = false; } } function bindFramebuffer( target, framebuffer ) { if ( currentBoundFramebuffers[ target ] !== framebuffer ) { gl.bindFramebuffer( target, framebuffer ); currentBoundFramebuffers[ target ] = framebuffer; if ( isWebGL2 ) { // 36009 is equivalent to 36160 if ( target === 36009 ) { currentBoundFramebuffers[ 36160 ] = framebuffer; } if ( target === 36160 ) { currentBoundFramebuffers[ 36009 ] = framebuffer; } } return true; } return false; } function drawBuffers( renderTarget, framebuffer ) { let drawBuffers = defaultDrawbuffers; let needsUpdate = false; if ( renderTarget ) { drawBuffers = currentDrawbuffers.get( framebuffer ); if ( drawBuffers === undefined ) { drawBuffers = []; currentDrawbuffers.set( framebuffer, drawBuffers ); } if ( renderTarget.isWebGLMultipleRenderTargets ) { const textures = renderTarget.texture; if ( drawBuffers.length !== textures.length || drawBuffers[ 0 ] !== 36064 ) { for ( let i = 0, il = textures.length; i < il; i ++ ) { drawBuffers[ i ] = 36064 + i; } drawBuffers.length = textures.length; needsUpdate = true; } } else { if ( drawBuffers[ 0 ] !== 36064 ) { drawBuffers[ 0 ] = 36064; needsUpdate = true; } } } else { if ( drawBuffers[ 0 ] !== 1029 ) { drawBuffers[ 0 ] = 1029; needsUpdate = true; } } if ( needsUpdate ) { if ( capabilities.isWebGL2 ) { gl.drawBuffers( drawBuffers ); } else { extensions.get( 'WEBGL_draw_buffers' ).drawBuffersWEBGL( drawBuffers ); } } } function useProgram( program ) { if ( currentProgram !== program ) { gl.useProgram( program ); currentProgram = program; return true; } return false; } const equationToGL = { [ AddEquation ]: 32774, [ SubtractEquation ]: 32778, [ ReverseSubtractEquation ]: 32779 }; if ( isWebGL2 ) { equationToGL[ MinEquation ] = 32775; equationToGL[ MaxEquation ] = 32776; } else { const extension = extensions.get( 'EXT_blend_minmax' ); if ( extension !== null ) { equationToGL[ MinEquation ] = extension.MIN_EXT; equationToGL[ MaxEquation ] = extension.MAX_EXT; } } const factorToGL = { [ ZeroFactor ]: 0, [ OneFactor ]: 1, [ SrcColorFactor ]: 768, [ SrcAlphaFactor ]: 770, [ SrcAlphaSaturateFactor ]: 776, [ DstColorFactor ]: 774, [ DstAlphaFactor ]: 772, [ OneMinusSrcColorFactor ]: 769, [ OneMinusSrcAlphaFactor ]: 771, [ OneMinusDstColorFactor ]: 775, [ OneMinusDstAlphaFactor ]: 773 }; function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) { if ( blending === NoBlending ) { if ( currentBlendingEnabled === true ) { disable( 3042 ); currentBlendingEnabled = false; } return; } if ( currentBlendingEnabled === false ) { enable( 3042 ); currentBlendingEnabled = true; } if ( blending !== CustomBlending ) { if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) { if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) { gl.blendEquation( 32774 ); currentBlendEquation = AddEquation; currentBlendEquationAlpha = AddEquation; } if ( premultipliedAlpha ) { switch ( blending ) { case NormalBlending: gl.blendFuncSeparate( 1, 771, 1, 771 ); break; case AdditiveBlending: gl.blendFunc( 1, 1 ); break; case SubtractiveBlending: gl.blendFuncSeparate( 0, 769, 0, 1 ); break; case MultiplyBlending: gl.blendFuncSeparate( 0, 768, 0, 770 ); break; default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break; } } else { switch ( blending ) { case NormalBlending: gl.blendFuncSeparate( 770, 771, 1, 771 ); break; case AdditiveBlending: gl.blendFunc( 770, 1 ); break; case SubtractiveBlending: gl.blendFuncSeparate( 0, 769, 0, 1 ); break; case MultiplyBlending: gl.blendFunc( 0, 768 ); break; default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break; } } currentBlendSrc = null; currentBlendDst = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentBlending = blending; currentPremultipledAlpha = premultipliedAlpha; } return; } // custom blending blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst; if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] ); currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha; } if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] ); currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha; } currentBlending = blending; currentPremultipledAlpha = null; } function setMaterial( material, frontFaceCW ) { material.side === DoubleSide ? disable( 2884 ) : enable( 2884 ); let flipSided = ( material.side === BackSide ); if ( frontFaceCW ) flipSided = ! flipSided; setFlipSided( flipSided ); ( material.blending === NormalBlending && material.transparent === false ) ? setBlending( NoBlending ) : setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ); depthBuffer.setFunc( material.depthFunc ); depthBuffer.setTest( material.depthTest ); depthBuffer.setMask( material.depthWrite ); colorBuffer.setMask( material.colorWrite ); const stencilWrite = material.stencilWrite; stencilBuffer.setTest( stencilWrite ); if ( stencilWrite ) { stencilBuffer.setMask( material.stencilWriteMask ); stencilBuffer.setFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask ); stencilBuffer.setOp( material.stencilFail, material.stencilZFail, material.stencilZPass ); } setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); material.alphaToCoverage === true ? enable( 32926 ) : disable( 32926 ); } // function setFlipSided( flipSided ) { if ( currentFlipSided !== flipSided ) { if ( flipSided ) { gl.frontFace( 2304 ); } else { gl.frontFace( 2305 ); } currentFlipSided = flipSided; } } function setCullFace( cullFace ) { if ( cullFace !== CullFaceNone ) { enable( 2884 ); if ( cullFace !== currentCullFace ) { if ( cullFace === CullFaceBack ) { gl.cullFace( 1029 ); } else if ( cullFace === CullFaceFront ) { gl.cullFace( 1028 ); } else { gl.cullFace( 1032 ); } } } else { disable( 2884 ); } currentCullFace = cullFace; } function setLineWidth( width ) { if ( width !== currentLineWidth ) { if ( lineWidthAvailable ) gl.lineWidth( width ); currentLineWidth = width; } } function setPolygonOffset( polygonOffset, factor, units ) { if ( polygonOffset ) { enable( 32823 ); if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) { gl.polygonOffset( factor, units ); currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units; } } else { disable( 32823 ); } } function setScissorTest( scissorTest ) { if ( scissorTest ) { enable( 3089 ); } else { disable( 3089 ); } } // texture function activeTexture( webglSlot ) { if ( webglSlot === undefined ) webglSlot = 33984 + maxTextures - 1; if ( currentTextureSlot !== webglSlot ) { gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot; } } function bindTexture( webglType, webglTexture ) { if ( currentTextureSlot === null ) { activeTexture(); } let boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture === undefined ) { boundTexture = { type: undefined, texture: undefined }; currentBoundTextures[ currentTextureSlot ] = boundTexture; } if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] ); boundTexture.type = webglType; boundTexture.texture = webglTexture; } } function unbindTexture() { const boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture !== undefined && boundTexture.type !== undefined ) { gl.bindTexture( boundTexture.type, null ); boundTexture.type = undefined; boundTexture.texture = undefined; } } function compressedTexImage2D() { try { gl.compressedTexImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texSubImage2D() { try { gl.texSubImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texSubImage3D() { try { gl.texSubImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function compressedTexSubImage2D() { try { gl.compressedTexSubImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texStorage2D() { try { gl.texStorage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texStorage3D() { try { gl.texStorage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texImage2D() { try { gl.texImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texImage3D() { try { gl.texImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } // function scissor( scissor ) { if ( currentScissor.equals( scissor ) === false ) { gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); currentScissor.copy( scissor ); } } function viewport( viewport ) { if ( currentViewport.equals( viewport ) === false ) { gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); currentViewport.copy( viewport ); } } function updateUBOMapping( uniformsGroup, program ) { let mapping = uboProgamMap.get( program ); if ( mapping === undefined ) { mapping = new WeakMap(); uboProgamMap.set( program, mapping ); } let blockIndex = mapping.get( uniformsGroup ); if ( blockIndex === undefined ) { blockIndex = gl.getUniformBlockIndex( program, uniformsGroup.name ); mapping.set( uniformsGroup, blockIndex ); } } function uniformBlockBinding( uniformsGroup, program ) { const mapping = uboProgamMap.get( program ); const blockIndex = mapping.get( uniformsGroup ); if ( uboBindings.get( uniformsGroup ) !== blockIndex ) { // bind shader specific block index to global block point gl.uniformBlockBinding( program, blockIndex, uniformsGroup.__bindingPointIndex ); uboBindings.set( uniformsGroup, blockIndex ); } } // function reset() { // reset state gl.disable( 3042 ); gl.disable( 2884 ); gl.disable( 2929 ); gl.disable( 32823 ); gl.disable( 3089 ); gl.disable( 2960 ); gl.disable( 32926 ); gl.blendEquation( 32774 ); gl.blendFunc( 1, 0 ); gl.blendFuncSeparate( 1, 0, 1, 0 ); gl.colorMask( true, true, true, true ); gl.clearColor( 0, 0, 0, 0 ); gl.depthMask( true ); gl.depthFunc( 513 ); gl.clearDepth( 1 ); gl.stencilMask( 0xffffffff ); gl.stencilFunc( 519, 0, 0xffffffff ); gl.stencilOp( 7680, 7680, 7680 ); gl.clearStencil( 0 ); gl.cullFace( 1029 ); gl.frontFace( 2305 ); gl.polygonOffset( 0, 0 ); gl.activeTexture( 33984 ); gl.bindFramebuffer( 36160, null ); if ( isWebGL2 === true ) { gl.bindFramebuffer( 36009, null ); gl.bindFramebuffer( 36008, null ); } gl.useProgram( null ); gl.lineWidth( 1 ); gl.scissor( 0, 0, gl.canvas.width, gl.canvas.height ); gl.viewport( 0, 0, gl.canvas.width, gl.canvas.height ); // reset internals enabledCapabilities = {}; currentTextureSlot = null; currentBoundTextures = {}; currentBoundFramebuffers = {}; currentDrawbuffers = new WeakMap(); defaultDrawbuffers = []; currentProgram = null; currentBlendingEnabled = false; currentBlending = null; currentBlendEquation = null; currentBlendSrc = null; currentBlendDst = null; currentBlendEquationAlpha = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentPremultipledAlpha = false; currentFlipSided = null; currentCullFace = null; currentLineWidth = null; currentPolygonOffsetFactor = null; currentPolygonOffsetUnits = null; currentScissor.set( 0, 0, gl.canvas.width, gl.canvas.height ); currentViewport.set( 0, 0, gl.canvas.width, gl.canvas.height ); colorBuffer.reset(); depthBuffer.reset(); stencilBuffer.reset(); } return { buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer }, enable: enable, disable: disable, bindFramebuffer: bindFramebuffer, drawBuffers: drawBuffers, useProgram: useProgram, setBlending: setBlending, setMaterial: setMaterial, setFlipSided: setFlipSided, setCullFace: setCullFace, setLineWidth: setLineWidth, setPolygonOffset: setPolygonOffset, setScissorTest: setScissorTest, activeTexture: activeTexture, bindTexture: bindTexture, unbindTexture: unbindTexture, compressedTexImage2D: compressedTexImage2D, texImage2D: texImage2D, texImage3D: texImage3D, updateUBOMapping: updateUBOMapping, uniformBlockBinding: uniformBlockBinding, texStorage2D: texStorage2D, texStorage3D: texStorage3D, texSubImage2D: texSubImage2D, texSubImage3D: texSubImage3D, compressedTexSubImage2D: compressedTexSubImage2D, scissor: scissor, viewport: viewport, reset: reset }; } function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) { const isWebGL2 = capabilities.isWebGL2; const maxTextures = capabilities.maxTextures; const maxCubemapSize = capabilities.maxCubemapSize; const maxTextureSize = capabilities.maxTextureSize; const maxSamples = capabilities.maxSamples; const multisampledRTTExt = extensions.has( 'WEBGL_multisampled_render_to_texture' ) ? extensions.get( 'WEBGL_multisampled_render_to_texture' ) : null; const supportsInvalidateFramebuffer = /OculusBrowser/g.test( navigator.userAgent ); const _videoTextures = new WeakMap(); let _canvas; const _sources = new WeakMap(); // maps WebglTexture objects to instances of Source // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas, // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")! // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d). let useOffscreenCanvas = false; try { useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' // eslint-disable-next-line compat/compat && ( new OffscreenCanvas( 1, 1 ).getContext( '2d' ) ) !== null; } catch ( err ) { // Ignore any errors } function createCanvas( width, height ) { // Use OffscreenCanvas when available. Specially needed in web workers return useOffscreenCanvas ? // eslint-disable-next-line compat/compat new OffscreenCanvas( width, height ) : createElementNS( 'canvas' ); } function resizeImage( image, needsPowerOfTwo, needsNewCanvas, maxSize ) { let scale = 1; // handle case if texture exceeds max size if ( image.width > maxSize || image.height > maxSize ) { scale = maxSize / Math.max( image.width, image.height ); } // only perform resize if necessary if ( scale < 1 || needsPowerOfTwo === true ) { // only perform resize for certain image types if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor; const width = floor( scale * image.width ); const height = floor( scale * image.height ); if ( _canvas === undefined ) _canvas = createCanvas( width, height ); // cube textures can't reuse the same canvas const canvas = needsNewCanvas ? createCanvas( width, height ) : _canvas; canvas.width = width; canvas.height = height; const context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, width, height ); console.warn( 'THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').' ); return canvas; } else { if ( 'data' in image ) { console.warn( 'THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').' ); } return image; } } return image; } function isPowerOfTwo$1( image ) { return isPowerOfTwo( image.width ) && isPowerOfTwo( image.height ); } function textureNeedsPowerOfTwo( texture ) { if ( isWebGL2 ) return false; return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) || ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ); } function textureNeedsGenerateMipmaps( texture, supportsMips ) { return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; } function generateMipmap( target ) { _gl.generateMipmap( target ); } function getInternalFormat( internalFormatName, glFormat, glType, encoding, isVideoTexture = false ) { if ( isWebGL2 === false ) return glFormat; if ( internalFormatName !== null ) { if ( _gl[ internalFormatName ] !== undefined ) return _gl[ internalFormatName ]; console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' ); } let internalFormat = glFormat; if ( glFormat === 6403 ) { if ( glType === 5126 ) internalFormat = 33326; if ( glType === 5131 ) internalFormat = 33325; if ( glType === 5121 ) internalFormat = 33321; } if ( glFormat === 33319 ) { if ( glType === 5126 ) internalFormat = 33328; if ( glType === 5131 ) internalFormat = 33327; if ( glType === 5121 ) internalFormat = 33323; } if ( glFormat === 6408 ) { if ( glType === 5126 ) internalFormat = 34836; if ( glType === 5131 ) internalFormat = 34842; if ( glType === 5121 ) internalFormat = ( encoding === sRGBEncoding && isVideoTexture === false ) ? 35907 : 32856; if ( glType === 32819 ) internalFormat = 32854; if ( glType === 32820 ) internalFormat = 32855; } if ( internalFormat === 33325 || internalFormat === 33326 || internalFormat === 33327 || internalFormat === 33328 || internalFormat === 34842 || internalFormat === 34836 ) { extensions.get( 'EXT_color_buffer_float' ); } return internalFormat; } function getMipLevels( texture, image, supportsMips ) { if ( textureNeedsGenerateMipmaps( texture, supportsMips ) === true || ( texture.isFramebufferTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) ) { return Math.log2( Math.max( image.width, image.height ) ) + 1; } else if ( texture.mipmaps !== undefined && texture.mipmaps.length > 0 ) { // user-defined mipmaps return texture.mipmaps.length; } else if ( texture.isCompressedTexture && Array.isArray( texture.image ) ) { return image.mipmaps.length; } else { // texture without mipmaps (only base level) return 1; } } // Fallback filters for non-power-of-2 textures function filterFallback( f ) { if ( f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter ) { return 9728; } return 9729; } // function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); deallocateTexture( texture ); if ( texture.isVideoTexture ) { _videoTextures.delete( texture ); } } function onRenderTargetDispose( event ) { const renderTarget = event.target; renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); deallocateRenderTarget( renderTarget ); } // function deallocateTexture( texture ) { const textureProperties = properties.get( texture ); if ( textureProperties.__webglInit === undefined ) return; // check if it's necessary to remove the WebGLTexture object const source = texture.source; const webglTextures = _sources.get( source ); if ( webglTextures ) { const webglTexture = webglTextures[ textureProperties.__cacheKey ]; webglTexture.usedTimes --; // the WebGLTexture object is not used anymore, remove it if ( webglTexture.usedTimes === 0 ) { deleteTexture( texture ); } // remove the weak map entry if no WebGLTexture uses the source anymore if ( Object.keys( webglTextures ).length === 0 ) { _sources.delete( source ); } } properties.remove( texture ); } function deleteTexture( texture ) { const textureProperties = properties.get( texture ); _gl.deleteTexture( textureProperties.__webglTexture ); const source = texture.source; const webglTextures = _sources.get( source ); delete webglTextures[ textureProperties.__cacheKey ]; info.memory.textures --; } function deallocateRenderTarget( renderTarget ) { const texture = renderTarget.texture; const renderTargetProperties = properties.get( renderTarget ); const textureProperties = properties.get( texture ); if ( textureProperties.__webglTexture !== undefined ) { _gl.deleteTexture( textureProperties.__webglTexture ); info.memory.textures --; } if ( renderTarget.depthTexture ) { renderTarget.depthTexture.dispose(); } if ( renderTarget.isWebGLCubeRenderTarget ) { for ( let i = 0; i < 6; i ++ ) { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); } } else { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); if ( renderTargetProperties.__webglMultisampledFramebuffer ) _gl.deleteFramebuffer( renderTargetProperties.__webglMultisampledFramebuffer ); if ( renderTargetProperties.__webglColorRenderbuffer ) { for ( let i = 0; i < renderTargetProperties.__webglColorRenderbuffer.length; i ++ ) { if ( renderTargetProperties.__webglColorRenderbuffer[ i ] ) _gl.deleteRenderbuffer( renderTargetProperties.__webglColorRenderbuffer[ i ] ); } } if ( renderTargetProperties.__webglDepthRenderbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthRenderbuffer ); } if ( renderTarget.isWebGLMultipleRenderTargets ) { for ( let i = 0, il = texture.length; i < il; i ++ ) { const attachmentProperties = properties.get( texture[ i ] ); if ( attachmentProperties.__webglTexture ) { _gl.deleteTexture( attachmentProperties.__webglTexture ); info.memory.textures --; } properties.remove( texture[ i ] ); } } properties.remove( texture ); properties.remove( renderTarget ); } // let textureUnits = 0; function resetTextureUnits() { textureUnits = 0; } function allocateTextureUnit() { const textureUnit = textureUnits; if ( textureUnit >= maxTextures ) { console.warn( 'THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures ); } textureUnits += 1; return textureUnit; } function getTextureCacheKey( texture ) { const array = []; array.push( texture.wrapS ); array.push( texture.wrapT ); array.push( texture.magFilter ); array.push( texture.minFilter ); array.push( texture.anisotropy ); array.push( texture.internalFormat ); array.push( texture.format ); array.push( texture.type ); array.push( texture.generateMipmaps ); array.push( texture.premultiplyAlpha ); array.push( texture.flipY ); array.push( texture.unpackAlignment ); array.push( texture.encoding ); return array.join(); } // function setTexture2D( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.isVideoTexture ) updateVideoTexture( texture ); if ( texture.isRenderTargetTexture === false && texture.version > 0 && textureProperties.__version !== texture.version ) { const image = texture.image; if ( image === null ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but no image data found.' ); } else if ( image.complete === false ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' ); } else { uploadTexture( textureProperties, texture, slot ); return; } } state.activeTexture( 33984 + slot ); state.bindTexture( 3553, textureProperties.__webglTexture ); } function setTexture2DArray( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadTexture( textureProperties, texture, slot ); return; } state.activeTexture( 33984 + slot ); state.bindTexture( 35866, textureProperties.__webglTexture ); } function setTexture3D( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadTexture( textureProperties, texture, slot ); return; } state.activeTexture( 33984 + slot ); state.bindTexture( 32879, textureProperties.__webglTexture ); } function setTextureCube( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadCubeTexture( textureProperties, texture, slot ); return; } state.activeTexture( 33984 + slot ); state.bindTexture( 34067, textureProperties.__webglTexture ); } const wrappingToGL = { [ RepeatWrapping ]: 10497, [ ClampToEdgeWrapping ]: 33071, [ MirroredRepeatWrapping ]: 33648 }; const filterToGL = { [ NearestFilter ]: 9728, [ NearestMipmapNearestFilter ]: 9984, [ NearestMipmapLinearFilter ]: 9986, [ LinearFilter ]: 9729, [ LinearMipmapNearestFilter ]: 9985, [ LinearMipmapLinearFilter ]: 9987 }; function setTextureParameters( textureType, texture, supportsMips ) { if ( supportsMips ) { _gl.texParameteri( textureType, 10242, wrappingToGL[ texture.wrapS ] ); _gl.texParameteri( textureType, 10243, wrappingToGL[ texture.wrapT ] ); if ( textureType === 32879 || textureType === 35866 ) { _gl.texParameteri( textureType, 32882, wrappingToGL[ texture.wrapR ] ); } _gl.texParameteri( textureType, 10240, filterToGL[ texture.magFilter ] ); _gl.texParameteri( textureType, 10241, filterToGL[ texture.minFilter ] ); } else { _gl.texParameteri( textureType, 10242, 33071 ); _gl.texParameteri( textureType, 10243, 33071 ); if ( textureType === 32879 || textureType === 35866 ) { _gl.texParameteri( textureType, 32882, 33071 ); } if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.' ); } _gl.texParameteri( textureType, 10240, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, 10241, filterFallback( texture.minFilter ) ); if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.' ); } } if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( texture.type === FloatType && extensions.has( 'OES_texture_float_linear' ) === false ) return; // verify extension for WebGL 1 and WebGL 2 if ( isWebGL2 === false && ( texture.type === HalfFloatType && extensions.has( 'OES_texture_half_float_linear' ) === false ) ) return; // verify extension for WebGL 1 only if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) { _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) ); properties.get( texture ).__currentAnisotropy = texture.anisotropy; } } } function initTexture( textureProperties, texture ) { let forceUpload = false; if ( textureProperties.__webglInit === undefined ) { textureProperties.__webglInit = true; texture.addEventListener( 'dispose', onTextureDispose ); } // create Source <-> WebGLTextures mapping if necessary const source = texture.source; let webglTextures = _sources.get( source ); if ( webglTextures === undefined ) { webglTextures = {}; _sources.set( source, webglTextures ); } // check if there is already a WebGLTexture object for the given texture parameters const textureCacheKey = getTextureCacheKey( texture ); if ( textureCacheKey !== textureProperties.__cacheKey ) { // if not, create a new instance of WebGLTexture if ( webglTextures[ textureCacheKey ] === undefined ) { // create new entry webglTextures[ textureCacheKey ] = { texture: _gl.createTexture(), usedTimes: 0 }; info.memory.textures ++; // when a new instance of WebGLTexture was created, a texture upload is required // even if the image contents are identical forceUpload = true; } webglTextures[ textureCacheKey ].usedTimes ++; // every time the texture cache key changes, it's necessary to check if an instance of // WebGLTexture can be deleted in order to avoid a memory leak. const webglTexture = webglTextures[ textureProperties.__cacheKey ]; if ( webglTexture !== undefined ) { webglTextures[ textureProperties.__cacheKey ].usedTimes --; if ( webglTexture.usedTimes === 0 ) { deleteTexture( texture ); } } // store references to cache key and WebGLTexture object textureProperties.__cacheKey = textureCacheKey; textureProperties.__webglTexture = webglTextures[ textureCacheKey ].texture; } return forceUpload; } function uploadTexture( textureProperties, texture, slot ) { let textureType = 3553; if ( texture.isDataArrayTexture ) textureType = 35866; if ( texture.isData3DTexture ) textureType = 32879; const forceUpload = initTexture( textureProperties, texture ); const source = texture.source; state.activeTexture( 33984 + slot ); state.bindTexture( textureType, textureProperties.__webglTexture ); if ( source.version !== source.__currentVersion || forceUpload === true ) { _gl.pixelStorei( 37440, texture.flipY ); _gl.pixelStorei( 37441, texture.premultiplyAlpha ); _gl.pixelStorei( 3317, texture.unpackAlignment ); _gl.pixelStorei( 37443, 0 ); const needsPowerOfTwo = textureNeedsPowerOfTwo( texture ) && isPowerOfTwo$1( texture.image ) === false; let image = resizeImage( texture.image, needsPowerOfTwo, false, maxTextureSize ); image = verifyColorSpace( texture, image ); const supportsMips = isPowerOfTwo$1( image ) || isWebGL2, glFormat = utils.convert( texture.format, texture.encoding ); let glType = utils.convert( texture.type ), glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.encoding, texture.isVideoTexture ); setTextureParameters( textureType, texture, supportsMips ); let mipmap; const mipmaps = texture.mipmaps; const useTexStorage = ( isWebGL2 && texture.isVideoTexture !== true ); const allocateMemory = ( source.__currentVersion === undefined ) || ( forceUpload === true ); const levels = getMipLevels( texture, image, supportsMips ); if ( texture.isDepthTexture ) { // populate depth texture with dummy data glInternalFormat = 6402; if ( isWebGL2 ) { if ( texture.type === FloatType ) { glInternalFormat = 36012; } else if ( texture.type === UnsignedIntType ) { glInternalFormat = 33190; } else if ( texture.type === UnsignedInt248Type ) { glInternalFormat = 35056; } else { glInternalFormat = 33189; // WebGL2 requires sized internalformat for glTexImage2D } } else { if ( texture.type === FloatType ) { console.error( 'WebGLRenderer: Floating point depth texture requires WebGL2.' ); } } // validation checks for WebGL 1 if ( texture.format === DepthFormat && glInternalFormat === 6402 ) { // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) { console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' ); texture.type = UnsignedIntType; glType = utils.convert( texture.type ); } } if ( texture.format === DepthStencilFormat && glInternalFormat === 6402 ) { // Depth stencil textures need the DEPTH_STENCIL internal format // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) glInternalFormat = 34041; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedInt248Type ) { console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' ); texture.type = UnsignedInt248Type; glType = utils.convert( texture.type ); } } // if ( allocateMemory ) { if ( useTexStorage ) { state.texStorage2D( 3553, 1, glInternalFormat, image.width, image.height ); } else { state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null ); } } } else if ( texture.isDataTexture ) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && supportsMips ) { if ( useTexStorage && allocateMemory ) { state.texStorage2D( 3553, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height ); } for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( useTexStorage ) { state.texSubImage2D( 3553, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); } else { state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } texture.generateMipmaps = false; } else { if ( useTexStorage ) { if ( allocateMemory ) { state.texStorage2D( 3553, levels, glInternalFormat, image.width, image.height ); } state.texSubImage2D( 3553, 0, 0, 0, image.width, image.height, glFormat, glType, image.data ); } else { state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data ); } } } else if ( texture.isCompressedTexture ) { if ( useTexStorage && allocateMemory ) { state.texStorage2D( 3553, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height ); } for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( texture.format !== RGBAFormat ) { if ( glFormat !== null ) { if ( useTexStorage ) { state.compressedTexSubImage2D( 3553, i, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data ); } else { state.compressedTexImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); } } else { if ( useTexStorage ) { state.texSubImage2D( 3553, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); } else { state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } } else if ( texture.isDataArrayTexture ) { if ( useTexStorage ) { if ( allocateMemory ) { state.texStorage3D( 35866, levels, glInternalFormat, image.width, image.height, image.depth ); } state.texSubImage3D( 35866, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); } else { state.texImage3D( 35866, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); } } else if ( texture.isData3DTexture ) { if ( useTexStorage ) { if ( allocateMemory ) { state.texStorage3D( 32879, levels, glInternalFormat, image.width, image.height, image.depth ); } state.texSubImage3D( 32879, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); } else { state.texImage3D( 32879, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); } } else if ( texture.isFramebufferTexture ) { if ( allocateMemory ) { if ( useTexStorage ) { state.texStorage2D( 3553, levels, glInternalFormat, image.width, image.height ); } else { let width = image.width, height = image.height; for ( let i = 0; i < levels; i ++ ) { state.texImage2D( 3553, i, glInternalFormat, width, height, 0, glFormat, glType, null ); width >>= 1; height >>= 1; } } } } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && supportsMips ) { if ( useTexStorage && allocateMemory ) { state.texStorage2D( 3553, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height ); } for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( useTexStorage ) { state.texSubImage2D( 3553, i, 0, 0, glFormat, glType, mipmap ); } else { state.texImage2D( 3553, i, glInternalFormat, glFormat, glType, mipmap ); } } texture.generateMipmaps = false; } else { if ( useTexStorage ) { if ( allocateMemory ) { state.texStorage2D( 3553, levels, glInternalFormat, image.width, image.height ); } state.texSubImage2D( 3553, 0, 0, 0, glFormat, glType, image ); } else { state.texImage2D( 3553, 0, glInternalFormat, glFormat, glType, image ); } } } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { generateMipmap( textureType ); } source.__currentVersion = source.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } textureProperties.__version = texture.version; } function uploadCubeTexture( textureProperties, texture, slot ) { if ( texture.image.length !== 6 ) return; const forceUpload = initTexture( textureProperties, texture ); const source = texture.source; state.activeTexture( 33984 + slot ); state.bindTexture( 34067, textureProperties.__webglTexture ); if ( source.version !== source.__currentVersion || forceUpload === true ) { _gl.pixelStorei( 37440, texture.flipY ); _gl.pixelStorei( 37441, texture.premultiplyAlpha ); _gl.pixelStorei( 3317, texture.unpackAlignment ); _gl.pixelStorei( 37443, 0 ); const isCompressed = ( texture.isCompressedTexture || texture.image[ 0 ].isCompressedTexture ); const isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture ); const cubeImage = []; for ( let i = 0; i < 6; i ++ ) { if ( ! isCompressed && ! isDataTexture ) { cubeImage[ i ] = resizeImage( texture.image[ i ], false, true, maxCubemapSize ); } else { cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ]; } cubeImage[ i ] = verifyColorSpace( texture, cubeImage[ i ] ); } const image = cubeImage[ 0 ], supportsMips = isPowerOfTwo$1( image ) || isWebGL2, glFormat = utils.convert( texture.format, texture.encoding ), glType = utils.convert( texture.type ), glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.encoding ); const useTexStorage = ( isWebGL2 && texture.isVideoTexture !== true ); const allocateMemory = ( source.__currentVersion === undefined ) || ( forceUpload === true ); let levels = getMipLevels( texture, image, supportsMips ); setTextureParameters( 34067, texture, supportsMips ); let mipmaps; if ( isCompressed ) { if ( useTexStorage && allocateMemory ) { state.texStorage2D( 34067, levels, glInternalFormat, image.width, image.height ); } for ( let i = 0; i < 6; i ++ ) { mipmaps = cubeImage[ i ].mipmaps; for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; if ( texture.format !== RGBAFormat ) { if ( glFormat !== null ) { if ( useTexStorage ) { state.compressedTexSubImage2D( 34069 + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data ); } else { state.compressedTexImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' ); } } else { if ( useTexStorage ) { state.texSubImage2D( 34069 + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); } else { state.texImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } } } else { mipmaps = texture.mipmaps; if ( useTexStorage && allocateMemory ) { // TODO: Uniformly handle mipmap definitions // Normal textures and compressed cube textures define base level + mips with their mipmap array // Uncompressed cube textures use their mipmap array only for mips (no base level) if ( mipmaps.length > 0 ) levels ++; state.texStorage2D( 34067, levels, glInternalFormat, cubeImage[ 0 ].width, cubeImage[ 0 ].height ); } for ( let i = 0; i < 6; i ++ ) { if ( isDataTexture ) { if ( useTexStorage ) { state.texSubImage2D( 34069 + i, 0, 0, 0, cubeImage[ i ].width, cubeImage[ i ].height, glFormat, glType, cubeImage[ i ].data ); } else { state.texImage2D( 34069 + i, 0, glInternalFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data ); } for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; const mipmapImage = mipmap.image[ i ].image; if ( useTexStorage ) { state.texSubImage2D( 34069 + i, j + 1, 0, 0, mipmapImage.width, mipmapImage.height, glFormat, glType, mipmapImage.data ); } else { state.texImage2D( 34069 + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data ); } } } else { if ( useTexStorage ) { state.texSubImage2D( 34069 + i, 0, 0, 0, glFormat, glType, cubeImage[ i ] ); } else { state.texImage2D( 34069 + i, 0, glInternalFormat, glFormat, glType, cubeImage[ i ] ); } for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; if ( useTexStorage ) { state.texSubImage2D( 34069 + i, j + 1, 0, 0, glFormat, glType, mipmap.image[ i ] ); } else { state.texImage2D( 34069 + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[ i ] ); } } } } } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { // We assume images for cube map have the same size. generateMipmap( 34067 ); } source.__currentVersion = source.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } textureProperties.__version = texture.version; } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture( framebuffer, renderTarget, texture, attachment, textureTarget ) { const glFormat = utils.convert( texture.format, texture.encoding ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.encoding ); const renderTargetProperties = properties.get( renderTarget ); if ( ! renderTargetProperties.__hasExternalTextures ) { if ( textureTarget === 32879 || textureTarget === 35866 ) { state.texImage3D( textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null ); } else { state.texImage2D( textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); } } state.bindFramebuffer( 36160, framebuffer ); if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.framebufferTexture2DMultisampleEXT( 36160, attachment, textureTarget, properties.get( texture ).__webglTexture, 0, getRenderTargetSamples( renderTarget ) ); } else { _gl.framebufferTexture2D( 36160, attachment, textureTarget, properties.get( texture ).__webglTexture, 0 ); } state.bindFramebuffer( 36160, null ); } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage( renderbuffer, renderTarget, isMultisample ) { _gl.bindRenderbuffer( 36161, renderbuffer ); if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { let glInternalFormat = 33189; if ( isMultisample || useMultisampledRTT( renderTarget ) ) { const depthTexture = renderTarget.depthTexture; if ( depthTexture && depthTexture.isDepthTexture ) { if ( depthTexture.type === FloatType ) { glInternalFormat = 36012; } else if ( depthTexture.type === UnsignedIntType ) { glInternalFormat = 33190; } } const samples = getRenderTargetSamples( renderTarget ); if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.renderbufferStorageMultisampleEXT( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } } else { _gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height ); } _gl.framebufferRenderbuffer( 36160, 36096, 36161, renderbuffer ); } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { const samples = getRenderTargetSamples( renderTarget ); if ( isMultisample && useMultisampledRTT( renderTarget ) === false ) { _gl.renderbufferStorageMultisample( 36161, samples, 35056, renderTarget.width, renderTarget.height ); } else if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.renderbufferStorageMultisampleEXT( 36161, samples, 35056, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( 36161, 34041, renderTarget.width, renderTarget.height ); } _gl.framebufferRenderbuffer( 36160, 33306, 36161, renderbuffer ); } else { const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [ renderTarget.texture ]; for ( let i = 0; i < textures.length; i ++ ) { const texture = textures[ i ]; const glFormat = utils.convert( texture.format, texture.encoding ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.encoding ); const samples = getRenderTargetSamples( renderTarget ); if ( isMultisample && useMultisampledRTT( renderTarget ) === false ) { _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.renderbufferStorageMultisampleEXT( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height ); } } } _gl.bindRenderbuffer( 36161, null ); } // Setup resources for a Depth Texture for a FBO (needs an extension) function setupDepthTexture( framebuffer, renderTarget ) { const isCube = ( renderTarget && renderTarget.isWebGLCubeRenderTarget ); if ( isCube ) throw new Error( 'Depth Texture with cube render targets is not supported' ); state.bindFramebuffer( 36160, framebuffer ); if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) { throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' ); } // upload an empty depth texture with framebuffer size if ( ! properties.get( renderTarget.depthTexture ).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height ) { renderTarget.depthTexture.image.width = renderTarget.width; renderTarget.depthTexture.image.height = renderTarget.height; renderTarget.depthTexture.needsUpdate = true; } setTexture2D( renderTarget.depthTexture, 0 ); const webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture; const samples = getRenderTargetSamples( renderTarget ); if ( renderTarget.depthTexture.format === DepthFormat ) { if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.framebufferTexture2DMultisampleEXT( 36160, 36096, 3553, webglDepthTexture, 0, samples ); } else { _gl.framebufferTexture2D( 36160, 36096, 3553, webglDepthTexture, 0 ); } } else if ( renderTarget.depthTexture.format === DepthStencilFormat ) { if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.framebufferTexture2DMultisampleEXT( 36160, 33306, 3553, webglDepthTexture, 0, samples ); } else { _gl.framebufferTexture2D( 36160, 33306, 3553, webglDepthTexture, 0 ); } } else { throw new Error( 'Unknown depthTexture format' ); } } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); const isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); if ( renderTarget.depthTexture && ! renderTargetProperties.__autoAllocateDepthBuffer ) { if ( isCube ) throw new Error( 'target.depthTexture not supported in Cube render targets' ); setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget ); } else { if ( isCube ) { renderTargetProperties.__webglDepthbuffer = []; for ( let i = 0; i < 6; i ++ ) { state.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer[ i ] ); renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget, false ); } } else { state.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer ); renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget, false ); } } state.bindFramebuffer( 36160, null ); } // rebind framebuffer with external textures function rebindTextures( renderTarget, colorTexture, depthTexture ) { const renderTargetProperties = properties.get( renderTarget ); if ( colorTexture !== undefined ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, renderTarget.texture, 36064, 3553 ); } if ( depthTexture !== undefined ) { setupDepthRenderbuffer( renderTarget ); } } // Set up GL resources for the render target function setupRenderTarget( renderTarget ) { const texture = renderTarget.texture; const renderTargetProperties = properties.get( renderTarget ); const textureProperties = properties.get( texture ); renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); if ( renderTarget.isWebGLMultipleRenderTargets !== true ) { if ( textureProperties.__webglTexture === undefined ) { textureProperties.__webglTexture = _gl.createTexture(); } textureProperties.__version = texture.version; info.memory.textures ++; } const isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); const isMultipleRenderTargets = ( renderTarget.isWebGLMultipleRenderTargets === true ); const supportsMips = isPowerOfTwo$1( renderTarget ) || isWebGL2; // Setup framebuffer if ( isCube ) { renderTargetProperties.__webglFramebuffer = []; for ( let i = 0; i < 6; i ++ ) { renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); if ( isMultipleRenderTargets ) { if ( capabilities.drawBuffers ) { const textures = renderTarget.texture; for ( let i = 0, il = textures.length; i < il; i ++ ) { const attachmentProperties = properties.get( textures[ i ] ); if ( attachmentProperties.__webglTexture === undefined ) { attachmentProperties.__webglTexture = _gl.createTexture(); info.memory.textures ++; } } } else { console.warn( 'THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.' ); } } if ( ( isWebGL2 && renderTarget.samples > 0 ) && useMultisampledRTT( renderTarget ) === false ) { const textures = isMultipleRenderTargets ? texture : [ texture ]; renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer(); renderTargetProperties.__webglColorRenderbuffer = []; state.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); for ( let i = 0; i < textures.length; i ++ ) { const texture = textures[ i ]; renderTargetProperties.__webglColorRenderbuffer[ i ] = _gl.createRenderbuffer(); _gl.bindRenderbuffer( 36161, renderTargetProperties.__webglColorRenderbuffer[ i ] ); const glFormat = utils.convert( texture.format, texture.encoding ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.encoding ); const samples = getRenderTargetSamples( renderTarget ); _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( 36160, 36064 + i, 36161, renderTargetProperties.__webglColorRenderbuffer[ i ] ); } _gl.bindRenderbuffer( 36161, null ); if ( renderTarget.depthBuffer ) { renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true ); } state.bindFramebuffer( 36160, null ); } } // Setup color buffer if ( isCube ) { state.bindTexture( 34067, textureProperties.__webglTexture ); setTextureParameters( 34067, texture, supportsMips ); for ( let i = 0; i < 6; i ++ ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, texture, 36064, 34069 + i ); } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { generateMipmap( 34067 ); } state.unbindTexture(); } else if ( isMultipleRenderTargets ) { const textures = renderTarget.texture; for ( let i = 0, il = textures.length; i < il; i ++ ) { const attachment = textures[ i ]; const attachmentProperties = properties.get( attachment ); state.bindTexture( 3553, attachmentProperties.__webglTexture ); setTextureParameters( 3553, attachment, supportsMips ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, attachment, 36064 + i, 3553 ); if ( textureNeedsGenerateMipmaps( attachment, supportsMips ) ) { generateMipmap( 3553 ); } } state.unbindTexture(); } else { let glTextureType = 3553; if ( renderTarget.isWebGL3DRenderTarget || renderTarget.isWebGLArrayRenderTarget ) { if ( isWebGL2 ) { glTextureType = renderTarget.isWebGL3DRenderTarget ? 32879 : 35866; } else { console.error( 'THREE.WebGLTextures: THREE.Data3DTexture and THREE.DataArrayTexture only supported with WebGL2.' ); } } state.bindTexture( glTextureType, textureProperties.__webglTexture ); setTextureParameters( glTextureType, texture, supportsMips ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, texture, 36064, glTextureType ); if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { generateMipmap( glTextureType ); } state.unbindTexture(); } // Setup depth and stencil buffers if ( renderTarget.depthBuffer ) { setupDepthRenderbuffer( renderTarget ); } } function updateRenderTargetMipmap( renderTarget ) { const supportsMips = isPowerOfTwo$1( renderTarget ) || isWebGL2; const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [ renderTarget.texture ]; for ( let i = 0, il = textures.length; i < il; i ++ ) { const texture = textures[ i ]; if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { const target = renderTarget.isWebGLCubeRenderTarget ? 34067 : 3553; const webglTexture = properties.get( texture ).__webglTexture; state.bindTexture( target, webglTexture ); generateMipmap( target ); state.unbindTexture(); } } } function updateMultisampleRenderTarget( renderTarget ) { if ( ( isWebGL2 && renderTarget.samples > 0 ) && useMultisampledRTT( renderTarget ) === false ) { const textures = renderTarget.isWebGLMultipleRenderTargets ? renderTarget.texture : [ renderTarget.texture ]; const width = renderTarget.width; const height = renderTarget.height; let mask = 16384; const invalidationArray = []; const depthStyle = renderTarget.stencilBuffer ? 33306 : 36096; const renderTargetProperties = properties.get( renderTarget ); const isMultipleRenderTargets = ( renderTarget.isWebGLMultipleRenderTargets === true ); // If MRT we need to remove FBO attachments if ( isMultipleRenderTargets ) { for ( let i = 0; i < textures.length; i ++ ) { state.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); _gl.framebufferRenderbuffer( 36160, 36064 + i, 36161, null ); state.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer ); _gl.framebufferTexture2D( 36009, 36064 + i, 3553, null, 0 ); } } state.bindFramebuffer( 36008, renderTargetProperties.__webglMultisampledFramebuffer ); state.bindFramebuffer( 36009, renderTargetProperties.__webglFramebuffer ); for ( let i = 0; i < textures.length; i ++ ) { invalidationArray.push( 36064 + i ); if ( renderTarget.depthBuffer ) { invalidationArray.push( depthStyle ); } const ignoreDepthValues = ( renderTargetProperties.__ignoreDepthValues !== undefined ) ? renderTargetProperties.__ignoreDepthValues : false; if ( ignoreDepthValues === false ) { if ( renderTarget.depthBuffer ) mask |= 256; if ( renderTarget.stencilBuffer ) mask |= 1024; } if ( isMultipleRenderTargets ) { _gl.framebufferRenderbuffer( 36008, 36064, 36161, renderTargetProperties.__webglColorRenderbuffer[ i ] ); } if ( ignoreDepthValues === true ) { _gl.invalidateFramebuffer( 36008, [ depthStyle ] ); _gl.invalidateFramebuffer( 36009, [ depthStyle ] ); } if ( isMultipleRenderTargets ) { const webglTexture = properties.get( textures[ i ] ).__webglTexture; _gl.framebufferTexture2D( 36009, 36064, 3553, webglTexture, 0 ); } _gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, 9728 ); if ( supportsInvalidateFramebuffer ) { _gl.invalidateFramebuffer( 36008, invalidationArray ); } } state.bindFramebuffer( 36008, null ); state.bindFramebuffer( 36009, null ); // If MRT since pre-blit we removed the FBO we need to reconstruct the attachments if ( isMultipleRenderTargets ) { for ( let i = 0; i < textures.length; i ++ ) { state.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); _gl.framebufferRenderbuffer( 36160, 36064 + i, 36161, renderTargetProperties.__webglColorRenderbuffer[ i ] ); const webglTexture = properties.get( textures[ i ] ).__webglTexture; state.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer ); _gl.framebufferTexture2D( 36009, 36064 + i, 3553, webglTexture, 0 ); } } state.bindFramebuffer( 36009, renderTargetProperties.__webglMultisampledFramebuffer ); } } function getRenderTargetSamples( renderTarget ) { return Math.min( maxSamples, renderTarget.samples ); } function useMultisampledRTT( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); return isWebGL2 && renderTarget.samples > 0 && extensions.has( 'WEBGL_multisampled_render_to_texture' ) === true && renderTargetProperties.__useRenderToTexture !== false; } function updateVideoTexture( texture ) { const frame = info.render.frame; // Check the last frame we updated the VideoTexture if ( _videoTextures.get( texture ) !== frame ) { _videoTextures.set( texture, frame ); texture.update(); } } function verifyColorSpace( texture, image ) { const encoding = texture.encoding; const format = texture.format; const type = texture.type; if ( texture.isCompressedTexture === true || texture.isVideoTexture === true || texture.format === _SRGBAFormat ) return image; if ( encoding !== LinearEncoding ) { // sRGB if ( encoding === sRGBEncoding ) { if ( isWebGL2 === false ) { // in WebGL 1, try to use EXT_sRGB extension and unsized formats if ( extensions.has( 'EXT_sRGB' ) === true && format === RGBAFormat ) { texture.format = _SRGBAFormat; // it's not possible to generate mips in WebGL 1 with this extension texture.minFilter = LinearFilter; texture.generateMipmaps = false; } else { // slow fallback (CPU decode) image = ImageUtils.sRGBToLinear( image ); } } else { // in WebGL 2 uncompressed textures can only be sRGB encoded if they have the RGBA8 format if ( format !== RGBAFormat || type !== UnsignedByteType ) { console.warn( 'THREE.WebGLTextures: sRGB encoded textures have to use RGBAFormat and UnsignedByteType.' ); } } } else { console.error( 'THREE.WebGLTextures: Unsupported texture encoding:', encoding ); } } return image; } // this.allocateTextureUnit = allocateTextureUnit; this.resetTextureUnits = resetTextureUnits; this.setTexture2D = setTexture2D; this.setTexture2DArray = setTexture2DArray; this.setTexture3D = setTexture3D; this.setTextureCube = setTextureCube; this.rebindTextures = rebindTextures; this.setupRenderTarget = setupRenderTarget; this.updateRenderTargetMipmap = updateRenderTargetMipmap; this.updateMultisampleRenderTarget = updateMultisampleRenderTarget; this.setupDepthRenderbuffer = setupDepthRenderbuffer; this.setupFrameBufferTexture = setupFrameBufferTexture; this.useMultisampledRTT = useMultisampledRTT; } function WebGLUtils( gl, extensions, capabilities ) { const isWebGL2 = capabilities.isWebGL2; function convert( p, encoding = null ) { let extension; if ( p === UnsignedByteType ) return 5121; if ( p === UnsignedShort4444Type ) return 32819; if ( p === UnsignedShort5551Type ) return 32820; if ( p === ByteType ) return 5120; if ( p === ShortType ) return 5122; if ( p === UnsignedShortType ) return 5123; if ( p === IntType ) return 5124; if ( p === UnsignedIntType ) return 5125; if ( p === FloatType ) return 5126; if ( p === HalfFloatType ) { if ( isWebGL2 ) return 5131; extension = extensions.get( 'OES_texture_half_float' ); if ( extension !== null ) { return extension.HALF_FLOAT_OES; } else { return null; } } if ( p === AlphaFormat ) return 6406; if ( p === RGBAFormat ) return 6408; if ( p === LuminanceFormat ) return 6409; if ( p === LuminanceAlphaFormat ) return 6410; if ( p === DepthFormat ) return 6402; if ( p === DepthStencilFormat ) return 34041; if ( p === RedFormat ) return 6403; if ( p === RGBFormat ) { console.warn( 'THREE.WebGLRenderer: THREE.RGBFormat has been removed. Use THREE.RGBAFormat instead. https://github.com/mrdoob/three.js/pull/23228' ); return 6408; } // WebGL 1 sRGB fallback if ( p === _SRGBAFormat ) { extension = extensions.get( 'EXT_sRGB' ); if ( extension !== null ) { return extension.SRGB_ALPHA_EXT; } else { return null; } } // WebGL2 formats. if ( p === RedIntegerFormat ) return 36244; if ( p === RGFormat ) return 33319; if ( p === RGIntegerFormat ) return 33320; if ( p === RGBAIntegerFormat ) return 36249; // S3TC if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { if ( encoding === sRGBEncoding ) { extension = extensions.get( 'WEBGL_compressed_texture_s3tc_srgb' ); if ( extension !== null ) { if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT; if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT; } else { return null; } } else { extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); if ( extension !== null ) { if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } else { return null; } } } // PVRTC if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); if ( extension !== null ) { if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } else { return null; } } // ETC1 if ( p === RGB_ETC1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_etc1' ); if ( extension !== null ) { return extension.COMPRESSED_RGB_ETC1_WEBGL; } else { return null; } } // ETC2 if ( p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_etc' ); if ( extension !== null ) { if ( p === RGB_ETC2_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ETC2 : extension.COMPRESSED_RGB8_ETC2; if ( p === RGBA_ETC2_EAC_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ETC2_EAC : extension.COMPRESSED_RGBA8_ETC2_EAC; } else { return null; } } // ASTC if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_astc' ); if ( extension !== null ) { if ( p === RGBA_ASTC_4x4_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR : extension.COMPRESSED_RGBA_ASTC_4x4_KHR; if ( p === RGBA_ASTC_5x4_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR : extension.COMPRESSED_RGBA_ASTC_5x4_KHR; if ( p === RGBA_ASTC_5x5_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR : extension.COMPRESSED_RGBA_ASTC_5x5_KHR; if ( p === RGBA_ASTC_6x5_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR : extension.COMPRESSED_RGBA_ASTC_6x5_KHR; if ( p === RGBA_ASTC_6x6_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR : extension.COMPRESSED_RGBA_ASTC_6x6_KHR; if ( p === RGBA_ASTC_8x5_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR : extension.COMPRESSED_RGBA_ASTC_8x5_KHR; if ( p === RGBA_ASTC_8x6_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR : extension.COMPRESSED_RGBA_ASTC_8x6_KHR; if ( p === RGBA_ASTC_8x8_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR : extension.COMPRESSED_RGBA_ASTC_8x8_KHR; if ( p === RGBA_ASTC_10x5_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR : extension.COMPRESSED_RGBA_ASTC_10x5_KHR; if ( p === RGBA_ASTC_10x6_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR : extension.COMPRESSED_RGBA_ASTC_10x6_KHR; if ( p === RGBA_ASTC_10x8_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR : extension.COMPRESSED_RGBA_ASTC_10x8_KHR; if ( p === RGBA_ASTC_10x10_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR : extension.COMPRESSED_RGBA_ASTC_10x10_KHR; if ( p === RGBA_ASTC_12x10_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR : extension.COMPRESSED_RGBA_ASTC_12x10_KHR; if ( p === RGBA_ASTC_12x12_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR : extension.COMPRESSED_RGBA_ASTC_12x12_KHR; } else { return null; } } // BPTC if ( p === RGBA_BPTC_Format ) { extension = extensions.get( 'EXT_texture_compression_bptc' ); if ( extension !== null ) { if ( p === RGBA_BPTC_Format ) return ( encoding === sRGBEncoding ) ? extension.COMPRESSED_SRGB_ALPHA_BPTC_UNORM_EXT : extension.COMPRESSED_RGBA_BPTC_UNORM_EXT; } else { return null; } } // if ( p === UnsignedInt248Type ) { if ( isWebGL2 ) return 34042; extension = extensions.get( 'WEBGL_depth_texture' ); if ( extension !== null ) { return extension.UNSIGNED_INT_24_8_WEBGL; } else { return null; } } // if "p" can't be resolved, assume the user defines a WebGL constant as a string (fallback/workaround for packed RGB formats) return ( gl[ p ] !== undefined ) ? gl[ p ] : null; } return { convert: convert }; } class ArrayCamera extends PerspectiveCamera { constructor( array = [] ) { super(); this.isArrayCamera = true; this.cameras = array; } } class Group$1 extends Object3D { constructor() { super(); this.isGroup = true; this.type = 'Group'; } } const _moveEvent = { type: 'move' }; class WebXRController { constructor() { this._targetRay = null; this._grip = null; this._hand = null; } getHandSpace() { if ( this._hand === null ) { this._hand = new Group$1(); this._hand.matrixAutoUpdate = false; this._hand.visible = false; this._hand.joints = {}; this._hand.inputState = { pinching: false }; } return this._hand; } getTargetRaySpace() { if ( this._targetRay === null ) { this._targetRay = new Group$1(); this._targetRay.matrixAutoUpdate = false; this._targetRay.visible = false; this._targetRay.hasLinearVelocity = false; this._targetRay.linearVelocity = new Vector3(); this._targetRay.hasAngularVelocity = false; this._targetRay.angularVelocity = new Vector3(); } return this._targetRay; } getGripSpace() { if ( this._grip === null ) { this._grip = new Group$1(); this._grip.matrixAutoUpdate = false; this._grip.visible = false; this._grip.hasLinearVelocity = false; this._grip.linearVelocity = new Vector3(); this._grip.hasAngularVelocity = false; this._grip.angularVelocity = new Vector3(); } return this._grip; } dispatchEvent( event ) { if ( this._targetRay !== null ) { this._targetRay.dispatchEvent( event ); } if ( this._grip !== null ) { this._grip.dispatchEvent( event ); } if ( this._hand !== null ) { this._hand.dispatchEvent( event ); } return this; } disconnect( inputSource ) { this.dispatchEvent( { type: 'disconnected', data: inputSource } ); if ( this._targetRay !== null ) { this._targetRay.visible = false; } if ( this._grip !== null ) { this._grip.visible = false; } if ( this._hand !== null ) { this._hand.visible = false; } return this; } update( inputSource, frame, referenceSpace ) { let inputPose = null; let gripPose = null; let handPose = null; const targetRay = this._targetRay; const grip = this._grip; const hand = this._hand; if ( inputSource && frame.session.visibilityState !== 'visible-blurred' ) { if ( hand && inputSource.hand ) { handPose = true; for ( const inputjoint of inputSource.hand.values() ) { // Update the joints groups with the XRJoint poses const jointPose = frame.getJointPose( inputjoint, referenceSpace ); if ( hand.joints[ inputjoint.jointName ] === undefined ) { // The transform of this joint will be updated with the joint pose on each frame const joint = new Group$1(); joint.matrixAutoUpdate = false; joint.visible = false; hand.joints[ inputjoint.jointName ] = joint; // ?? hand.add( joint ); } const joint = hand.joints[ inputjoint.jointName ]; if ( jointPose !== null ) { joint.matrix.fromArray( jointPose.transform.matrix ); joint.matrix.decompose( joint.position, joint.rotation, joint.scale ); joint.jointRadius = jointPose.radius; } joint.visible = jointPose !== null; } // Custom events // Check pinchz const indexTip = hand.joints[ 'index-finger-tip' ]; const thumbTip = hand.joints[ 'thumb-tip' ]; const distance = indexTip.position.distanceTo( thumbTip.position ); const distanceToPinch = 0.02; const threshold = 0.005; if ( hand.inputState.pinching && distance > distanceToPinch + threshold ) { hand.inputState.pinching = false; this.dispatchEvent( { type: 'pinchend', handedness: inputSource.handedness, target: this } ); } else if ( ! hand.inputState.pinching && distance <= distanceToPinch - threshold ) { hand.inputState.pinching = true; this.dispatchEvent( { type: 'pinchstart', handedness: inputSource.handedness, target: this } ); } } else { if ( grip !== null && inputSource.gripSpace ) { gripPose = frame.getPose( inputSource.gripSpace, referenceSpace ); if ( gripPose !== null ) { grip.matrix.fromArray( gripPose.transform.matrix ); grip.matrix.decompose( grip.position, grip.rotation, grip.scale ); if ( gripPose.linearVelocity ) { grip.hasLinearVelocity = true; grip.linearVelocity.copy( gripPose.linearVelocity ); } else { grip.hasLinearVelocity = false; } if ( gripPose.angularVelocity ) { grip.hasAngularVelocity = true; grip.angularVelocity.copy( gripPose.angularVelocity ); } else { grip.hasAngularVelocity = false; } } } } if ( targetRay !== null ) { inputPose = frame.getPose( inputSource.targetRaySpace, referenceSpace ); // Some runtimes (namely Vive Cosmos with Vive OpenXR Runtime) have only grip space and ray space is equal to it if ( inputPose === null && gripPose !== null ) { inputPose = gripPose; } if ( inputPose !== null ) { targetRay.matrix.fromArray( inputPose.transform.matrix ); targetRay.matrix.decompose( targetRay.position, targetRay.rotation, targetRay.scale ); if ( inputPose.linearVelocity ) { targetRay.hasLinearVelocity = true; targetRay.linearVelocity.copy( inputPose.linearVelocity ); } else { targetRay.hasLinearVelocity = false; } if ( inputPose.angularVelocity ) { targetRay.hasAngularVelocity = true; targetRay.angularVelocity.copy( inputPose.angularVelocity ); } else { targetRay.hasAngularVelocity = false; } this.dispatchEvent( _moveEvent ); } } } if ( targetRay !== null ) { targetRay.visible = ( inputPose !== null ); } if ( grip !== null ) { grip.visible = ( gripPose !== null ); } if ( hand !== null ) { hand.visible = ( handPose !== null ); } return this; } } class DepthTexture extends Texture { constructor( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) { format = format !== undefined ? format : DepthFormat; if ( format !== DepthFormat && format !== DepthStencilFormat ) { throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' ); } if ( type === undefined && format === DepthFormat ) type = UnsignedIntType; if ( type === undefined && format === DepthStencilFormat ) type = UnsignedInt248Type; super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.isDepthTexture = true; this.image = { width: width, height: height }; this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; this.flipY = false; this.generateMipmaps = false; } } class WebXRManager extends EventDispatcher { constructor( renderer, gl ) { super(); const scope = this; let session = null; let framebufferScaleFactor = 1.0; let referenceSpace = null; let referenceSpaceType = 'local-floor'; let customReferenceSpace = null; let pose = null; let glBinding = null; let glProjLayer = null; let glBaseLayer = null; let xrFrame = null; const attributes = gl.getContextAttributes(); let initialRenderTarget = null; let newRenderTarget = null; const controllers = []; const controllerInputSources = []; // const cameraL = new PerspectiveCamera(); cameraL.layers.enable( 1 ); cameraL.viewport = new Vector4(); const cameraR = new PerspectiveCamera(); cameraR.layers.enable( 2 ); cameraR.viewport = new Vector4(); const cameras = [ cameraL, cameraR ]; const cameraVR = new ArrayCamera(); cameraVR.layers.enable( 1 ); cameraVR.layers.enable( 2 ); let _currentDepthNear = null; let _currentDepthFar = null; // this.cameraAutoUpdate = true; this.enabled = false; this.isPresenting = false; this.getController = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getTargetRaySpace(); }; this.getControllerGrip = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getGripSpace(); }; this.getHand = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getHandSpace(); }; // function onSessionEvent( event ) { const controllerIndex = controllerInputSources.indexOf( event.inputSource ); if ( controllerIndex === - 1 ) { return; } const controller = controllers[ controllerIndex ]; if ( controller !== undefined ) { controller.dispatchEvent( { type: event.type, data: event.inputSource } ); } } function onSessionEnd() { session.removeEventListener( 'select', onSessionEvent ); session.removeEventListener( 'selectstart', onSessionEvent ); session.removeEventListener( 'selectend', onSessionEvent ); session.removeEventListener( 'squeeze', onSessionEvent ); session.removeEventListener( 'squeezestart', onSessionEvent ); session.removeEventListener( 'squeezeend', onSessionEvent ); session.removeEventListener( 'end', onSessionEnd ); session.removeEventListener( 'inputsourceschange', onInputSourcesChange ); for ( let i = 0; i < controllers.length; i ++ ) { const inputSource = controllerInputSources[ i ]; if ( inputSource === null ) continue; controllerInputSources[ i ] = null; controllers[ i ].disconnect( inputSource ); } _currentDepthNear = null; _currentDepthFar = null; // restore framebuffer/rendering state renderer.setRenderTarget( initialRenderTarget ); glBaseLayer = null; glProjLayer = null; glBinding = null; session = null; newRenderTarget = null; // animation.stop(); scope.isPresenting = false; scope.dispatchEvent( { type: 'sessionend' } ); } this.setFramebufferScaleFactor = function ( value ) { framebufferScaleFactor = value; if ( scope.isPresenting === true ) { console.warn( 'THREE.WebXRManager: Cannot change framebuffer scale while presenting.' ); } }; this.setReferenceSpaceType = function ( value ) { referenceSpaceType = value; if ( scope.isPresenting === true ) { console.warn( 'THREE.WebXRManager: Cannot change reference space type while presenting.' ); } }; this.getReferenceSpace = function () { return customReferenceSpace || referenceSpace; }; this.setReferenceSpace = function ( space ) { customReferenceSpace = space; }; this.getBaseLayer = function () { return glProjLayer !== null ? glProjLayer : glBaseLayer; }; this.getBinding = function () { return glBinding; }; this.getFrame = function () { return xrFrame; }; this.getSession = function () { return session; }; this.setSession = async function ( value ) { session = value; if ( session !== null ) { initialRenderTarget = renderer.getRenderTarget(); session.addEventListener( 'select', onSessionEvent ); session.addEventListener( 'selectstart', onSessionEvent ); session.addEventListener( 'selectend', onSessionEvent ); session.addEventListener( 'squeeze', onSessionEvent ); session.addEventListener( 'squeezestart', onSessionEvent ); session.addEventListener( 'squeezeend', onSessionEvent ); session.addEventListener( 'end', onSessionEnd ); session.addEventListener( 'inputsourceschange', onInputSourcesChange ); if ( attributes.xrCompatible !== true ) { await gl.makeXRCompatible(); } if ( ( session.renderState.layers === undefined ) || ( renderer.capabilities.isWebGL2 === false ) ) { const layerInit = { antialias: ( session.renderState.layers === undefined ) ? attributes.antialias : true, alpha: attributes.alpha, depth: attributes.depth, stencil: attributes.stencil, framebufferScaleFactor: framebufferScaleFactor }; glBaseLayer = new XRWebGLLayer( session, gl, layerInit ); session.updateRenderState( { baseLayer: glBaseLayer } ); newRenderTarget = new WebGLRenderTarget( glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, { format: RGBAFormat, type: UnsignedByteType, encoding: renderer.outputEncoding } ); } else { let depthFormat = null; let depthType = null; let glDepthFormat = null; if ( attributes.depth ) { glDepthFormat = attributes.stencil ? 35056 : 33190; depthFormat = attributes.stencil ? DepthStencilFormat : DepthFormat; depthType = attributes.stencil ? UnsignedInt248Type : UnsignedIntType; } const projectionlayerInit = { colorFormat: 32856, depthFormat: glDepthFormat, scaleFactor: framebufferScaleFactor }; glBinding = new XRWebGLBinding( session, gl ); glProjLayer = glBinding.createProjectionLayer( projectionlayerInit ); session.updateRenderState( { layers: [ glProjLayer ] } ); newRenderTarget = new WebGLRenderTarget( glProjLayer.textureWidth, glProjLayer.textureHeight, { format: RGBAFormat, type: UnsignedByteType, depthTexture: new DepthTexture( glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, undefined, undefined, undefined, undefined, undefined, undefined, depthFormat ), stencilBuffer: attributes.stencil, encoding: renderer.outputEncoding, samples: attributes.antialias ? 4 : 0 } ); const renderTargetProperties = renderer.properties.get( newRenderTarget ); renderTargetProperties.__ignoreDepthValues = glProjLayer.ignoreDepthValues; } newRenderTarget.isXRRenderTarget = true; // TODO Remove this when possible, see #23278 // Set foveation to maximum. this.setFoveation( 1.0 ); customReferenceSpace = null; referenceSpace = await session.requestReferenceSpace( referenceSpaceType ); animation.setContext( session ); animation.start(); scope.isPresenting = true; scope.dispatchEvent( { type: 'sessionstart' } ); } }; function onInputSourcesChange( event ) { // Notify disconnected for ( let i = 0; i < event.removed.length; i ++ ) { const inputSource = event.removed[ i ]; const index = controllerInputSources.indexOf( inputSource ); if ( index >= 0 ) { controllerInputSources[ index ] = null; controllers[ index ].dispatchEvent( { type: 'disconnected', data: inputSource } ); } } // Notify connected for ( let i = 0; i < event.added.length; i ++ ) { const inputSource = event.added[ i ]; let controllerIndex = controllerInputSources.indexOf( inputSource ); if ( controllerIndex === - 1 ) { // Assign input source a controller that currently has no input source for ( let i = 0; i < controllers.length; i ++ ) { if ( i >= controllerInputSources.length ) { controllerInputSources.push( inputSource ); controllerIndex = i; break; } else if ( controllerInputSources[ i ] === null ) { controllerInputSources[ i ] = inputSource; controllerIndex = i; break; } } // If all controllers do currently receive input we ignore new ones if ( controllerIndex === - 1 ) break; } const controller = controllers[ controllerIndex ]; if ( controller ) { controller.dispatchEvent( { type: 'connected', data: inputSource } ); } } } // const cameraLPos = new Vector3(); const cameraRPos = new Vector3(); /** * Assumes 2 cameras that are parallel and share an X-axis, and that * the cameras' projection and world matrices have already been set. * And that near and far planes are identical for both cameras. * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 */ function setProjectionFromUnion( camera, cameraL, cameraR ) { cameraLPos.setFromMatrixPosition( cameraL.matrixWorld ); cameraRPos.setFromMatrixPosition( cameraR.matrixWorld ); const ipd = cameraLPos.distanceTo( cameraRPos ); const projL = cameraL.projectionMatrix.elements; const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and // most likely identical top and bottom frustum extents. // Use the left camera for these values. const near = projL[ 14 ] / ( projL[ 10 ] - 1 ); const far = projL[ 14 ] / ( projL[ 10 ] + 1 ); const topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ]; const bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ]; const leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ]; const rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ]; const left = near * leftFov; const right = near * rightFov; // Calculate the new camera's position offset from the // left camera. xOffset should be roughly half `ipd`. const zOffset = ipd / ( - leftFov + rightFov ); const xOffset = zOffset * - leftFov; // TODO: Better way to apply this offset? cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale ); camera.translateX( xOffset ); camera.translateZ( zOffset ); camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale ); camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); // Find the union of the frustum values of the cameras and scale // the values so that the near plane's position does not change in world space, // although must now be relative to the new union camera. const near2 = near + zOffset; const far2 = far + zOffset; const left2 = left - xOffset; const right2 = right + ( ipd - xOffset ); const top2 = topFov * far / far2 * near2; const bottom2 = bottomFov * far / far2 * near2; camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 ); } function updateCamera( camera, parent ) { if ( parent === null ) { camera.matrixWorld.copy( camera.matrix ); } else { camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix ); } camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); } this.updateCamera = function ( camera ) { if ( session === null ) return; cameraVR.near = cameraR.near = cameraL.near = camera.near; cameraVR.far = cameraR.far = cameraL.far = camera.far; if ( _currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far ) { // Note that the new renderState won't apply until the next frame. See #18320 session.updateRenderState( { depthNear: cameraVR.near, depthFar: cameraVR.far } ); _currentDepthNear = cameraVR.near; _currentDepthFar = cameraVR.far; } const parent = camera.parent; const cameras = cameraVR.cameras; updateCamera( cameraVR, parent ); for ( let i = 0; i < cameras.length; i ++ ) { updateCamera( cameras[ i ], parent ); } cameraVR.matrixWorld.decompose( cameraVR.position, cameraVR.quaternion, cameraVR.scale ); // update user camera and its children camera.position.copy( cameraVR.position ); camera.quaternion.copy( cameraVR.quaternion ); camera.scale.copy( cameraVR.scale ); camera.matrix.copy( cameraVR.matrix ); camera.matrixWorld.copy( cameraVR.matrixWorld ); const children = camera.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].updateMatrixWorld( true ); } // update projection matrix for proper view frustum culling if ( cameras.length === 2 ) { setProjectionFromUnion( cameraVR, cameraL, cameraR ); } else { // assume single camera setup (AR) cameraVR.projectionMatrix.copy( cameraL.projectionMatrix ); } }; this.getCamera = function () { return cameraVR; }; this.getFoveation = function () { if ( glProjLayer !== null ) { return glProjLayer.fixedFoveation; } if ( glBaseLayer !== null ) { return glBaseLayer.fixedFoveation; } return undefined; }; this.setFoveation = function ( foveation ) { // 0 = no foveation = full resolution // 1 = maximum foveation = the edges render at lower resolution if ( glProjLayer !== null ) { glProjLayer.fixedFoveation = foveation; } if ( glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined ) { glBaseLayer.fixedFoveation = foveation; } }; // Animation Loop let onAnimationFrameCallback = null; function onAnimationFrame( time, frame ) { pose = frame.getViewerPose( customReferenceSpace || referenceSpace ); xrFrame = frame; if ( pose !== null ) { const views = pose.views; if ( glBaseLayer !== null ) { renderer.setRenderTargetFramebuffer( newRenderTarget, glBaseLayer.framebuffer ); renderer.setRenderTarget( newRenderTarget ); } let cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list if ( views.length !== cameraVR.cameras.length ) { cameraVR.cameras.length = 0; cameraVRNeedsUpdate = true; } for ( let i = 0; i < views.length; i ++ ) { const view = views[ i ]; let viewport = null; if ( glBaseLayer !== null ) { viewport = glBaseLayer.getViewport( view ); } else { const glSubImage = glBinding.getViewSubImage( glProjLayer, view ); viewport = glSubImage.viewport; // For side-by-side projection, we only produce a single texture for both eyes. if ( i === 0 ) { renderer.setRenderTargetTextures( newRenderTarget, glSubImage.colorTexture, glProjLayer.ignoreDepthValues ? undefined : glSubImage.depthStencilTexture ); renderer.setRenderTarget( newRenderTarget ); } } let camera = cameras[ i ]; if ( camera === undefined ) { camera = new PerspectiveCamera(); camera.layers.enable( i ); camera.viewport = new Vector4(); cameras[ i ] = camera; } camera.matrix.fromArray( view.transform.matrix ); camera.projectionMatrix.fromArray( view.projectionMatrix ); camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height ); if ( i === 0 ) { cameraVR.matrix.copy( camera.matrix ); } if ( cameraVRNeedsUpdate === true ) { cameraVR.cameras.push( camera ); } } } // for ( let i = 0; i < controllers.length; i ++ ) { const inputSource = controllerInputSources[ i ]; const controller = controllers[ i ]; if ( inputSource !== null && controller !== undefined ) { controller.update( inputSource, frame, customReferenceSpace || referenceSpace ); } } if ( onAnimationFrameCallback ) onAnimationFrameCallback( time, frame ); xrFrame = null; } const animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame ); this.setAnimationLoop = function ( callback ) { onAnimationFrameCallback = callback; }; this.dispose = function () {}; } } function WebGLMaterials( renderer, properties ) { function refreshFogUniforms( uniforms, fog ) { uniforms.fogColor.value.copy( fog.color ); if ( fog.isFog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog.isFogExp2 ) { uniforms.fogDensity.value = fog.density; } } function refreshMaterialUniforms( uniforms, material, pixelRatio, height, transmissionRenderTarget ) { if ( material.isMeshBasicMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isMeshLambertMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isMeshToonMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsToon( uniforms, material ); } else if ( material.isMeshPhongMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsPhong( uniforms, material ); } else if ( material.isMeshStandardMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsStandard( uniforms, material ); if ( material.isMeshPhysicalMaterial ) { refreshUniformsPhysical( uniforms, material, transmissionRenderTarget ); } } else if ( material.isMeshMatcapMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsMatcap( uniforms, material ); } else if ( material.isMeshDepthMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isMeshDistanceMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsDistance( uniforms, material ); } else if ( material.isMeshNormalMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isLineBasicMaterial ) { refreshUniformsLine( uniforms, material ); if ( material.isLineDashedMaterial ) { refreshUniformsDash( uniforms, material ); } } else if ( material.isPointsMaterial ) { refreshUniformsPoints( uniforms, material, pixelRatio, height ); } else if ( material.isSpriteMaterial ) { refreshUniformsSprites( uniforms, material ); } else if ( material.isShadowMaterial ) { uniforms.color.value.copy( material.color ); uniforms.opacity.value = material.opacity; } else if ( material.isShaderMaterial ) { material.uniformsNeedUpdate = false; // #15581 } } function refreshUniformsCommon( uniforms, material ) { uniforms.opacity.value = material.opacity; if ( material.color ) { uniforms.diffuse.value.copy( material.color ); } if ( material.emissive ) { uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); } if ( material.map ) { uniforms.map.value = material.map; } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1; } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) uniforms.normalScale.value.negate(); } if ( material.specularMap ) { uniforms.specularMap.value = material.specularMap; } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } const envMap = properties.get( material ).envMap; if ( envMap ) { uniforms.envMap.value = envMap; uniforms.flipEnvMap.value = ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) ? - 1 : 1; uniforms.reflectivity.value = material.reflectivity; uniforms.ior.value = material.ior; uniforms.refractionRatio.value = material.refractionRatio; } if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; // artist-friendly light intensity scaling factor const scaleFactor = ( renderer.physicallyCorrectLights !== true ) ? Math.PI : 1; uniforms.lightMapIntensity.value = material.lightMapIntensity * scaleFactor; } if ( material.aoMap ) { uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; } // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. displacementMap map // 4. normal map // 5. bump map // 6. roughnessMap map // 7. metalnessMap map // 8. alphaMap map // 9. emissiveMap map // 10. clearcoat map // 11. clearcoat normal map // 12. clearcoat roughnessMap map // 13. iridescence map // 14. iridescence thickness map // 15. specular intensity map // 16. specular tint map // 17. transmission map // 18. thickness map let uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.specularMap ) { uvScaleMap = material.specularMap; } else if ( material.displacementMap ) { uvScaleMap = material.displacementMap; } else if ( material.normalMap ) { uvScaleMap = material.normalMap; } else if ( material.bumpMap ) { uvScaleMap = material.bumpMap; } else if ( material.roughnessMap ) { uvScaleMap = material.roughnessMap; } else if ( material.metalnessMap ) { uvScaleMap = material.metalnessMap; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } else if ( material.emissiveMap ) { uvScaleMap = material.emissiveMap; } else if ( material.clearcoatMap ) { uvScaleMap = material.clearcoatMap; } else if ( material.clearcoatNormalMap ) { uvScaleMap = material.clearcoatNormalMap; } else if ( material.clearcoatRoughnessMap ) { uvScaleMap = material.clearcoatRoughnessMap; } else if ( material.iridescenceMap ) { uvScaleMap = material.iridescenceMap; } else if ( material.iridescenceThicknessMap ) { uvScaleMap = material.iridescenceThicknessMap; } else if ( material.specularIntensityMap ) { uvScaleMap = material.specularIntensityMap; } else if ( material.specularColorMap ) { uvScaleMap = material.specularColorMap; } else if ( material.transmissionMap ) { uvScaleMap = material.transmissionMap; } else if ( material.thicknessMap ) { uvScaleMap = material.thicknessMap; } else if ( material.sheenColorMap ) { uvScaleMap = material.sheenColorMap; } else if ( material.sheenRoughnessMap ) { uvScaleMap = material.sheenRoughnessMap; } if ( uvScaleMap !== undefined ) { // backwards compatibility if ( uvScaleMap.isWebGLRenderTarget ) { uvScaleMap = uvScaleMap.texture; } if ( uvScaleMap.matrixAutoUpdate === true ) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } // uv repeat and offset setting priorities for uv2 // 1. ao map // 2. light map let uv2ScaleMap; if ( material.aoMap ) { uv2ScaleMap = material.aoMap; } else if ( material.lightMap ) { uv2ScaleMap = material.lightMap; } if ( uv2ScaleMap !== undefined ) { // backwards compatibility if ( uv2ScaleMap.isWebGLRenderTarget ) { uv2ScaleMap = uv2ScaleMap.texture; } if ( uv2ScaleMap.matrixAutoUpdate === true ) { uv2ScaleMap.updateMatrix(); } uniforms.uv2Transform.value.copy( uv2ScaleMap.matrix ); } } function refreshUniformsLine( uniforms, material ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; } function refreshUniformsDash( uniforms, material ) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; } function refreshUniformsPoints( uniforms, material, pixelRatio, height ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * pixelRatio; uniforms.scale.value = height * 0.5; if ( material.map ) { uniforms.map.value = material.map; } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } // uv repeat and offset setting priorities // 1. color map // 2. alpha map let uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } if ( uvScaleMap !== undefined ) { if ( uvScaleMap.matrixAutoUpdate === true ) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } } function refreshUniformsSprites( uniforms, material ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; uniforms.rotation.value = material.rotation; if ( material.map ) { uniforms.map.value = material.map; } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } // uv repeat and offset setting priorities // 1. color map // 2. alpha map let uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } if ( uvScaleMap !== undefined ) { if ( uvScaleMap.matrixAutoUpdate === true ) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } } function refreshUniformsPhong( uniforms, material ) { uniforms.specular.value.copy( material.specular ); uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 ) } function refreshUniformsToon( uniforms, material ) { if ( material.gradientMap ) { uniforms.gradientMap.value = material.gradientMap; } } function refreshUniformsStandard( uniforms, material ) { uniforms.roughness.value = material.roughness; uniforms.metalness.value = material.metalness; if ( material.roughnessMap ) { uniforms.roughnessMap.value = material.roughnessMap; } if ( material.metalnessMap ) { uniforms.metalnessMap.value = material.metalnessMap; } const envMap = properties.get( material ).envMap; if ( envMap ) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity; } } function refreshUniformsPhysical( uniforms, material, transmissionRenderTarget ) { uniforms.ior.value = material.ior; // also part of uniforms common if ( material.sheen > 0 ) { uniforms.sheenColor.value.copy( material.sheenColor ).multiplyScalar( material.sheen ); uniforms.sheenRoughness.value = material.sheenRoughness; if ( material.sheenColorMap ) { uniforms.sheenColorMap.value = material.sheenColorMap; } if ( material.sheenRoughnessMap ) { uniforms.sheenRoughnessMap.value = material.sheenRoughnessMap; } } if ( material.clearcoat > 0 ) { uniforms.clearcoat.value = material.clearcoat; uniforms.clearcoatRoughness.value = material.clearcoatRoughness; if ( material.clearcoatMap ) { uniforms.clearcoatMap.value = material.clearcoatMap; } if ( material.clearcoatRoughnessMap ) { uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap; } if ( material.clearcoatNormalMap ) { uniforms.clearcoatNormalScale.value.copy( material.clearcoatNormalScale ); uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap; if ( material.side === BackSide ) { uniforms.clearcoatNormalScale.value.negate(); } } } if ( material.iridescence > 0 ) { uniforms.iridescence.value = material.iridescence; uniforms.iridescenceIOR.value = material.iridescenceIOR; uniforms.iridescenceThicknessMinimum.value = material.iridescenceThicknessRange[ 0 ]; uniforms.iridescenceThicknessMaximum.value = material.iridescenceThicknessRange[ 1 ]; if ( material.iridescenceMap ) { uniforms.iridescenceMap.value = material.iridescenceMap; } if ( material.iridescenceThicknessMap ) { uniforms.iridescenceThicknessMap.value = material.iridescenceThicknessMap; } } if ( material.transmission > 0 ) { uniforms.transmission.value = material.transmission; uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture; uniforms.transmissionSamplerSize.value.set( transmissionRenderTarget.width, transmissionRenderTarget.height ); if ( material.transmissionMap ) { uniforms.transmissionMap.value = material.transmissionMap; } uniforms.thickness.value = material.thickness; if ( material.thicknessMap ) { uniforms.thicknessMap.value = material.thicknessMap; } uniforms.attenuationDistance.value = material.attenuationDistance; uniforms.attenuationColor.value.copy( material.attenuationColor ); } uniforms.specularIntensity.value = material.specularIntensity; uniforms.specularColor.value.copy( material.specularColor ); if ( material.specularIntensityMap ) { uniforms.specularIntensityMap.value = material.specularIntensityMap; } if ( material.specularColorMap ) { uniforms.specularColorMap.value = material.specularColorMap; } } function refreshUniformsMatcap( uniforms, material ) { if ( material.matcap ) { uniforms.matcap.value = material.matcap; } } function refreshUniformsDistance( uniforms, material ) { uniforms.referencePosition.value.copy( material.referencePosition ); uniforms.nearDistance.value = material.nearDistance; uniforms.farDistance.value = material.farDistance; } return { refreshFogUniforms: refreshFogUniforms, refreshMaterialUniforms: refreshMaterialUniforms }; } function WebGLUniformsGroups( gl, info, capabilities, state ) { let buffers = {}; let updateList = {}; let allocatedBindingPoints = []; const maxBindingPoints = ( capabilities.isWebGL2 ) ? gl.getParameter( 35375 ) : 0; // binding points are global whereas block indices are per shader program function bind( uniformsGroup, program ) { const webglProgram = program.program; state.uniformBlockBinding( uniformsGroup, webglProgram ); } function update( uniformsGroup, program ) { let buffer = buffers[ uniformsGroup.id ]; if ( buffer === undefined ) { prepareUniformsGroup( uniformsGroup ); buffer = createBuffer( uniformsGroup ); buffers[ uniformsGroup.id ] = buffer; uniformsGroup.addEventListener( 'dispose', onUniformsGroupsDispose ); } // ensure to update the binding points/block indices mapping for this program const webglProgram = program.program; state.updateUBOMapping( uniformsGroup, webglProgram ); // update UBO once per frame const frame = info.render.frame; if ( updateList[ uniformsGroup.id ] !== frame ) { updateBufferData( uniformsGroup ); updateList[ uniformsGroup.id ] = frame; } } function createBuffer( uniformsGroup ) { // the setup of an UBO is independent of a particular shader program but global const bindingPointIndex = allocateBindingPointIndex(); uniformsGroup.__bindingPointIndex = bindingPointIndex; const buffer = gl.createBuffer(); const size = uniformsGroup.__size; const usage = uniformsGroup.usage; gl.bindBuffer( 35345, buffer ); gl.bufferData( 35345, size, usage ); gl.bindBuffer( 35345, null ); gl.bindBufferBase( 35345, bindingPointIndex, buffer ); return buffer; } function allocateBindingPointIndex() { for ( let i = 0; i < maxBindingPoints; i ++ ) { if ( allocatedBindingPoints.indexOf( i ) === - 1 ) { allocatedBindingPoints.push( i ); return i; } } console.error( 'THREE.WebGLRenderer: Maximum number of simultaneously usable uniforms groups reached.' ); return 0; } function updateBufferData( uniformsGroup ) { const buffer = buffers[ uniformsGroup.id ]; const uniforms = uniformsGroup.uniforms; const cache = uniformsGroup.__cache; gl.bindBuffer( 35345, buffer ); for ( let i = 0, il = uniforms.length; i < il; i ++ ) { const uniform = uniforms[ i ]; // partly update the buffer if necessary if ( hasUniformChanged( uniform, i, cache ) === true ) { const value = uniform.value; const offset = uniform.__offset; if ( typeof value === 'number' ) { uniform.__data[ 0 ] = value; gl.bufferSubData( 35345, offset, uniform.__data ); } else { if ( uniform.value.isMatrix3 ) { // manually converting 3x3 to 3x4 uniform.__data[ 0 ] = uniform.value.elements[ 0 ]; uniform.__data[ 1 ] = uniform.value.elements[ 1 ]; uniform.__data[ 2 ] = uniform.value.elements[ 2 ]; uniform.__data[ 3 ] = uniform.value.elements[ 0 ]; uniform.__data[ 4 ] = uniform.value.elements[ 3 ]; uniform.__data[ 5 ] = uniform.value.elements[ 4 ]; uniform.__data[ 6 ] = uniform.value.elements[ 5 ]; uniform.__data[ 7 ] = uniform.value.elements[ 0 ]; uniform.__data[ 8 ] = uniform.value.elements[ 6 ]; uniform.__data[ 9 ] = uniform.value.elements[ 7 ]; uniform.__data[ 10 ] = uniform.value.elements[ 8 ]; uniform.__data[ 11 ] = uniform.value.elements[ 0 ]; } else { value.toArray( uniform.__data ); } gl.bufferSubData( 35345, offset, uniform.__data ); } } } gl.bindBuffer( 35345, null ); } function hasUniformChanged( uniform, index, cache ) { const value = uniform.value; if ( cache[ index ] === undefined ) { // cache entry does not exist so far if ( typeof value === 'number' ) { cache[ index ] = value; } else { cache[ index ] = value.clone(); } return true; } else { // compare current value with cached entry if ( typeof value === 'number' ) { if ( cache[ index ] !== value ) { cache[ index ] = value; return true; } } else { const cachedObject = cache[ index ]; if ( cachedObject.equals( value ) === false ) { cachedObject.copy( value ); return true; } } } return false; } function prepareUniformsGroup( uniformsGroup ) { // determine total buffer size according to the STD140 layout // Hint: STD140 is the only supported layout in WebGL 2 const uniforms = uniformsGroup.uniforms; let offset = 0; // global buffer offset in bytes const chunkSize = 16; // size of a chunk in bytes let chunkOffset = 0; // offset within a single chunk in bytes for ( let i = 0, l = uniforms.length; i < l; i ++ ) { const uniform = uniforms[ i ]; const info = getUniformSize( uniform ); // the following two properties will be used for partial buffer updates uniform.__data = new Float32Array( info.storage / Float32Array.BYTES_PER_ELEMENT ); uniform.__offset = offset; // if ( i > 0 ) { chunkOffset = offset % chunkSize; const remainingSizeInChunk = chunkSize - chunkOffset; // check for chunk overflow if ( chunkOffset !== 0 && ( remainingSizeInChunk - info.boundary ) < 0 ) { // add padding and adjust offset offset += ( chunkSize - chunkOffset ); uniform.__offset = offset; } } offset += info.storage; } // ensure correct final padding chunkOffset = offset % chunkSize; if ( chunkOffset > 0 ) offset += ( chunkSize - chunkOffset ); // uniformsGroup.__size = offset; uniformsGroup.__cache = {}; return this; } function getUniformSize( uniform ) { const value = uniform.value; const info = { boundary: 0, // bytes storage: 0 // bytes }; // determine sizes according to STD140 if ( typeof value === 'number' ) { // float/int info.boundary = 4; info.storage = 4; } else if ( value.isVector2 ) { // vec2 info.boundary = 8; info.storage = 8; } else if ( value.isVector3 || value.isColor ) { // vec3 info.boundary = 16; info.storage = 12; // evil: vec3 must start on a 16-byte boundary but it only consumes 12 bytes } else if ( value.isVector4 ) { // vec4 info.boundary = 16; info.storage = 16; } else if ( value.isMatrix3 ) { // mat3 (in STD140 a 3x3 matrix is represented as 3x4) info.boundary = 48; info.storage = 48; } else if ( value.isMatrix4 ) { // mat4 info.boundary = 64; info.storage = 64; } else if ( value.isTexture ) { console.warn( 'THREE.WebGLRenderer: Texture samplers can not be part of an uniforms group.' ); } else { console.warn( 'THREE.WebGLRenderer: Unsupported uniform value type.', value ); } return info; } function onUniformsGroupsDispose( event ) { const uniformsGroup = event.target; uniformsGroup.removeEventListener( 'dispose', onUniformsGroupsDispose ); const index = allocatedBindingPoints.indexOf( uniformsGroup.__bindingPointIndex ); allocatedBindingPoints.splice( index, 1 ); gl.deleteBuffer( buffers[ uniformsGroup.id ] ); delete buffers[ uniformsGroup.id ]; delete updateList[ uniformsGroup.id ]; } function dispose() { for ( const id in buffers ) { gl.deleteBuffer( buffers[ id ] ); } allocatedBindingPoints = []; buffers = {}; updateList = {}; } return { bind: bind, update: update, dispose: dispose }; } function createCanvasElement() { const canvas = createElementNS( 'canvas' ); canvas.style.display = 'block'; return canvas; } function WebGLRenderer( parameters = {} ) { this.isWebGLRenderer = true; const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(), _context = parameters.context !== undefined ? parameters.context : null, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default', _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false; let _alpha; if ( _context !== null ) { _alpha = _context.getContextAttributes().alpha; } else { _alpha = parameters.alpha !== undefined ? parameters.alpha : false; } let currentRenderList = null; let currentRenderState = null; // render() can be called from within a callback triggered by another render. // We track this so that the nested render call gets its list and state isolated from the parent render call. const renderListStack = []; const renderStateStack = []; // public properties this.domElement = _canvas; // Debug configuration container this.debug = { /** * Enables error checking and reporting when shader programs are being compiled * @type {boolean} */ checkShaderErrors: true }; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; // user-defined clipping this.clippingPlanes = []; this.localClippingEnabled = false; // physically based shading this.outputEncoding = LinearEncoding; // physical lights this.physicallyCorrectLights = false; // tone mapping this.toneMapping = NoToneMapping; this.toneMappingExposure = 1.0; // Object.defineProperties( this, { // @deprecated since r136, 0e21088102b4de7e0a0a33140620b7a3424b9e6d gammaFactor: { get: function () { console.warn( 'THREE.WebGLRenderer: .gammaFactor has been removed.' ); return 2; }, set: function () { console.warn( 'THREE.WebGLRenderer: .gammaFactor has been removed.' ); } } } ); // internal properties const _this = this; let _isContextLost = false; // internal state cache let _currentActiveCubeFace = 0; let _currentActiveMipmapLevel = 0; let _currentRenderTarget = null; let _currentMaterialId = - 1; let _currentCamera = null; const _currentViewport = new Vector4(); const _currentScissor = new Vector4(); let _currentScissorTest = null; // let _width = _canvas.width; let _height = _canvas.height; let _pixelRatio = 1; let _opaqueSort = null; let _transparentSort = null; const _viewport = new Vector4( 0, 0, _width, _height ); const _scissor = new Vector4( 0, 0, _width, _height ); let _scissorTest = false; // frustum const _frustum = new Frustum(); // clipping let _clippingEnabled = false; let _localClippingEnabled = false; // transmission let _transmissionRenderTarget = null; // camera matrices cache const _projScreenMatrix = new Matrix4(); const _vector2 = new Vector2(); const _vector3 = new Vector3(); const _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true }; function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1; } // initialize let _gl = _context; function getContext( contextNames, contextAttributes ) { for ( let i = 0; i < contextNames.length; i ++ ) { const contextName = contextNames[ i ]; const context = _canvas.getContext( contextName, contextAttributes ); if ( context !== null ) return context; } return null; } try { const contextAttributes = { alpha: true, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer, powerPreference: _powerPreference, failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat }; // OffscreenCanvas does not have setAttribute, see #22811 if ( 'setAttribute' in _canvas ) _canvas.setAttribute( 'data-engine', `three.js r${REVISION}` ); // event listeners must be registered before WebGL context is created, see #12753 _canvas.addEventListener( 'webglcontextlost', onContextLost, false ); _canvas.addEventListener( 'webglcontextrestored', onContextRestore, false ); _canvas.addEventListener( 'webglcontextcreationerror', onContextCreationError, false ); if ( _gl === null ) { const contextNames = [ 'webgl2', 'webgl', 'experimental-webgl' ]; if ( _this.isWebGL1Renderer === true ) { contextNames.shift(); } _gl = getContext( contextNames, contextAttributes ); if ( _gl === null ) { if ( getContext( contextNames ) ) { throw new Error( 'Error creating WebGL context with your selected attributes.' ); } else { throw new Error( 'Error creating WebGL context.' ); } } } // Some experimental-webgl implementations do not have getShaderPrecisionFormat if ( _gl.getShaderPrecisionFormat === undefined ) { _gl.getShaderPrecisionFormat = function () { return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 }; }; } } catch ( error ) { console.error( 'THREE.WebGLRenderer: ' + error.message ); throw error; } let extensions, capabilities, state, info; let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects; let programCache, materials, renderLists, renderStates, clipping, shadowMap; let background, morphtargets, bufferRenderer, indexedBufferRenderer; let utils, bindingStates, uniformsGroups; function initGLContext() { extensions = new WebGLExtensions( _gl ); capabilities = new WebGLCapabilities( _gl, extensions, parameters ); extensions.init( capabilities ); utils = new WebGLUtils( _gl, extensions, capabilities ); state = new WebGLState( _gl, extensions, capabilities ); info = new WebGLInfo(); properties = new WebGLProperties(); textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ); cubemaps = new WebGLCubeMaps( _this ); cubeuvmaps = new WebGLCubeUVMaps( _this ); attributes = new WebGLAttributes( _gl, capabilities ); bindingStates = new WebGLBindingStates( _gl, extensions, attributes, capabilities ); geometries = new WebGLGeometries( _gl, attributes, info, bindingStates ); objects = new WebGLObjects( _gl, geometries, attributes, info ); morphtargets = new WebGLMorphtargets( _gl, capabilities, textures ); clipping = new WebGLClipping( properties ); programCache = new WebGLPrograms( _this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping ); materials = new WebGLMaterials( _this, properties ); renderLists = new WebGLRenderLists(); renderStates = new WebGLRenderStates( extensions, capabilities ); background = new WebGLBackground( _this, cubemaps, state, objects, _alpha, _premultipliedAlpha ); shadowMap = new WebGLShadowMap( _this, objects, capabilities ); uniformsGroups = new WebGLUniformsGroups( _gl, info, capabilities, state ); bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info, capabilities ); indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info, capabilities ); info.programs = programCache.programs; _this.capabilities = capabilities; _this.extensions = extensions; _this.properties = properties; _this.renderLists = renderLists; _this.shadowMap = shadowMap; _this.state = state; _this.info = info; } initGLContext(); // xr const xr = new WebXRManager( _this, _gl ); this.xr = xr; // API this.getContext = function () { return _gl; }; this.getContextAttributes = function () { return _gl.getContextAttributes(); }; this.forceContextLoss = function () { const extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) extension.loseContext(); }; this.forceContextRestore = function () { const extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) extension.restoreContext(); }; this.getPixelRatio = function () { return _pixelRatio; }; this.setPixelRatio = function ( value ) { if ( value === undefined ) return; _pixelRatio = value; this.setSize( _width, _height, false ); }; this.getSize = function ( target ) { return target.set( _width, _height ); }; this.setSize = function ( width, height, updateStyle ) { if ( xr.isPresenting ) { console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' ); return; } _width = width; _height = height; _canvas.width = Math.floor( width * _pixelRatio ); _canvas.height = Math.floor( height * _pixelRatio ); if ( updateStyle !== false ) { _canvas.style.width = width + 'px'; _canvas.style.height = height + 'px'; } this.setViewport( 0, 0, width, height ); }; this.getDrawingBufferSize = function ( target ) { return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor(); }; this.setDrawingBufferSize = function ( width, height, pixelRatio ) { _width = width; _height = height; _pixelRatio = pixelRatio; _canvas.width = Math.floor( width * pixelRatio ); _canvas.height = Math.floor( height * pixelRatio ); this.setViewport( 0, 0, width, height ); }; this.getCurrentViewport = function ( target ) { return target.copy( _currentViewport ); }; this.getViewport = function ( target ) { return target.copy( _viewport ); }; this.setViewport = function ( x, y, width, height ) { if ( x.isVector4 ) { _viewport.set( x.x, x.y, x.z, x.w ); } else { _viewport.set( x, y, width, height ); } state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() ); }; this.getScissor = function ( target ) { return target.copy( _scissor ); }; this.setScissor = function ( x, y, width, height ) { if ( x.isVector4 ) { _scissor.set( x.x, x.y, x.z, x.w ); } else { _scissor.set( x, y, width, height ); } state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() ); }; this.getScissorTest = function () { return _scissorTest; }; this.setScissorTest = function ( boolean ) { state.setScissorTest( _scissorTest = boolean ); }; this.setOpaqueSort = function ( method ) { _opaqueSort = method; }; this.setTransparentSort = function ( method ) { _transparentSort = method; }; // Clearing this.getClearColor = function ( target ) { return target.copy( background.getClearColor() ); }; this.setClearColor = function () { background.setClearColor.apply( background, arguments ); }; this.getClearAlpha = function () { return background.getClearAlpha(); }; this.setClearAlpha = function () { background.setClearAlpha.apply( background, arguments ); }; this.clear = function ( color = true, depth = true, stencil = true ) { let bits = 0; if ( color ) bits |= 16384; if ( depth ) bits |= 256; if ( stencil ) bits |= 1024; _gl.clear( bits ); }; this.clearColor = function () { this.clear( true, false, false ); }; this.clearDepth = function () { this.clear( false, true, false ); }; this.clearStencil = function () { this.clear( false, false, true ); }; // this.dispose = function () { _canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); _canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false ); _canvas.removeEventListener( 'webglcontextcreationerror', onContextCreationError, false ); renderLists.dispose(); renderStates.dispose(); properties.dispose(); cubemaps.dispose(); cubeuvmaps.dispose(); objects.dispose(); bindingStates.dispose(); uniformsGroups.dispose(); programCache.dispose(); xr.dispose(); xr.removeEventListener( 'sessionstart', onXRSessionStart ); xr.removeEventListener( 'sessionend', onXRSessionEnd ); if ( _transmissionRenderTarget ) { _transmissionRenderTarget.dispose(); _transmissionRenderTarget = null; } animation.stop(); }; // Events function onContextLost( event ) { event.preventDefault(); console.log( 'THREE.WebGLRenderer: Context Lost.' ); _isContextLost = true; } function onContextRestore( /* event */ ) { console.log( 'THREE.WebGLRenderer: Context Restored.' ); _isContextLost = false; const infoAutoReset = info.autoReset; const shadowMapEnabled = shadowMap.enabled; const shadowMapAutoUpdate = shadowMap.autoUpdate; const shadowMapNeedsUpdate = shadowMap.needsUpdate; const shadowMapType = shadowMap.type; initGLContext(); info.autoReset = infoAutoReset; shadowMap.enabled = shadowMapEnabled; shadowMap.autoUpdate = shadowMapAutoUpdate; shadowMap.needsUpdate = shadowMapNeedsUpdate; shadowMap.type = shadowMapType; } function onContextCreationError( event ) { console.error( 'THREE.WebGLRenderer: A WebGL context could not be created. Reason: ', event.statusMessage ); } function onMaterialDispose( event ) { const material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); deallocateMaterial( material ); } // Buffer deallocation function deallocateMaterial( material ) { releaseMaterialProgramReferences( material ); properties.remove( material ); } function releaseMaterialProgramReferences( material ) { const programs = properties.get( material ).programs; if ( programs !== undefined ) { programs.forEach( function ( program ) { programCache.releaseProgram( program ); } ); if ( material.isShaderMaterial ) { programCache.releaseShaderCache( material ); } } } // Buffer rendering this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) { if ( scene === null ) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null) const frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 ); const program = setProgram( camera, scene, geometry, material, object ); state.setMaterial( material, frontFaceCW ); // let index = geometry.index; const position = geometry.attributes.position; // if ( index === null ) { if ( position === undefined || position.count === 0 ) return; } else if ( index.count === 0 ) { return; } // let rangeFactor = 1; if ( material.wireframe === true ) { index = geometries.getWireframeAttribute( geometry ); rangeFactor = 2; } bindingStates.setup( object, material, program, geometry, index ); let attribute; let renderer = bufferRenderer; if ( index !== null ) { attribute = attributes.get( index ); renderer = indexedBufferRenderer; renderer.setIndex( attribute ); } // const dataCount = ( index !== null ) ? index.count : position.count; const rangeStart = geometry.drawRange.start * rangeFactor; const rangeCount = geometry.drawRange.count * rangeFactor; const groupStart = group !== null ? group.start * rangeFactor : 0; const groupCount = group !== null ? group.count * rangeFactor : Infinity; const drawStart = Math.max( rangeStart, groupStart ); const drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1; const drawCount = Math.max( 0, drawEnd - drawStart + 1 ); if ( drawCount === 0 ) return; // if ( object.isMesh ) { if ( material.wireframe === true ) { state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); renderer.setMode( 1 ); } else { renderer.setMode( 4 ); } } else if ( object.isLine ) { let lineWidth = material.linewidth; if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material state.setLineWidth( lineWidth * getTargetPixelRatio() ); if ( object.isLineSegments ) { renderer.setMode( 1 ); } else if ( object.isLineLoop ) { renderer.setMode( 2 ); } else { renderer.setMode( 3 ); } } else if ( object.isPoints ) { renderer.setMode( 0 ); } else if ( object.isSprite ) { renderer.setMode( 4 ); } if ( object.isInstancedMesh ) { renderer.renderInstances( drawStart, drawCount, object.count ); } else if ( geometry.isInstancedBufferGeometry ) { const instanceCount = Math.min( geometry.instanceCount, geometry._maxInstanceCount ); renderer.renderInstances( drawStart, drawCount, instanceCount ); } else { renderer.render( drawStart, drawCount ); } }; // Compile this.compile = function ( scene, camera ) { currentRenderState = renderStates.get( scene ); currentRenderState.init(); renderStateStack.push( currentRenderState ); scene.traverseVisible( function ( object ) { if ( object.isLight && object.layers.test( camera.layers ) ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } } ); currentRenderState.setupLights( _this.physicallyCorrectLights ); scene.traverse( function ( object ) { const material = object.material; if ( material ) { if ( Array.isArray( material ) ) { for ( let i = 0; i < material.length; i ++ ) { const material2 = material[ i ]; getProgram( material2, scene, object ); } } else { getProgram( material, scene, object ); } } } ); renderStateStack.pop(); currentRenderState = null; }; // Animation Loop let onAnimationFrameCallback = null; function onAnimationFrame( time ) { if ( onAnimationFrameCallback ) onAnimationFrameCallback( time ); } function onXRSessionStart() { animation.stop(); } function onXRSessionEnd() { animation.start(); } const animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame ); if ( typeof self !== 'undefined' ) animation.setContext( self ); this.setAnimationLoop = function ( callback ) { onAnimationFrameCallback = callback; xr.setAnimationLoop( callback ); ( callback === null ) ? animation.stop() : animation.start(); }; xr.addEventListener( 'sessionstart', onXRSessionStart ); xr.addEventListener( 'sessionend', onXRSessionEnd ); // Rendering this.render = function ( scene, camera ) { if ( camera !== undefined && camera.isCamera !== true ) { console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); return; } if ( _isContextLost === true ) return; // update scene graph if ( scene.autoUpdate === true ) scene.updateMatrixWorld(); // update camera matrices and frustum if ( camera.parent === null ) camera.updateMatrixWorld(); if ( xr.enabled === true && xr.isPresenting === true ) { if ( xr.cameraAutoUpdate === true ) xr.updateCamera( camera ); camera = xr.getCamera(); // use XR camera for rendering } // if ( scene.isScene === true ) scene.onBeforeRender( _this, scene, camera, _currentRenderTarget ); currentRenderState = renderStates.get( scene, renderStateStack.length ); currentRenderState.init(); renderStateStack.push( currentRenderState ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromProjectionMatrix( _projScreenMatrix ); _localClippingEnabled = this.localClippingEnabled; _clippingEnabled = clipping.init( this.clippingPlanes, _localClippingEnabled, camera ); currentRenderList = renderLists.get( scene, renderListStack.length ); currentRenderList.init(); renderListStack.push( currentRenderList ); projectObject( scene, camera, 0, _this.sortObjects ); currentRenderList.finish(); if ( _this.sortObjects === true ) { currentRenderList.sort( _opaqueSort, _transparentSort ); } // if ( _clippingEnabled === true ) clipping.beginShadows(); const shadowsArray = currentRenderState.state.shadowsArray; shadowMap.render( shadowsArray, scene, camera ); if ( _clippingEnabled === true ) clipping.endShadows(); // if ( this.info.autoReset === true ) this.info.reset(); // background.render( currentRenderList, scene ); // render scene currentRenderState.setupLights( _this.physicallyCorrectLights ); if ( camera.isArrayCamera ) { const cameras = camera.cameras; for ( let i = 0, l = cameras.length; i < l; i ++ ) { const camera2 = cameras[ i ]; renderScene( currentRenderList, scene, camera2, camera2.viewport ); } } else { renderScene( currentRenderList, scene, camera ); } // if ( _currentRenderTarget !== null ) { // resolve multisample renderbuffers to a single-sample texture if necessary textures.updateMultisampleRenderTarget( _currentRenderTarget ); // Generate mipmap if we're using any kind of mipmap filtering textures.updateRenderTargetMipmap( _currentRenderTarget ); } // if ( scene.isScene === true ) scene.onAfterRender( _this, scene, camera ); // _gl.finish(); bindingStates.resetDefaultState(); _currentMaterialId = - 1; _currentCamera = null; renderStateStack.pop(); if ( renderStateStack.length > 0 ) { currentRenderState = renderStateStack[ renderStateStack.length - 1 ]; } else { currentRenderState = null; } renderListStack.pop(); if ( renderListStack.length > 0 ) { currentRenderList = renderListStack[ renderListStack.length - 1 ]; } else { currentRenderList = null; } }; function projectObject( object, camera, groupOrder, sortObjects ) { if ( object.visible === false ) return; const visible = object.layers.test( camera.layers ); if ( visible ) { if ( object.isGroup ) { groupOrder = object.renderOrder; } else if ( object.isLOD ) { if ( object.autoUpdate === true ) object.update( camera ); } else if ( object.isLight ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } else if ( object.isSprite ) { if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) { if ( sortObjects ) { _vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } const geometry = objects.update( object ); const material = object.material; if ( material.visible ) { currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null ); } } } else if ( object.isMesh || object.isLine || object.isPoints ) { if ( object.isSkinnedMesh ) { // update skeleton only once in a frame if ( object.skeleton.frame !== info.render.frame ) { object.skeleton.update(); object.skeleton.frame = info.render.frame; } } if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) { if ( sortObjects ) { _vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } const geometry = objects.update( object ); const material = object.material; if ( Array.isArray( material ) ) { const groups = geometry.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { currentRenderList.push( object, geometry, groupMaterial, groupOrder, _vector3.z, group ); } } } else if ( material.visible ) { currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null ); } } } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ], camera, groupOrder, sortObjects ); } } function renderScene( currentRenderList, scene, camera, viewport ) { const opaqueObjects = currentRenderList.opaque; const transmissiveObjects = currentRenderList.transmissive; const transparentObjects = currentRenderList.transparent; currentRenderState.setupLightsView( camera ); if ( transmissiveObjects.length > 0 ) renderTransmissionPass( opaqueObjects, scene, camera ); if ( viewport ) state.viewport( _currentViewport.copy( viewport ) ); if ( opaqueObjects.length > 0 ) renderObjects( opaqueObjects, scene, camera ); if ( transmissiveObjects.length > 0 ) renderObjects( transmissiveObjects, scene, camera ); if ( transparentObjects.length > 0 ) renderObjects( transparentObjects, scene, camera ); // Ensure depth buffer writing is enabled so it can be cleared on next render state.buffers.depth.setTest( true ); state.buffers.depth.setMask( true ); state.buffers.color.setMask( true ); state.setPolygonOffset( false ); } function renderTransmissionPass( opaqueObjects, scene, camera ) { const isWebGL2 = capabilities.isWebGL2; if ( _transmissionRenderTarget === null ) { _transmissionRenderTarget = new WebGLRenderTarget( 1, 1, { generateMipmaps: true, type: extensions.has( 'EXT_color_buffer_half_float' ) ? HalfFloatType : UnsignedByteType, minFilter: LinearMipmapLinearFilter, samples: ( isWebGL2 && _antialias === true ) ? 4 : 0 } ); } _this.getDrawingBufferSize( _vector2 ); if ( isWebGL2 ) { _transmissionRenderTarget.setSize( _vector2.x, _vector2.y ); } else { _transmissionRenderTarget.setSize( floorPowerOfTwo( _vector2.x ), floorPowerOfTwo( _vector2.y ) ); } // const currentRenderTarget = _this.getRenderTarget(); _this.setRenderTarget( _transmissionRenderTarget ); _this.clear(); // Turn off the features which can affect the frag color for opaque objects pass. // Otherwise they are applied twice in opaque objects pass and transmission objects pass. const currentToneMapping = _this.toneMapping; _this.toneMapping = NoToneMapping; renderObjects( opaqueObjects, scene, camera ); _this.toneMapping = currentToneMapping; textures.updateMultisampleRenderTarget( _transmissionRenderTarget ); textures.updateRenderTargetMipmap( _transmissionRenderTarget ); _this.setRenderTarget( currentRenderTarget ); } function renderObjects( renderList, scene, camera ) { const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; for ( let i = 0, l = renderList.length; i < l; i ++ ) { const renderItem = renderList[ i ]; const object = renderItem.object; const geometry = renderItem.geometry; const material = overrideMaterial === null ? renderItem.material : overrideMaterial; const group = renderItem.group; if ( object.layers.test( camera.layers ) ) { renderObject( object, scene, camera, geometry, material, group ); } } } function renderObject( object, scene, camera, geometry, material, group ) { object.onBeforeRender( _this, scene, camera, geometry, material, group ); object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); material.onBeforeRender( _this, scene, camera, geometry, object, group ); if ( material.transparent === true && material.side === DoubleSide ) { material.side = BackSide; material.needsUpdate = true; _this.renderBufferDirect( camera, scene, geometry, material, object, group ); material.side = FrontSide; material.needsUpdate = true; _this.renderBufferDirect( camera, scene, geometry, material, object, group ); material.side = DoubleSide; } else { _this.renderBufferDirect( camera, scene, geometry, material, object, group ); } object.onAfterRender( _this, scene, camera, geometry, material, group ); } function getProgram( material, scene, object ) { if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... const materialProperties = properties.get( material ); const lights = currentRenderState.state.lights; const shadowsArray = currentRenderState.state.shadowsArray; const lightsStateVersion = lights.state.version; const parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, object ); const programCacheKey = programCache.getProgramCacheKey( parameters ); let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null; materialProperties.fog = scene.fog; materialProperties.envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || materialProperties.environment ); if ( programs === undefined ) { // new material material.addEventListener( 'dispose', onMaterialDispose ); programs = new Map(); materialProperties.programs = programs; } let program = programs.get( programCacheKey ); if ( program !== undefined ) { // early out if program and light state is identical if ( materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion ) { updateCommonMaterialProperties( material, parameters ); return program; } } else { parameters.uniforms = programCache.getUniforms( material ); material.onBuild( object, parameters, _this ); material.onBeforeCompile( parameters, _this ); program = programCache.acquireProgram( parameters, programCacheKey ); programs.set( programCacheKey, program ); materialProperties.uniforms = parameters.uniforms; } const uniforms = materialProperties.uniforms; if ( ( ! material.isShaderMaterial && ! material.isRawShaderMaterial ) || material.clipping === true ) { uniforms.clippingPlanes = clipping.uniform; } updateCommonMaterialProperties( material, parameters ); // store the light setup it was created for materialProperties.needsLights = materialNeedsLights( material ); materialProperties.lightsStateVersion = lightsStateVersion; if ( materialProperties.needsLights ) { // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = lights.state.ambient; uniforms.lightProbe.value = lights.state.probe; uniforms.directionalLights.value = lights.state.directional; uniforms.directionalLightShadows.value = lights.state.directionalShadow; uniforms.spotLights.value = lights.state.spot; uniforms.spotLightShadows.value = lights.state.spotShadow; uniforms.rectAreaLights.value = lights.state.rectArea; uniforms.ltc_1.value = lights.state.rectAreaLTC1; uniforms.ltc_2.value = lights.state.rectAreaLTC2; uniforms.pointLights.value = lights.state.point; uniforms.pointLightShadows.value = lights.state.pointShadow; uniforms.hemisphereLights.value = lights.state.hemi; uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; uniforms.spotShadowMap.value = lights.state.spotShadowMap; uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix; uniforms.pointShadowMap.value = lights.state.pointShadowMap; uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms } const progUniforms = program.getUniforms(); const uniformsList = WebGLUniforms.seqWithValue( progUniforms.seq, uniforms ); materialProperties.currentProgram = program; materialProperties.uniformsList = uniformsList; return program; } function updateCommonMaterialProperties( material, parameters ) { const materialProperties = properties.get( material ); materialProperties.outputEncoding = parameters.outputEncoding; materialProperties.instancing = parameters.instancing; materialProperties.skinning = parameters.skinning; materialProperties.morphTargets = parameters.morphTargets; materialProperties.morphNormals = parameters.morphNormals; materialProperties.morphColors = parameters.morphColors; materialProperties.morphTargetsCount = parameters.morphTargetsCount; materialProperties.numClippingPlanes = parameters.numClippingPlanes; materialProperties.numIntersection = parameters.numClipIntersection; materialProperties.vertexAlphas = parameters.vertexAlphas; materialProperties.vertexTangents = parameters.vertexTangents; materialProperties.toneMapping = parameters.toneMapping; } function setProgram( camera, scene, geometry, material, object ) { if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... textures.resetTextureUnits(); const fog = scene.fog; const environment = material.isMeshStandardMaterial ? scene.environment : null; const encoding = ( _currentRenderTarget === null ) ? _this.outputEncoding : ( _currentRenderTarget.isXRRenderTarget === true ? _currentRenderTarget.texture.encoding : LinearEncoding ); const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment ); const vertexAlphas = material.vertexColors === true && !! geometry.attributes.color && geometry.attributes.color.itemSize === 4; const vertexTangents = !! material.normalMap && !! geometry.attributes.tangent; const morphTargets = !! geometry.morphAttributes.position; const morphNormals = !! geometry.morphAttributes.normal; const morphColors = !! geometry.morphAttributes.color; const toneMapping = material.toneMapped ? _this.toneMapping : NoToneMapping; const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; const materialProperties = properties.get( material ); const lights = currentRenderState.state.lights; if ( _clippingEnabled === true ) { if ( _localClippingEnabled === true || camera !== _currentCamera ) { const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup // object instead of the material, once it becomes feasible // (#8465, #8379) clipping.setState( material, camera, useCache ); } } // let needsProgramChange = false; if ( material.version === materialProperties.__version ) { if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) { needsProgramChange = true; } else if ( materialProperties.outputEncoding !== encoding ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancing === false ) { needsProgramChange = true; } else if ( ! object.isInstancedMesh && materialProperties.instancing === true ) { needsProgramChange = true; } else if ( object.isSkinnedMesh && materialProperties.skinning === false ) { needsProgramChange = true; } else if ( ! object.isSkinnedMesh && materialProperties.skinning === true ) { needsProgramChange = true; } else if ( materialProperties.envMap !== envMap ) { needsProgramChange = true; } else if ( material.fog === true && materialProperties.fog !== fog ) { needsProgramChange = true; } else if ( materialProperties.numClippingPlanes !== undefined && ( materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection ) ) { needsProgramChange = true; } else if ( materialProperties.vertexAlphas !== vertexAlphas ) { needsProgramChange = true; } else if ( materialProperties.vertexTangents !== vertexTangents ) { needsProgramChange = true; } else if ( materialProperties.morphTargets !== morphTargets ) { needsProgramChange = true; } else if ( materialProperties.morphNormals !== morphNormals ) { needsProgramChange = true; } else if ( materialProperties.morphColors !== morphColors ) { needsProgramChange = true; } else if ( materialProperties.toneMapping !== toneMapping ) { needsProgramChange = true; } else if ( capabilities.isWebGL2 === true && materialProperties.morphTargetsCount !== morphTargetsCount ) { needsProgramChange = true; } } else { needsProgramChange = true; materialProperties.__version = material.version; } // let program = materialProperties.currentProgram; if ( needsProgramChange === true ) { program = getProgram( material, scene, object ); } let refreshProgram = false; let refreshMaterial = false; let refreshLights = false; const p_uniforms = program.getUniforms(), m_uniforms = materialProperties.uniforms; if ( state.useProgram( program.program ) ) { refreshProgram = true; refreshMaterial = true; refreshLights = true; } if ( material.id !== _currentMaterialId ) { _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshProgram || _currentCamera !== camera ) { p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix ); if ( capabilities.logarithmicDepthBuffer ) { p_uniforms.setValue( _gl, 'logDepthBufFC', 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); } if ( _currentCamera !== camera ) { _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true; // set to true on material change refreshLights = true; // remains set until update done } // load material specific uniforms // (shader material also gets them for the sake of genericity) if ( material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap ) { const uCamPos = p_uniforms.map.cameraPosition; if ( uCamPos !== undefined ) { uCamPos.setValue( _gl, _vector3.setFromMatrixPosition( camera.matrixWorld ) ); } } if ( material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial ) { p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true ); } if ( material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh ) { p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse ); } } // skinning and morph target uniforms must be set even if material didn't change // auto-setting of texture unit for bone and morph texture must go before other textures // otherwise textures used for skinning and morphing can take over texture units reserved for other material textures if ( object.isSkinnedMesh ) { p_uniforms.setOptional( _gl, object, 'bindMatrix' ); p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' ); const skeleton = object.skeleton; if ( skeleton ) { if ( capabilities.floatVertexTextures ) { if ( skeleton.boneTexture === null ) skeleton.computeBoneTexture(); p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures ); p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize ); } else { console.warn( 'THREE.WebGLRenderer: SkinnedMesh can only be used with WebGL 2. With WebGL 1 OES_texture_float and vertex textures support is required.' ); } } } const morphAttributes = geometry.morphAttributes; if ( morphAttributes.position !== undefined || morphAttributes.normal !== undefined || ( morphAttributes.color !== undefined && capabilities.isWebGL2 === true ) ) { morphtargets.update( object, geometry, material, program ); } if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) { materialProperties.receiveShadow = object.receiveShadow; p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow ); } if ( refreshMaterial ) { p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure ); if ( materialProperties.needsLights ) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate( m_uniforms, refreshLights ); } // refresh uniforms common to several materials if ( fog && material.fog === true ) { materials.refreshFogUniforms( m_uniforms, fog ); } materials.refreshMaterialUniforms( m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget ); WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures ); } if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) { WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures ); material.uniformsNeedUpdate = false; } if ( material.isSpriteMaterial ) { p_uniforms.setValue( _gl, 'center', object.center ); } // common matrices p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix ); p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix ); p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld ); // UBOs if ( material.isShaderMaterial || material.isRawShaderMaterial ) { const groups = material.uniformsGroups; for ( let i = 0, l = groups.length; i < l; i ++ ) { if ( capabilities.isWebGL2 ) { const group = groups[ i ]; uniformsGroups.update( group, program ); uniformsGroups.bind( group, program ); } else { console.warn( 'THREE.WebGLRenderer: Uniform Buffer Objects can only be used with WebGL 2.' ); } } } return program; } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate( uniforms, value ) { uniforms.ambientLightColor.needsUpdate = value; uniforms.lightProbe.needsUpdate = value; uniforms.directionalLights.needsUpdate = value; uniforms.directionalLightShadows.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.pointLightShadows.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.spotLightShadows.needsUpdate = value; uniforms.rectAreaLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value; } function materialNeedsLights( material ) { return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || ( material.isShaderMaterial && material.lights === true ); } this.getActiveCubeFace = function () { return _currentActiveCubeFace; }; this.getActiveMipmapLevel = function () { return _currentActiveMipmapLevel; }; this.getRenderTarget = function () { return _currentRenderTarget; }; this.setRenderTargetTextures = function ( renderTarget, colorTexture, depthTexture ) { properties.get( renderTarget.texture ).__webglTexture = colorTexture; properties.get( renderTarget.depthTexture ).__webglTexture = depthTexture; const renderTargetProperties = properties.get( renderTarget ); renderTargetProperties.__hasExternalTextures = true; if ( renderTargetProperties.__hasExternalTextures ) { renderTargetProperties.__autoAllocateDepthBuffer = depthTexture === undefined; if ( ! renderTargetProperties.__autoAllocateDepthBuffer ) { // The multisample_render_to_texture extension doesn't work properly if there // are midframe flushes and an external depth buffer. Disable use of the extension. if ( extensions.has( 'WEBGL_multisampled_render_to_texture' ) === true ) { console.warn( 'THREE.WebGLRenderer: Render-to-texture extension was disabled because an external texture was provided' ); renderTargetProperties.__useRenderToTexture = false; } } } }; this.setRenderTargetFramebuffer = function ( renderTarget, defaultFramebuffer ) { const renderTargetProperties = properties.get( renderTarget ); renderTargetProperties.__webglFramebuffer = defaultFramebuffer; renderTargetProperties.__useDefaultFramebuffer = defaultFramebuffer === undefined; }; this.setRenderTarget = function ( renderTarget, activeCubeFace = 0, activeMipmapLevel = 0 ) { _currentRenderTarget = renderTarget; _currentActiveCubeFace = activeCubeFace; _currentActiveMipmapLevel = activeMipmapLevel; let useDefaultFramebuffer = true; if ( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); if ( renderTargetProperties.__useDefaultFramebuffer !== undefined ) { // We need to make sure to rebind the framebuffer. state.bindFramebuffer( 36160, null ); useDefaultFramebuffer = false; } else if ( renderTargetProperties.__webglFramebuffer === undefined ) { textures.setupRenderTarget( renderTarget ); } else if ( renderTargetProperties.__hasExternalTextures ) { // Color and depth texture must be rebound in order for the swapchain to update. textures.rebindTextures( renderTarget, properties.get( renderTarget.texture ).__webglTexture, properties.get( renderTarget.depthTexture ).__webglTexture ); } } let framebuffer = null; let isCube = false; let isRenderTarget3D = false; if ( renderTarget ) { const texture = renderTarget.texture; if ( texture.isData3DTexture || texture.isDataArrayTexture ) { isRenderTarget3D = true; } const __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( renderTarget.isWebGLCubeRenderTarget ) { framebuffer = __webglFramebuffer[ activeCubeFace ]; isCube = true; } else if ( ( capabilities.isWebGL2 && renderTarget.samples > 0 ) && textures.useMultisampledRTT( renderTarget ) === false ) { framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer; } else { framebuffer = __webglFramebuffer; } _currentViewport.copy( renderTarget.viewport ); _currentScissor.copy( renderTarget.scissor ); _currentScissorTest = renderTarget.scissorTest; } else { _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor(); _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor(); _currentScissorTest = _scissorTest; } const framebufferBound = state.bindFramebuffer( 36160, framebuffer ); if ( framebufferBound && capabilities.drawBuffers && useDefaultFramebuffer ) { state.drawBuffers( renderTarget, framebuffer ); } state.viewport( _currentViewport ); state.scissor( _currentScissor ); state.setScissorTest( _currentScissorTest ); if ( isCube ) { const textureProperties = properties.get( renderTarget.texture ); _gl.framebufferTexture2D( 36160, 36064, 34069 + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel ); } else if ( isRenderTarget3D ) { const textureProperties = properties.get( renderTarget.texture ); const layer = activeCubeFace || 0; _gl.framebufferTextureLayer( 36160, 36064, textureProperties.__webglTexture, activeMipmapLevel || 0, layer ); } _currentMaterialId = - 1; // reset current material to ensure correct uniform bindings }; this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) { if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); return; } let framebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) { framebuffer = framebuffer[ activeCubeFaceIndex ]; } if ( framebuffer ) { state.bindFramebuffer( 36160, framebuffer ); try { const texture = renderTarget.texture; const textureFormat = texture.format; const textureType = texture.type; if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== _gl.getParameter( 35739 ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); return; } const halfFloatSupportedByExt = ( textureType === HalfFloatType ) && ( extensions.has( 'EXT_color_buffer_half_float' ) || ( capabilities.isWebGL2 && extensions.has( 'EXT_color_buffer_float' ) ) ); if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== _gl.getParameter( 35738 ) && // Edge and Chrome Mac < 52 (#9513) ! ( textureType === FloatType && ( capabilities.isWebGL2 || extensions.has( 'OES_texture_float' ) || extensions.has( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox ! halfFloatSupportedByExt ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); return; } // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) { _gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer ); } } finally { // restore framebuffer of current render target if necessary const framebuffer = ( _currentRenderTarget !== null ) ? properties.get( _currentRenderTarget ).__webglFramebuffer : null; state.bindFramebuffer( 36160, framebuffer ); } } }; this.copyFramebufferToTexture = function ( position, texture, level = 0 ) { const levelScale = Math.pow( 2, - level ); const width = Math.floor( texture.image.width * levelScale ); const height = Math.floor( texture.image.height * levelScale ); textures.setTexture2D( texture, 0 ); _gl.copyTexSubImage2D( 3553, level, 0, 0, position.x, position.y, width, height ); state.unbindTexture(); }; this.copyTextureToTexture = function ( position, srcTexture, dstTexture, level = 0 ) { const width = srcTexture.image.width; const height = srcTexture.image.height; const glFormat = utils.convert( dstTexture.format ); const glType = utils.convert( dstTexture.type ); textures.setTexture2D( dstTexture, 0 ); // As another texture upload may have changed pixelStorei // parameters, make sure they are correct for the dstTexture _gl.pixelStorei( 37440, dstTexture.flipY ); _gl.pixelStorei( 37441, dstTexture.premultiplyAlpha ); _gl.pixelStorei( 3317, dstTexture.unpackAlignment ); if ( srcTexture.isDataTexture ) { _gl.texSubImage2D( 3553, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data ); } else { if ( srcTexture.isCompressedTexture ) { _gl.compressedTexSubImage2D( 3553, level, position.x, position.y, srcTexture.mipmaps[ 0 ].width, srcTexture.mipmaps[ 0 ].height, glFormat, srcTexture.mipmaps[ 0 ].data ); } else { _gl.texSubImage2D( 3553, level, position.x, position.y, glFormat, glType, srcTexture.image ); } } // Generate mipmaps only when copying level 0 if ( level === 0 && dstTexture.generateMipmaps ) _gl.generateMipmap( 3553 ); state.unbindTexture(); }; this.copyTextureToTexture3D = function ( sourceBox, position, srcTexture, dstTexture, level = 0 ) { if ( _this.isWebGL1Renderer ) { console.warn( 'THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.' ); return; } const width = sourceBox.max.x - sourceBox.min.x + 1; const height = sourceBox.max.y - sourceBox.min.y + 1; const depth = sourceBox.max.z - sourceBox.min.z + 1; const glFormat = utils.convert( dstTexture.format ); const glType = utils.convert( dstTexture.type ); let glTarget; if ( dstTexture.isData3DTexture ) { textures.setTexture3D( dstTexture, 0 ); glTarget = 32879; } else if ( dstTexture.isDataArrayTexture ) { textures.setTexture2DArray( dstTexture, 0 ); glTarget = 35866; } else { console.warn( 'THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.' ); return; } _gl.pixelStorei( 37440, dstTexture.flipY ); _gl.pixelStorei( 37441, dstTexture.premultiplyAlpha ); _gl.pixelStorei( 3317, dstTexture.unpackAlignment ); const unpackRowLen = _gl.getParameter( 3314 ); const unpackImageHeight = _gl.getParameter( 32878 ); const unpackSkipPixels = _gl.getParameter( 3316 ); const unpackSkipRows = _gl.getParameter( 3315 ); const unpackSkipImages = _gl.getParameter( 32877 ); const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[ 0 ] : srcTexture.image; _gl.pixelStorei( 3314, image.width ); _gl.pixelStorei( 32878, image.height ); _gl.pixelStorei( 3316, sourceBox.min.x ); _gl.pixelStorei( 3315, sourceBox.min.y ); _gl.pixelStorei( 32877, sourceBox.min.z ); if ( srcTexture.isDataTexture || srcTexture.isData3DTexture ) { _gl.texSubImage3D( glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data ); } else { if ( srcTexture.isCompressedTexture ) { console.warn( 'THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture.' ); _gl.compressedTexSubImage3D( glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data ); } else { _gl.texSubImage3D( glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image ); } } _gl.pixelStorei( 3314, unpackRowLen ); _gl.pixelStorei( 32878, unpackImageHeight ); _gl.pixelStorei( 3316, unpackSkipPixels ); _gl.pixelStorei( 3315, unpackSkipRows ); _gl.pixelStorei( 32877, unpackSkipImages ); // Generate mipmaps only when copying level 0 if ( level === 0 && dstTexture.generateMipmaps ) _gl.generateMipmap( glTarget ); state.unbindTexture(); }; this.initTexture = function ( texture ) { if ( texture.isCubeTexture ) { textures.setTextureCube( texture, 0 ); } else if ( texture.isData3DTexture ) { textures.setTexture3D( texture, 0 ); } else if ( texture.isDataArrayTexture ) { textures.setTexture2DArray( texture, 0 ); } else { textures.setTexture2D( texture, 0 ); } state.unbindTexture(); }; this.resetState = function () { _currentActiveCubeFace = 0; _currentActiveMipmapLevel = 0; _currentRenderTarget = null; state.reset(); bindingStates.reset(); }; if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); } } class WebGL1Renderer extends WebGLRenderer {} WebGL1Renderer.prototype.isWebGL1Renderer = true; class Scene extends Object3D { constructor() { super(); this.isScene = true; this.type = 'Scene'; this.background = null; this.environment = null; this.fog = null; this.overrideMaterial = null; this.autoUpdate = true; // checked by the renderer if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); } } copy( source, recursive ) { super.copy( source, recursive ); if ( source.background !== null ) this.background = source.background.clone(); if ( source.environment !== null ) this.environment = source.environment.clone(); if ( source.fog !== null ) this.fog = source.fog.clone(); if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone(); this.autoUpdate = source.autoUpdate; this.matrixAutoUpdate = source.matrixAutoUpdate; return this; } toJSON( meta ) { const data = super.toJSON( meta ); if ( this.fog !== null ) data.object.fog = this.fog.toJSON(); return data; } } class InterleavedBuffer { constructor( array, stride ) { this.isInterleavedBuffer = true; this.array = array; this.stride = stride; this.count = array !== undefined ? array.length / stride : 0; this.usage = StaticDrawUsage; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; this.uuid = generateUUID(); } onUploadCallback() {} set needsUpdate( value ) { if ( value === true ) this.version ++; } setUsage( value ) { this.usage = value; return this; } copy( source ) { this.array = new source.array.constructor( source.array ); this.count = source.count; this.stride = source.stride; this.usage = source.usage; return this; } copyAt( index1, attribute, index2 ) { index1 *= this.stride; index2 *= attribute.stride; for ( let i = 0, l = this.stride; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; } set( value, offset = 0 ) { this.array.set( value, offset ); return this; } clone( data ) { if ( data.arrayBuffers === undefined ) { data.arrayBuffers = {}; } if ( this.array.buffer._uuid === undefined ) { this.array.buffer._uuid = generateUUID(); } if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { data.arrayBuffers[ this.array.buffer._uuid ] = this.array.slice( 0 ).buffer; } const array = new this.array.constructor( data.arrayBuffers[ this.array.buffer._uuid ] ); const ib = new this.constructor( array, this.stride ); ib.setUsage( this.usage ); return ib; } onUpload( callback ) { this.onUploadCallback = callback; return this; } toJSON( data ) { if ( data.arrayBuffers === undefined ) { data.arrayBuffers = {}; } // generate UUID for array buffer if necessary if ( this.array.buffer._uuid === undefined ) { this.array.buffer._uuid = generateUUID(); } if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { data.arrayBuffers[ this.array.buffer._uuid ] = Array.from( new Uint32Array( this.array.buffer ) ); } // return { uuid: this.uuid, buffer: this.array.buffer._uuid, type: this.array.constructor.name, stride: this.stride }; } } const _vector$6 = /*@__PURE__*/ new Vector3(); class InterleavedBufferAttribute { constructor( interleavedBuffer, itemSize, offset, normalized = false ) { this.isInterleavedBufferAttribute = true; this.name = ''; this.data = interleavedBuffer; this.itemSize = itemSize; this.offset = offset; this.normalized = normalized === true; } get count() { return this.data.count; } get array() { return this.data.array; } set needsUpdate( value ) { this.data.needsUpdate = value; } applyMatrix4( m ) { for ( let i = 0, l = this.data.count; i < l; i ++ ) { _vector$6.fromBufferAttribute( this, i ); _vector$6.applyMatrix4( m ); this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z ); } return this; } applyNormalMatrix( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$6.fromBufferAttribute( this, i ); _vector$6.applyNormalMatrix( m ); this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z ); } return this; } transformDirection( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$6.fromBufferAttribute( this, i ); _vector$6.transformDirection( m ); this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z ); } return this; } setX( index, x ) { this.data.array[ index * this.data.stride + this.offset ] = x; return this; } setY( index, y ) { this.data.array[ index * this.data.stride + this.offset + 1 ] = y; return this; } setZ( index, z ) { this.data.array[ index * this.data.stride + this.offset + 2 ] = z; return this; } setW( index, w ) { this.data.array[ index * this.data.stride + this.offset + 3 ] = w; return this; } getX( index ) { return this.data.array[ index * this.data.stride + this.offset ]; } getY( index ) { return this.data.array[ index * this.data.stride + this.offset + 1 ]; } getZ( index ) { return this.data.array[ index * this.data.stride + this.offset + 2 ]; } getW( index ) { return this.data.array[ index * this.data.stride + this.offset + 3 ]; } setXY( index, x, y ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; return this; } setXYZ( index, x, y, z ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; return this; } setXYZW( index, x, y, z, w ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; this.data.array[ index + 3 ] = w; return this; } clone( data ) { if ( data === undefined ) { console.log( 'THREE.InterleavedBufferAttribute.clone(): Cloning an interleaved buffer attribute will deinterleave buffer data.' ); const array = []; for ( let i = 0; i < this.count; i ++ ) { const index = i * this.data.stride + this.offset; for ( let j = 0; j < this.itemSize; j ++ ) { array.push( this.data.array[ index + j ] ); } } return new BufferAttribute( new this.array.constructor( array ), this.itemSize, this.normalized ); } else { if ( data.interleavedBuffers === undefined ) { data.interleavedBuffers = {}; } if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { data.interleavedBuffers[ this.data.uuid ] = this.data.clone( data ); } return new InterleavedBufferAttribute( data.interleavedBuffers[ this.data.uuid ], this.itemSize, this.offset, this.normalized ); } } toJSON( data ) { if ( data === undefined ) { console.log( 'THREE.InterleavedBufferAttribute.toJSON(): Serializing an interleaved buffer attribute will deinterleave buffer data.' ); const array = []; for ( let i = 0; i < this.count; i ++ ) { const index = i * this.data.stride + this.offset; for ( let j = 0; j < this.itemSize; j ++ ) { array.push( this.data.array[ index + j ] ); } } // deinterleave data and save it as an ordinary buffer attribute for now return { itemSize: this.itemSize, type: this.array.constructor.name, array: array, normalized: this.normalized }; } else { // save as true interleaved attribtue if ( data.interleavedBuffers === undefined ) { data.interleavedBuffers = {}; } if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { data.interleavedBuffers[ this.data.uuid ] = this.data.toJSON( data ); } return { isInterleavedBufferAttribute: true, itemSize: this.itemSize, data: this.data.uuid, offset: this.offset, normalized: this.normalized }; } } } const _basePosition = /*@__PURE__*/ new Vector3(); const _skinIndex = /*@__PURE__*/ new Vector4(); const _skinWeight = /*@__PURE__*/ new Vector4(); const _vector$5 = /*@__PURE__*/ new Vector3(); const _matrix = /*@__PURE__*/ new Matrix4(); class SkinnedMesh extends Mesh { constructor( geometry, material ) { super( geometry, material ); this.isSkinnedMesh = true; this.type = 'SkinnedMesh'; this.bindMode = 'attached'; this.bindMatrix = new Matrix4(); this.bindMatrixInverse = new Matrix4(); } copy( source, recursive ) { super.copy( source, recursive ); this.bindMode = source.bindMode; this.bindMatrix.copy( source.bindMatrix ); this.bindMatrixInverse.copy( source.bindMatrixInverse ); this.skeleton = source.skeleton; return this; } bind( skeleton, bindMatrix ) { this.skeleton = skeleton; if ( bindMatrix === undefined ) { this.updateMatrixWorld( true ); this.skeleton.calculateInverses(); bindMatrix = this.matrixWorld; } this.bindMatrix.copy( bindMatrix ); this.bindMatrixInverse.copy( bindMatrix ).invert(); } pose() { this.skeleton.pose(); } normalizeSkinWeights() { const vector = new Vector4(); const skinWeight = this.geometry.attributes.skinWeight; for ( let i = 0, l = skinWeight.count; i < l; i ++ ) { vector.fromBufferAttribute( skinWeight, i ); const scale = 1.0 / vector.manhattanLength(); if ( scale !== Infinity ) { vector.multiplyScalar( scale ); } else { vector.set( 1, 0, 0, 0 ); // do something reasonable } skinWeight.setXYZW( i, vector.x, vector.y, vector.z, vector.w ); } } updateMatrixWorld( force ) { super.updateMatrixWorld( force ); if ( this.bindMode === 'attached' ) { this.bindMatrixInverse.copy( this.matrixWorld ).invert(); } else if ( this.bindMode === 'detached' ) { this.bindMatrixInverse.copy( this.bindMatrix ).invert(); } else { console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode ); } } boneTransform( index, target ) { const skeleton = this.skeleton; const geometry = this.geometry; _skinIndex.fromBufferAttribute( geometry.attributes.skinIndex, index ); _skinWeight.fromBufferAttribute( geometry.attributes.skinWeight, index ); _basePosition.copy( target ).applyMatrix4( this.bindMatrix ); target.set( 0, 0, 0 ); for ( let i = 0; i < 4; i ++ ) { const weight = _skinWeight.getComponent( i ); if ( weight !== 0 ) { const boneIndex = _skinIndex.getComponent( i ); _matrix.multiplyMatrices( skeleton.bones[ boneIndex ].matrixWorld, skeleton.boneInverses[ boneIndex ] ); target.addScaledVector( _vector$5.copy( _basePosition ).applyMatrix4( _matrix ), weight ); } } return target.applyMatrix4( this.bindMatrixInverse ); } } class Bone extends Object3D { constructor() { super(); this.isBone = true; this.type = 'Bone'; } } class DataTexture extends Texture { constructor( data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, encoding ) { super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.isDataTexture = true; this.image = { data: data, width: width, height: height }; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; } } const _offsetMatrix = /*@__PURE__*/ new Matrix4(); const _identityMatrix = /*@__PURE__*/ new Matrix4(); class Skeleton { constructor( bones = [], boneInverses = [] ) { this.uuid = generateUUID(); this.bones = bones.slice( 0 ); this.boneInverses = boneInverses; this.boneMatrices = null; this.boneTexture = null; this.boneTextureSize = 0; this.frame = - 1; this.init(); } init() { const bones = this.bones; const boneInverses = this.boneInverses; this.boneMatrices = new Float32Array( bones.length * 16 ); // calculate inverse bone matrices if necessary if ( boneInverses.length === 0 ) { this.calculateInverses(); } else { // handle special case if ( bones.length !== boneInverses.length ) { console.warn( 'THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.' ); this.boneInverses = []; for ( let i = 0, il = this.bones.length; i < il; i ++ ) { this.boneInverses.push( new Matrix4() ); } } } } calculateInverses() { this.boneInverses.length = 0; for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const inverse = new Matrix4(); if ( this.bones[ i ] ) { inverse.copy( this.bones[ i ].matrixWorld ).invert(); } this.boneInverses.push( inverse ); } } pose() { // recover the bind-time world matrices for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const bone = this.bones[ i ]; if ( bone ) { bone.matrixWorld.copy( this.boneInverses[ i ] ).invert(); } } // compute the local matrices, positions, rotations and scales for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const bone = this.bones[ i ]; if ( bone ) { if ( bone.parent && bone.parent.isBone ) { bone.matrix.copy( bone.parent.matrixWorld ).invert(); bone.matrix.multiply( bone.matrixWorld ); } else { bone.matrix.copy( bone.matrixWorld ); } bone.matrix.decompose( bone.position, bone.quaternion, bone.scale ); } } } update() { const bones = this.bones; const boneInverses = this.boneInverses; const boneMatrices = this.boneMatrices; const boneTexture = this.boneTexture; // flatten bone matrices to array for ( let i = 0, il = bones.length; i < il; i ++ ) { // compute the offset between the current and the original transform const matrix = bones[ i ] ? bones[ i ].matrixWorld : _identityMatrix; _offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] ); _offsetMatrix.toArray( boneMatrices, i * 16 ); } if ( boneTexture !== null ) { boneTexture.needsUpdate = true; } } clone() { return new Skeleton( this.bones, this.boneInverses ); } computeBoneTexture() { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) let size = Math.sqrt( this.bones.length * 4 ); // 4 pixels needed for 1 matrix size = ceilPowerOfTwo( size ); size = Math.max( size, 4 ); const boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel boneMatrices.set( this.boneMatrices ); // copy current values const boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType ); boneTexture.needsUpdate = true; this.boneMatrices = boneMatrices; this.boneTexture = boneTexture; this.boneTextureSize = size; return this; } getBoneByName( name ) { for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const bone = this.bones[ i ]; if ( bone.name === name ) { return bone; } } return undefined; } dispose( ) { if ( this.boneTexture !== null ) { this.boneTexture.dispose(); this.boneTexture = null; } } fromJSON( json, bones ) { this.uuid = json.uuid; for ( let i = 0, l = json.bones.length; i < l; i ++ ) { const uuid = json.bones[ i ]; let bone = bones[ uuid ]; if ( bone === undefined ) { console.warn( 'THREE.Skeleton: No bone found with UUID:', uuid ); bone = new Bone(); } this.bones.push( bone ); this.boneInverses.push( new Matrix4().fromArray( json.boneInverses[ i ] ) ); } this.init(); return this; } toJSON() { const data = { metadata: { version: 4.5, type: 'Skeleton', generator: 'Skeleton.toJSON' }, bones: [], boneInverses: [] }; data.uuid = this.uuid; const bones = this.bones; const boneInverses = this.boneInverses; for ( let i = 0, l = bones.length; i < l; i ++ ) { const bone = bones[ i ]; data.bones.push( bone.uuid ); const boneInverse = boneInverses[ i ]; data.boneInverses.push( boneInverse.toArray() ); } return data; } } class InstancedBufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized, meshPerAttribute = 1 ) { if ( typeof normalized === 'number' ) { meshPerAttribute = normalized; normalized = false; console.error( 'THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.' ); } super( array, itemSize, normalized ); this.isInstancedBufferAttribute = true; this.meshPerAttribute = meshPerAttribute; } copy( source ) { super.copy( source ); this.meshPerAttribute = source.meshPerAttribute; return this; } toJSON() { const data = super.toJSON(); data.meshPerAttribute = this.meshPerAttribute; data.isInstancedBufferAttribute = true; return data; } } const _instanceLocalMatrix = /*@__PURE__*/ new Matrix4(); const _instanceWorldMatrix = /*@__PURE__*/ new Matrix4(); const _instanceIntersects = []; const _mesh = /*@__PURE__*/ new Mesh(); class InstancedMesh extends Mesh { constructor( geometry, material, count ) { super( geometry, material ); this.isInstancedMesh = true; this.instanceMatrix = new InstancedBufferAttribute( new Float32Array( count * 16 ), 16 ); this.instanceColor = null; this.count = count; this.frustumCulled = false; } copy( source, recursive ) { super.copy( source, recursive ); this.instanceMatrix.copy( source.instanceMatrix ); if ( source.instanceColor !== null ) this.instanceColor = source.instanceColor.clone(); this.count = source.count; return this; } getColorAt( index, color ) { color.fromArray( this.instanceColor.array, index * 3 ); } getMatrixAt( index, matrix ) { matrix.fromArray( this.instanceMatrix.array, index * 16 ); } raycast( raycaster, intersects ) { const matrixWorld = this.matrixWorld; const raycastTimes = this.count; _mesh.geometry = this.geometry; _mesh.material = this.material; if ( _mesh.material === undefined ) return; for ( let instanceId = 0; instanceId < raycastTimes; instanceId ++ ) { // calculate the world matrix for each instance this.getMatrixAt( instanceId, _instanceLocalMatrix ); _instanceWorldMatrix.multiplyMatrices( matrixWorld, _instanceLocalMatrix ); // the mesh represents this single instance _mesh.matrixWorld = _instanceWorldMatrix; _mesh.raycast( raycaster, _instanceIntersects ); // process the result of raycast for ( let i = 0, l = _instanceIntersects.length; i < l; i ++ ) { const intersect = _instanceIntersects[ i ]; intersect.instanceId = instanceId; intersect.object = this; intersects.push( intersect ); } _instanceIntersects.length = 0; } } setColorAt( index, color ) { if ( this.instanceColor === null ) { this.instanceColor = new InstancedBufferAttribute( new Float32Array( this.instanceMatrix.count * 3 ), 3 ); } color.toArray( this.instanceColor.array, index * 3 ); } setMatrixAt( index, matrix ) { matrix.toArray( this.instanceMatrix.array, index * 16 ); } updateMorphTargets() { } dispose() { this.dispatchEvent( { type: 'dispose' } ); } } class LineBasicMaterial extends Material { constructor( parameters ) { super(); this.isLineBasicMaterial = true; this.type = 'LineBasicMaterial'; this.color = new Color$2( 0xffffff ); this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round'; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin; this.fog = source.fog; return this; } } const _start$1 = /*@__PURE__*/ new Vector3(); const _end$1 = /*@__PURE__*/ new Vector3(); const _inverseMatrix$1 = /*@__PURE__*/ new Matrix4(); const _ray$1 = /*@__PURE__*/ new Ray(); const _sphere$1 = /*@__PURE__*/ new Sphere(); class Line extends Object3D { constructor( geometry = new BufferGeometry(), material = new LineBasicMaterial() ) { super(); this.isLine = true; this.type = 'Line'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy( source, recursive ) { super.copy( source, recursive ); this.material = source.material; this.geometry = source.geometry; return this; } computeLineDistances() { const geometry = this.geometry; // we assume non-indexed geometry if ( geometry.index === null ) { const positionAttribute = geometry.attributes.position; const lineDistances = [ 0 ]; for ( let i = 1, l = positionAttribute.count; i < l; i ++ ) { _start$1.fromBufferAttribute( positionAttribute, i - 1 ); _end$1.fromBufferAttribute( positionAttribute, i ); lineDistances[ i ] = lineDistances[ i - 1 ]; lineDistances[ i ] += _start$1.distanceTo( _end$1 ); } geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); } else { console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); } return this; } raycast( raycaster, intersects ) { const geometry = this.geometry; const matrixWorld = this.matrixWorld; const threshold = raycaster.params.Line.threshold; const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$1.copy( geometry.boundingSphere ); _sphere$1.applyMatrix4( matrixWorld ); _sphere$1.radius += threshold; if ( raycaster.ray.intersectsSphere( _sphere$1 ) === false ) return; // _inverseMatrix$1.copy( matrixWorld ).invert(); _ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 ); const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); const localThresholdSq = localThreshold * localThreshold; const vStart = new Vector3(); const vEnd = new Vector3(); const interSegment = new Vector3(); const interRay = new Vector3(); const step = this.isLineSegments ? 2 : 1; const index = geometry.index; const attributes = geometry.attributes; const positionAttribute = attributes.position; if ( index !== null ) { const start = Math.max( 0, drawRange.start ); const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, l = end - 1; i < l; i += step ) { const a = index.getX( i ); const b = index.getX( i + 1 ); vStart.fromBufferAttribute( positionAttribute, a ); vEnd.fromBufferAttribute( positionAttribute, b ); const distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > localThresholdSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation const distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, l = end - 1; i < l; i += step ) { vStart.fromBufferAttribute( positionAttribute, i ); vEnd.fromBufferAttribute( positionAttribute, i + 1 ); const distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > localThresholdSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation const distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } } updateMorphTargets() { const geometry = this.geometry; const morphAttributes = geometry.morphAttributes; const keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { const morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { const name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } } const _start = /*@__PURE__*/ new Vector3(); const _end = /*@__PURE__*/ new Vector3(); class LineSegments extends Line { constructor( geometry, material ) { super( geometry, material ); this.isLineSegments = true; this.type = 'LineSegments'; } computeLineDistances() { const geometry = this.geometry; // we assume non-indexed geometry if ( geometry.index === null ) { const positionAttribute = geometry.attributes.position; const lineDistances = []; for ( let i = 0, l = positionAttribute.count; i < l; i += 2 ) { _start.fromBufferAttribute( positionAttribute, i ); _end.fromBufferAttribute( positionAttribute, i + 1 ); lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ]; lineDistances[ i + 1 ] = lineDistances[ i ] + _start.distanceTo( _end ); } geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); } else { console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); } return this; } } class LineLoop extends Line { constructor( geometry, material ) { super( geometry, material ); this.isLineLoop = true; this.type = 'LineLoop'; } } class PointsMaterial extends Material { constructor( parameters ) { super(); this.isPointsMaterial = true; this.type = 'PointsMaterial'; this.color = new Color$2( 0xffffff ); this.map = null; this.alphaMap = null; this.size = 1; this.sizeAttenuation = true; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.alphaMap = source.alphaMap; this.size = source.size; this.sizeAttenuation = source.sizeAttenuation; this.fog = source.fog; return this; } } const _inverseMatrix = /*@__PURE__*/ new Matrix4(); const _ray$3 = /*@__PURE__*/ new Ray(); const _sphere$4 = /*@__PURE__*/ new Sphere(); const _position$2 = /*@__PURE__*/ new Vector3(); class Points extends Object3D { constructor( geometry = new BufferGeometry(), material = new PointsMaterial() ) { super(); this.isPoints = true; this.type = 'Points'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy( source, recursive ) { super.copy( source, recursive ); this.material = source.material; this.geometry = source.geometry; return this; } raycast( raycaster, intersects ) { const geometry = this.geometry; const matrixWorld = this.matrixWorld; const threshold = raycaster.params.Points.threshold; const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$4.copy( geometry.boundingSphere ); _sphere$4.applyMatrix4( matrixWorld ); _sphere$4.radius += threshold; if ( raycaster.ray.intersectsSphere( _sphere$4 ) === false ) return; // _inverseMatrix.copy( matrixWorld ).invert(); _ray$3.copy( raycaster.ray ).applyMatrix4( _inverseMatrix ); const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); const localThresholdSq = localThreshold * localThreshold; const index = geometry.index; const attributes = geometry.attributes; const positionAttribute = attributes.position; if ( index !== null ) { const start = Math.max( 0, drawRange.start ); const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, il = end; i < il; i ++ ) { const a = index.getX( i ); _position$2.fromBufferAttribute( positionAttribute, a ); testPoint( _position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this ); } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, l = end; i < l; i ++ ) { _position$2.fromBufferAttribute( positionAttribute, i ); testPoint( _position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this ); } } } updateMorphTargets() { const geometry = this.geometry; const morphAttributes = geometry.morphAttributes; const keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { const morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { const name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } } function testPoint( point, index, localThresholdSq, matrixWorld, raycaster, intersects, object ) { const rayPointDistanceSq = _ray$3.distanceSqToPoint( point ); if ( rayPointDistanceSq < localThresholdSq ) { const intersectPoint = new Vector3(); _ray$3.closestPointToPoint( point, intersectPoint ); intersectPoint.applyMatrix4( matrixWorld ); const distance = raycaster.ray.origin.distanceTo( intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) return; intersects.push( { distance: distance, distanceToRay: Math.sqrt( rayPointDistanceSq ), point: intersectPoint, index: index, face: null, object: object } ); } } class VideoTexture extends Texture { constructor( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { super( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.isVideoTexture = true; this.minFilter = minFilter !== undefined ? minFilter : LinearFilter; this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; this.generateMipmaps = false; const scope = this; function updateVideo() { scope.needsUpdate = true; video.requestVideoFrameCallback( updateVideo ); } if ( 'requestVideoFrameCallback' in video ) { video.requestVideoFrameCallback( updateVideo ); } } clone() { return new this.constructor( this.image ).copy( this ); } update() { const video = this.image; const hasVideoFrameCallback = 'requestVideoFrameCallback' in video; if ( hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA ) { this.needsUpdate = true; } } } class CanvasTexture extends Texture { constructor( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { super( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.isCanvasTexture = true; this.needsUpdate = true; } } /** * Extensible curve object. * * Some common of curve methods: * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget ) * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget ) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following curves inherit from THREE.Curve: * * -- 2D curves -- * THREE.ArcCurve * THREE.CubicBezierCurve * THREE.EllipseCurve * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.SplineCurve * * -- 3D curves -- * THREE.CatmullRomCurve3 * THREE.CubicBezierCurve3 * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * * A series of curves can be represented as a THREE.CurvePath. * **/ class Curve { constructor() { this.type = 'Curve'; this.arcLengthDivisions = 200; } // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint( /* t, optionalTarget */ ) { console.warn( 'THREE.Curve: .getPoint() not implemented.' ); return null; } // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt( u, optionalTarget ) { const t = this.getUtoTmapping( u ); return this.getPoint( t, optionalTarget ); } // Get sequence of points using getPoint( t ) getPoints( divisions = 5 ) { const points = []; for ( let d = 0; d <= divisions; d ++ ) { points.push( this.getPoint( d / divisions ) ); } return points; } // Get sequence of points using getPointAt( u ) getSpacedPoints( divisions = 5 ) { const points = []; for ( let d = 0; d <= divisions; d ++ ) { points.push( this.getPointAt( d / divisions ) ); } return points; } // Get total curve arc length getLength() { const lengths = this.getLengths(); return lengths[ lengths.length - 1 ]; } // Get list of cumulative segment lengths getLengths( divisions = this.arcLengthDivisions ) { if ( this.cacheArcLengths && ( this.cacheArcLengths.length === divisions + 1 ) && ! this.needsUpdate ) { return this.cacheArcLengths; } this.needsUpdate = false; const cache = []; let current, last = this.getPoint( 0 ); let sum = 0; cache.push( 0 ); for ( let p = 1; p <= divisions; p ++ ) { current = this.getPoint( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum: sum }; Sum is in the last element. } updateArcLengths() { this.needsUpdate = true; this.getLengths(); } // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping( u, distance ) { const arcLengths = this.getLengths(); let i = 0; const il = arcLengths.length; let targetArcLength; // The targeted u distance value to get if ( distance ) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[ il - 1 ]; } // binary search for the index with largest value smaller than target u distance let low = 0, high = il - 1, comparison; while ( low <= high ) { i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[ i ] - targetArcLength; if ( comparison < 0 ) { low = i + 1; } else if ( comparison > 0 ) { high = i - 1; } else { high = i; break; // DONE } } i = high; if ( arcLengths[ i ] === targetArcLength ) { return i / ( il - 1 ); } // we could get finer grain at lengths, or use simple interpolation between two points const lengthBefore = arcLengths[ i ]; const lengthAfter = arcLengths[ i + 1 ]; const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points const segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; // add that fractional amount to t const t = ( i + segmentFraction ) / ( il - 1 ); return t; } // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent( t, optionalTarget ) { const delta = 0.0001; let t1 = t - delta; let t2 = t + delta; // Capping in case of danger if ( t1 < 0 ) t1 = 0; if ( t2 > 1 ) t2 = 1; const pt1 = this.getPoint( t1 ); const pt2 = this.getPoint( t2 ); const tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() ); tangent.copy( pt2 ).sub( pt1 ).normalize(); return tangent; } getTangentAt( u, optionalTarget ) { const t = this.getUtoTmapping( u ); return this.getTangent( t, optionalTarget ); } computeFrenetFrames( segments, closed ) { // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf const normal = new Vector3(); const tangents = []; const normals = []; const binormals = []; const vec = new Vector3(); const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve for ( let i = 0; i <= segments; i ++ ) { const u = i / segments; tangents[ i ] = this.getTangentAt( u, new Vector3() ); } // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component normals[ 0 ] = new Vector3(); binormals[ 0 ] = new Vector3(); let min = Number.MAX_VALUE; const tx = Math.abs( tangents[ 0 ].x ); const ty = Math.abs( tangents[ 0 ].y ); const tz = Math.abs( tangents[ 0 ].z ); if ( tx <= min ) { min = tx; normal.set( 1, 0, 0 ); } if ( ty <= min ) { min = ty; normal.set( 0, 1, 0 ); } if ( tz <= min ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); // compute the slowly-varying normal and binormal vectors for each segment on the curve for ( let i = 1; i <= segments; i ++ ) { normals[ i ] = normals[ i - 1 ].clone(); binormals[ i ] = binormals[ i - 1 ].clone(); vec.crossVectors( tangents[ i - 1 ], tangents[ i ] ); if ( vec.length() > Number.EPSILON ) { vec.normalize(); const theta = Math.acos( clamp$1( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed === true ) { let theta = Math.acos( clamp$1( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) ); theta /= segments; if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) { theta = - theta; } for ( let i = 1; i <= segments; i ++ ) { // twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } } return { tangents: tangents, normals: normals, binormals: binormals }; } clone() { return new this.constructor().copy( this ); } copy( source ) { this.arcLengthDivisions = source.arcLengthDivisions; return this; } toJSON() { const data = { metadata: { version: 4.5, type: 'Curve', generator: 'Curve.toJSON' } }; data.arcLengthDivisions = this.arcLengthDivisions; data.type = this.type; return data; } fromJSON( json ) { this.arcLengthDivisions = json.arcLengthDivisions; return this; } } class EllipseCurve extends Curve { constructor( aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0 ) { super(); this.isEllipseCurve = true; this.type = 'EllipseCurve'; this.aX = aX; this.aY = aY; this.xRadius = xRadius; this.yRadius = yRadius; this.aStartAngle = aStartAngle; this.aEndAngle = aEndAngle; this.aClockwise = aClockwise; this.aRotation = aRotation; } getPoint( t, optionalTarget ) { const point = optionalTarget || new Vector2(); const twoPi = Math.PI * 2; let deltaAngle = this.aEndAngle - this.aStartAngle; const samePoints = Math.abs( deltaAngle ) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI while ( deltaAngle < 0 ) deltaAngle += twoPi; while ( deltaAngle > twoPi ) deltaAngle -= twoPi; if ( deltaAngle < Number.EPSILON ) { if ( samePoints ) { deltaAngle = 0; } else { deltaAngle = twoPi; } } if ( this.aClockwise === true && ! samePoints ) { if ( deltaAngle === twoPi ) { deltaAngle = - twoPi; } else { deltaAngle = deltaAngle - twoPi; } } const angle = this.aStartAngle + t * deltaAngle; let x = this.aX + this.xRadius * Math.cos( angle ); let y = this.aY + this.yRadius * Math.sin( angle ); if ( this.aRotation !== 0 ) { const cos = Math.cos( this.aRotation ); const sin = Math.sin( this.aRotation ); const tx = x - this.aX; const ty = y - this.aY; // Rotate the point about the center of the ellipse. x = tx * cos - ty * sin + this.aX; y = tx * sin + ty * cos + this.aY; } return point.set( x, y ); } copy( source ) { super.copy( source ); this.aX = source.aX; this.aY = source.aY; this.xRadius = source.xRadius; this.yRadius = source.yRadius; this.aStartAngle = source.aStartAngle; this.aEndAngle = source.aEndAngle; this.aClockwise = source.aClockwise; this.aRotation = source.aRotation; return this; } toJSON() { const data = super.toJSON(); data.aX = this.aX; data.aY = this.aY; data.xRadius = this.xRadius; data.yRadius = this.yRadius; data.aStartAngle = this.aStartAngle; data.aEndAngle = this.aEndAngle; data.aClockwise = this.aClockwise; data.aRotation = this.aRotation; return data; } fromJSON( json ) { super.fromJSON( json ); this.aX = json.aX; this.aY = json.aY; this.xRadius = json.xRadius; this.yRadius = json.yRadius; this.aStartAngle = json.aStartAngle; this.aEndAngle = json.aEndAngle; this.aClockwise = json.aClockwise; this.aRotation = json.aRotation; return this; } } class ArcCurve extends EllipseCurve { constructor( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { super( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); this.isArcCurve = true; this.type = 'ArcCurve'; } } /** * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() { let c0 = 0, c1 = 0, c2 = 0, c3 = 0; /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ function init( x0, x1, t0, t1 ) { c0 = x0; c1 = t0; c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1; c3 = 2 * x0 - 2 * x1 + t0 + t1; } return { initCatmullRom: function ( x0, x1, x2, x3, tension ) { init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) ); }, initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) { // compute tangents when parameterized in [t1,t2] let t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; let t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2; // rescale tangents for parametrization in [0,1] t1 *= dt1; t2 *= dt1; init( x1, x2, t1, t2 ); }, calc: function ( t ) { const t2 = t * t; const t3 = t2 * t; return c0 + c1 * t + c2 * t2 + c3 * t3; } }; } // const tmp = /*@__PURE__*/ new Vector3(); const px = /*@__PURE__*/ new CubicPoly(); const py = /*@__PURE__*/ new CubicPoly(); const pz = /*@__PURE__*/ new CubicPoly(); class CatmullRomCurve3 extends Curve { constructor( points = [], closed = false, curveType = 'centripetal', tension = 0.5 ) { super(); this.isCatmullRomCurve3 = true; this.type = 'CatmullRomCurve3'; this.points = points; this.closed = closed; this.curveType = curveType; this.tension = tension; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const points = this.points; const l = points.length; const p = ( l - ( this.closed ? 0 : 1 ) ) * t; let intPoint = Math.floor( p ); let weight = p - intPoint; if ( this.closed ) { intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l; } else if ( weight === 0 && intPoint === l - 1 ) { intPoint = l - 2; weight = 1; } let p0, p3; // 4 points (p1 & p2 defined below) if ( this.closed || intPoint > 0 ) { p0 = points[ ( intPoint - 1 ) % l ]; } else { // extrapolate first point tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); p0 = tmp; } const p1 = points[ intPoint % l ]; const p2 = points[ ( intPoint + 1 ) % l ]; if ( this.closed || intPoint + 2 < l ) { p3 = points[ ( intPoint + 2 ) % l ]; } else { // extrapolate last point tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); p3 = tmp; } if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) { // init Centripetal / Chordal Catmull-Rom const pow = this.curveType === 'chordal' ? 0.5 : 0.25; let dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); let dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); let dt2 = Math.pow( p2.distanceToSquared( p3 ), pow ); // safety check for repeated points if ( dt1 < 1e-4 ) dt1 = 1.0; if ( dt0 < 1e-4 ) dt0 = dt1; if ( dt2 < 1e-4 ) dt2 = dt1; px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 ); } else if ( this.curveType === 'catmullrom' ) { px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension ); py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension ); pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension ); } point.set( px.calc( weight ), py.calc( weight ), pz.calc( weight ) ); return point; } copy( source ) { super.copy( source ); this.points = []; for ( let i = 0, l = source.points.length; i < l; i ++ ) { const point = source.points[ i ]; this.points.push( point.clone() ); } this.closed = source.closed; this.curveType = source.curveType; this.tension = source.tension; return this; } toJSON() { const data = super.toJSON(); data.points = []; for ( let i = 0, l = this.points.length; i < l; i ++ ) { const point = this.points[ i ]; data.points.push( point.toArray() ); } data.closed = this.closed; data.curveType = this.curveType; data.tension = this.tension; return data; } fromJSON( json ) { super.fromJSON( json ); this.points = []; for ( let i = 0, l = json.points.length; i < l; i ++ ) { const point = json.points[ i ]; this.points.push( new Vector3().fromArray( point ) ); } this.closed = json.closed; this.curveType = json.curveType; this.tension = json.tension; return this; } } /** * Bezier Curves formulas obtained from * https://en.wikipedia.org/wiki/B%C3%A9zier_curve */ function CatmullRom( t, p0, p1, p2, p3 ) { const v0 = ( p2 - p0 ) * 0.5; const v1 = ( p3 - p1 ) * 0.5; const t2 = t * t; const t3 = t * t2; return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; } // function QuadraticBezierP0( t, p ) { const k = 1 - t; return k * k * p; } function QuadraticBezierP1( t, p ) { return 2 * ( 1 - t ) * t * p; } function QuadraticBezierP2( t, p ) { return t * t * p; } function QuadraticBezier( t, p0, p1, p2 ) { return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) + QuadraticBezierP2( t, p2 ); } // function CubicBezierP0( t, p ) { const k = 1 - t; return k * k * k * p; } function CubicBezierP1( t, p ) { const k = 1 - t; return 3 * k * k * t * p; } function CubicBezierP2( t, p ) { return 3 * ( 1 - t ) * t * t * p; } function CubicBezierP3( t, p ) { return t * t * t * p; } function CubicBezier( t, p0, p1, p2, p3 ) { return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) + CubicBezierP3( t, p3 ); } class CubicBezierCurve extends Curve { constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2() ) { super(); this.isCubicBezierCurve = true; this.type = 'CubicBezierCurve'; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 ); return this; } } class CubicBezierCurve3 extends Curve { constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3() ) { super(); this.isCubicBezierCurve3 = true; this.type = 'CubicBezierCurve3'; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ), CubicBezier( t, v0.z, v1.z, v2.z, v3.z ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 ); return this; } } class LineCurve extends Curve { constructor( v1 = new Vector2(), v2 = new Vector2() ) { super(); this.isLineCurve = true; this.type = 'LineCurve'; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; if ( t === 1 ) { point.copy( this.v2 ); } else { point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt( u, optionalTarget ) { return this.getPoint( u, optionalTarget ); } getTangent( t, optionalTarget ) { const tangent = optionalTarget || new Vector2(); tangent.copy( this.v2 ).sub( this.v1 ).normalize(); return tangent; } copy( source ) { super.copy( source ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class LineCurve3 extends Curve { constructor( v1 = new Vector3(), v2 = new Vector3() ) { super(); this.isLineCurve3 = true; this.type = 'LineCurve3'; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; if ( t === 1 ) { point.copy( this.v2 ); } else { point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt( u, optionalTarget ) { return this.getPoint( u, optionalTarget ); } copy( source ) { super.copy( source ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class QuadraticBezierCurve extends Curve { constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2() ) { super(); this.isQuadraticBezierCurve = true; this.type = 'QuadraticBezierCurve'; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class QuadraticBezierCurve3 extends Curve { constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3() ) { super(); this.isQuadraticBezierCurve3 = true; this.type = 'QuadraticBezierCurve3'; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ), QuadraticBezier( t, v0.z, v1.z, v2.z ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class SplineCurve extends Curve { constructor( points = [] ) { super(); this.isSplineCurve = true; this.type = 'SplineCurve'; this.points = points; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const points = this.points; const p = ( points.length - 1 ) * t; const intPoint = Math.floor( p ); const weight = p - intPoint; const p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; const p1 = points[ intPoint ]; const p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; const p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; point.set( CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ), CatmullRom( weight, p0.y, p1.y, p2.y, p3.y ) ); return point; } copy( source ) { super.copy( source ); this.points = []; for ( let i = 0, l = source.points.length; i < l; i ++ ) { const point = source.points[ i ]; this.points.push( point.clone() ); } return this; } toJSON() { const data = super.toJSON(); data.points = []; for ( let i = 0, l = this.points.length; i < l; i ++ ) { const point = this.points[ i ]; data.points.push( point.toArray() ); } return data; } fromJSON( json ) { super.fromJSON( json ); this.points = []; for ( let i = 0, l = json.points.length; i < l; i ++ ) { const point = json.points[ i ]; this.points.push( new Vector2().fromArray( point ) ); } return this; } } var Curves = /*#__PURE__*/Object.freeze({ __proto__: null, ArcCurve: ArcCurve, CatmullRomCurve3: CatmullRomCurve3, CubicBezierCurve: CubicBezierCurve, CubicBezierCurve3: CubicBezierCurve3, EllipseCurve: EllipseCurve, LineCurve: LineCurve, LineCurve3: LineCurve3, QuadraticBezierCurve: QuadraticBezierCurve, QuadraticBezierCurve3: QuadraticBezierCurve3, SplineCurve: SplineCurve }); /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ class CurvePath extends Curve { constructor() { super(); this.type = 'CurvePath'; this.curves = []; this.autoClose = false; // Automatically closes the path } add( curve ) { this.curves.push( curve ); } closePath() { // Add a line curve if start and end of lines are not connected const startPoint = this.curves[ 0 ].getPoint( 0 ); const endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 ); if ( ! startPoint.equals( endPoint ) ) { this.curves.push( new LineCurve( endPoint, startPoint ) ); } } // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') getPoint( t, optionalTarget ) { const d = t * this.getLength(); const curveLengths = this.getCurveLengths(); let i = 0; // To think about boundaries points. while ( i < curveLengths.length ) { if ( curveLengths[ i ] >= d ) { const diff = curveLengths[ i ] - d; const curve = this.curves[ i ]; const segmentLength = curve.getLength(); const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; return curve.getPointAt( u, optionalTarget ); } i ++; } return null; // loop where sum != 0, sum > d , sum+1 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) { points.push( points[ 0 ] ); } return points; } copy( source ) { super.copy( source ); this.curves = []; for ( let i = 0, l = source.curves.length; i < l; i ++ ) { const curve = source.curves[ i ]; this.curves.push( curve.clone() ); } this.autoClose = source.autoClose; return this; } toJSON() { const data = super.toJSON(); data.autoClose = this.autoClose; data.curves = []; for ( let i = 0, l = this.curves.length; i < l; i ++ ) { const curve = this.curves[ i ]; data.curves.push( curve.toJSON() ); } return data; } fromJSON( json ) { super.fromJSON( json ); this.autoClose = json.autoClose; this.curves = []; for ( let i = 0, l = json.curves.length; i < l; i ++ ) { const curve = json.curves[ i ]; this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) ); } return this; } } class Path extends CurvePath { constructor( points ) { super(); this.type = 'Path'; this.currentPoint = new Vector2(); if ( points ) { this.setFromPoints( points ); } } setFromPoints( points ) { this.moveTo( points[ 0 ].x, points[ 0 ].y ); for ( let i = 1, l = points.length; i < l; i ++ ) { this.lineTo( points[ i ].x, points[ i ].y ); } return this; } moveTo( x, y ) { this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying? return this; } lineTo( x, y ) { const curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) ); this.curves.push( curve ); this.currentPoint.set( x, y ); return this; } quadraticCurveTo( aCPx, aCPy, aX, aY ) { const curve = new QuadraticBezierCurve( this.currentPoint.clone(), new Vector2( aCPx, aCPy ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); return this; } bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { const curve = new CubicBezierCurve( this.currentPoint.clone(), new Vector2( aCP1x, aCP1y ), new Vector2( aCP2x, aCP2y ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); return this; } splineThru( pts /*Array of Vector*/ ) { const npts = [ this.currentPoint.clone() ].concat( pts ); const curve = new SplineCurve( npts ); this.curves.push( curve ); this.currentPoint.copy( pts[ pts.length - 1 ] ); return this; } arc( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { const x0 = this.currentPoint.x; const y0 = this.currentPoint.y; this.absarc( aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise ); return this; } absarc( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); return this; } ellipse( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { const x0 = this.currentPoint.x; const y0 = this.currentPoint.y; this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); return this; } absellipse( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { const curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); if ( this.curves.length > 0 ) { // if a previous curve is present, attempt to join const firstPoint = curve.getPoint( 0 ); if ( ! firstPoint.equals( this.currentPoint ) ) { this.lineTo( firstPoint.x, firstPoint.y ); } } this.curves.push( curve ); const lastPoint = curve.getPoint( 1 ); this.currentPoint.copy( lastPoint ); return this; } copy( source ) { super.copy( source ); this.currentPoint.copy( source.currentPoint ); return this; } toJSON() { const data = super.toJSON(); data.currentPoint = this.currentPoint.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.currentPoint.fromArray( json.currentPoint ); return this; } } class Shape extends Path { constructor( points ) { super( points ); this.uuid = generateUUID(); this.type = 'Shape'; this.holes = []; } getPointsHoles( divisions ) { const holesPts = []; for ( let i = 0, l = this.holes.length; i < l; i ++ ) { holesPts[ i ] = this.holes[ i ].getPoints( divisions ); } return holesPts; } // get points of shape and holes (keypoints based on segments parameter) extractPoints( divisions ) { return { shape: this.getPoints( divisions ), holes: this.getPointsHoles( divisions ) }; } copy( source ) { super.copy( source ); this.holes = []; for ( let i = 0, l = source.holes.length; i < l; i ++ ) { const hole = source.holes[ i ]; this.holes.push( hole.clone() ); } return this; } toJSON() { const data = super.toJSON(); data.uuid = this.uuid; data.holes = []; for ( let i = 0, l = this.holes.length; i < l; i ++ ) { const hole = this.holes[ i ]; data.holes.push( hole.toJSON() ); } return data; } fromJSON( json ) { super.fromJSON( json ); this.uuid = json.uuid; this.holes = []; for ( let i = 0, l = json.holes.length; i < l; i ++ ) { const hole = json.holes[ i ]; this.holes.push( new Path().fromJSON( hole ) ); } return this; } } /** * Port from https://github.com/mapbox/earcut (v2.2.2) */ const Earcut = { triangulate: function ( data, holeIndices, dim = 2 ) { const hasHoles = holeIndices && holeIndices.length; const outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length; let outerNode = linkedList( data, 0, outerLen, dim, true ); const triangles = []; if ( ! outerNode || outerNode.next === outerNode.prev ) return triangles; let minX, minY, maxX, maxY, x, y, invSize; if ( hasHoles ) outerNode = eliminateHoles( data, holeIndices, outerNode, dim ); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox if ( data.length > 80 * dim ) { minX = maxX = data[ 0 ]; minY = maxY = data[ 1 ]; for ( let i = dim; i < outerLen; i += dim ) { x = data[ i ]; y = data[ i + 1 ]; if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; } // minX, minY and invSize are later used to transform coords into integers for z-order calculation invSize = Math.max( maxX - minX, maxY - minY ); invSize = invSize !== 0 ? 1 / invSize : 0; } earcutLinked( outerNode, triangles, dim, minX, minY, invSize ); return triangles; } }; // create a circular doubly linked list from polygon points in the specified winding order function linkedList( data, start, end, dim, clockwise ) { let i, last; if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) { for ( i = start; i < end; i += dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last ); } else { for ( i = end - dim; i >= start; i -= dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last ); } if ( last && equals( last, last.next ) ) { removeNode( last ); last = last.next; } return last; } // eliminate colinear or duplicate points function filterPoints( start, end ) { if ( ! start ) return start; if ( ! end ) end = start; let p = start, again; do { again = false; if ( ! p.steiner && ( equals( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) { removeNode( p ); p = end = p.prev; if ( p === p.next ) break; again = true; } else { p = p.next; } } while ( again || p !== end ); return end; } // main ear slicing loop which triangulates a polygon (given as a linked list) function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) { if ( ! ear ) return; // interlink polygon nodes in z-order if ( ! pass && invSize ) indexCurve( ear, minX, minY, invSize ); let stop = ear, prev, next; // iterate through ears, slicing them one by one while ( ear.prev !== ear.next ) { prev = ear.prev; next = ear.next; if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) { // cut off the triangle triangles.push( prev.i / dim ); triangles.push( ear.i / dim ); triangles.push( next.i / dim ); removeNode( ear ); // skipping the next vertex leads to less sliver triangles ear = next.next; stop = next.next; continue; } ear = next; // if we looped through the whole remaining polygon and can't find any more ears if ( ear === stop ) { // try filtering points and slicing again if ( ! pass ) { earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 ); // if this didn't work, try curing all small self-intersections locally } else if ( pass === 1 ) { ear = cureLocalIntersections( filterPoints( ear ), triangles, dim ); earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 ); // as a last resort, try splitting the remaining polygon into two } else if ( pass === 2 ) { splitEarcut( ear, triangles, dim, minX, minY, invSize ); } break; } } } // check whether a polygon node forms a valid ear with adjacent nodes function isEar( ear ) { const a = ear.prev, b = ear, c = ear.next; if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear // now make sure we don't have other points inside the potential ear let p = ear.next.next; while ( p !== ear.prev ) { if ( pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false; p = p.next; } return true; } function isEarHashed( ear, minX, minY, invSize ) { const a = ear.prev, b = ear, c = ear.next; if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear // triangle bbox; min & max are calculated like this for speed const minTX = a.x < b.x ? ( a.x < c.x ? a.x : c.x ) : ( b.x < c.x ? b.x : c.x ), minTY = a.y < b.y ? ( a.y < c.y ? a.y : c.y ) : ( b.y < c.y ? b.y : c.y ), maxTX = a.x > b.x ? ( a.x > c.x ? a.x : c.x ) : ( b.x > c.x ? b.x : c.x ), maxTY = a.y > b.y ? ( a.y > c.y ? a.y : c.y ) : ( b.y > c.y ? b.y : c.y ); // z-order range for the current triangle bbox; const minZ = zOrder( minTX, minTY, minX, minY, invSize ), maxZ = zOrder( maxTX, maxTY, minX, minY, invSize ); let p = ear.prevZ, n = ear.nextZ; // look for points inside the triangle in both directions while ( p && p.z >= minZ && n && n.z <= maxZ ) { if ( p !== ear.prev && p !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false; p = p.prevZ; if ( n !== ear.prev && n !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) && area( n.prev, n, n.next ) >= 0 ) return false; n = n.nextZ; } // look for remaining points in decreasing z-order while ( p && p.z >= minZ ) { if ( p !== ear.prev && p !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false; p = p.prevZ; } // look for remaining points in increasing z-order while ( n && n.z <= maxZ ) { if ( n !== ear.prev && n !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) && area( n.prev, n, n.next ) >= 0 ) return false; n = n.nextZ; } return true; } // go through all polygon nodes and cure small local self-intersections function cureLocalIntersections( start, triangles, dim ) { let p = start; do { const a = p.prev, b = p.next.next; if ( ! equals( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) { triangles.push( a.i / dim ); triangles.push( p.i / dim ); triangles.push( b.i / dim ); // remove two nodes involved removeNode( p ); removeNode( p.next ); p = start = b; } p = p.next; } while ( p !== start ); return filterPoints( p ); } // try splitting polygon into two and triangulate them independently function splitEarcut( start, triangles, dim, minX, minY, invSize ) { // look for a valid diagonal that divides the polygon into two let a = start; do { let b = a.next.next; while ( b !== a.prev ) { if ( a.i !== b.i && isValidDiagonal( a, b ) ) { // split the polygon in two by the diagonal let c = splitPolygon( a, b ); // filter colinear points around the cuts a = filterPoints( a, a.next ); c = filterPoints( c, c.next ); // run earcut on each half earcutLinked( a, triangles, dim, minX, minY, invSize ); earcutLinked( c, triangles, dim, minX, minY, invSize ); return; } b = b.next; } a = a.next; } while ( a !== start ); } // link every hole into the outer loop, producing a single-ring polygon without holes function eliminateHoles( data, holeIndices, outerNode, dim ) { const queue = []; let i, len, start, end, list; for ( i = 0, len = holeIndices.length; i < len; i ++ ) { start = holeIndices[ i ] * dim; end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length; list = linkedList( data, start, end, dim, false ); if ( list === list.next ) list.steiner = true; queue.push( getLeftmost( list ) ); } queue.sort( compareX ); // process holes from left to right for ( i = 0; i < queue.length; i ++ ) { eliminateHole( queue[ i ], outerNode ); outerNode = filterPoints( outerNode, outerNode.next ); } return outerNode; } function compareX( a, b ) { return a.x - b.x; } // find a bridge between vertices that connects hole with an outer ring and link it function eliminateHole( hole, outerNode ) { outerNode = findHoleBridge( hole, outerNode ); if ( outerNode ) { const b = splitPolygon( outerNode, hole ); // filter collinear points around the cuts filterPoints( outerNode, outerNode.next ); filterPoints( b, b.next ); } } // David Eberly's algorithm for finding a bridge between hole and outer polygon function findHoleBridge( hole, outerNode ) { let p = outerNode; const hx = hole.x; const hy = hole.y; let qx = - Infinity, m; // find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point do { if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) { const x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y ); if ( x <= hx && x > qx ) { qx = x; if ( x === hx ) { if ( hy === p.y ) return p; if ( hy === p.next.y ) return p.next; } m = p.x < p.next.x ? p : p.next; } } p = p.next; } while ( p !== outerNode ); if ( ! m ) return null; if ( hx === qx ) return m; // hole touches outer segment; pick leftmost endpoint // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point const stop = m, mx = m.x, my = m.y; let tanMin = Infinity, tan; p = m; do { if ( hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) { tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential if ( locallyInside( p, hole ) && ( tan < tanMin || ( tan === tanMin && ( p.x > m.x || ( p.x === m.x && sectorContainsSector( m, p ) ) ) ) ) ) { m = p; tanMin = tan; } } p = p.next; } while ( p !== stop ); return m; } // whether sector in vertex m contains sector in vertex p in the same coordinates function sectorContainsSector( m, p ) { return area( m.prev, m, p.prev ) < 0 && area( p.next, m, m.next ) < 0; } // interlink polygon nodes in z-order function indexCurve( start, minX, minY, invSize ) { let p = start; do { if ( p.z === null ) p.z = zOrder( p.x, p.y, minX, minY, invSize ); p.prevZ = p.prev; p.nextZ = p.next; p = p.next; } while ( p !== start ); p.prevZ.nextZ = null; p.prevZ = null; sortLinked( p ); } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html function sortLinked( list ) { let i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1; do { p = list; list = null; tail = null; numMerges = 0; while ( p ) { numMerges ++; q = p; pSize = 0; for ( i = 0; i < inSize; i ++ ) { pSize ++; q = q.nextZ; if ( ! q ) break; } qSize = inSize; while ( pSize > 0 || ( qSize > 0 && q ) ) { if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) { e = p; p = p.nextZ; pSize --; } else { e = q; q = q.nextZ; qSize --; } if ( tail ) tail.nextZ = e; else list = e; e.prevZ = tail; tail = e; } p = q; } tail.nextZ = null; inSize *= 2; } while ( numMerges > 1 ); return list; } // z-order of a point given coords and inverse of the longer side of data bbox function zOrder( x, y, minX, minY, invSize ) { // coords are transformed into non-negative 15-bit integer range x = 32767 * ( x - minX ) * invSize; y = 32767 * ( y - minY ) * invSize; x = ( x | ( x << 8 ) ) & 0x00FF00FF; x = ( x | ( x << 4 ) ) & 0x0F0F0F0F; x = ( x | ( x << 2 ) ) & 0x33333333; x = ( x | ( x << 1 ) ) & 0x55555555; y = ( y | ( y << 8 ) ) & 0x00FF00FF; y = ( y | ( y << 4 ) ) & 0x0F0F0F0F; y = ( y | ( y << 2 ) ) & 0x33333333; y = ( y | ( y << 1 ) ) & 0x55555555; return x | ( y << 1 ); } // find the leftmost node of a polygon ring function getLeftmost( start ) { let p = start, leftmost = start; do { if ( p.x < leftmost.x || ( p.x === leftmost.x && p.y < leftmost.y ) ) leftmost = p; p = p.next; } while ( p !== start ); return leftmost; } // check if a point lies within a convex triangle function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) { return ( cx - px ) * ( ay - py ) - ( ax - px ) * ( cy - py ) >= 0 && ( ax - px ) * ( by - py ) - ( bx - px ) * ( ay - py ) >= 0 && ( bx - px ) * ( cy - py ) - ( cx - px ) * ( by - py ) >= 0; } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) function isValidDiagonal( a, b ) { return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) && // doesn't intersect other edges ( locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b ) && // locally visible ( area( a.prev, a, b.prev ) || area( a, b.prev, b ) ) || // does not create opposite-facing sectors equals( a, b ) && area( a.prev, a, a.next ) > 0 && area( b.prev, b, b.next ) > 0 ); // special zero-length case } // signed area of a triangle function area( p, q, r ) { return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y ); } // check if two points are equal function equals( p1, p2 ) { return p1.x === p2.x && p1.y === p2.y; } // check if two segments intersect function intersects( p1, q1, p2, q2 ) { const o1 = sign( area( p1, q1, p2 ) ); const o2 = sign( area( p1, q1, q2 ) ); const o3 = sign( area( p2, q2, p1 ) ); const o4 = sign( area( p2, q2, q1 ) ); if ( o1 !== o2 && o3 !== o4 ) return true; // general case if ( o1 === 0 && onSegment( p1, p2, q1 ) ) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 if ( o2 === 0 && onSegment( p1, q2, q1 ) ) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 if ( o3 === 0 && onSegment( p2, p1, q2 ) ) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 if ( o4 === 0 && onSegment( p2, q1, q2 ) ) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 return false; } // for collinear points p, q, r, check if point q lies on segment pr function onSegment( p, q, r ) { return q.x <= Math.max( p.x, r.x ) && q.x >= Math.min( p.x, r.x ) && q.y <= Math.max( p.y, r.y ) && q.y >= Math.min( p.y, r.y ); } function sign( num ) { return num > 0 ? 1 : num < 0 ? - 1 : 0; } // check if a polygon diagonal intersects any polygon segments function intersectsPolygon( a, b ) { let p = a; do { if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects( p, p.next, a, b ) ) return true; p = p.next; } while ( p !== a ); return false; } // check if a polygon diagonal is locally inside the polygon function locallyInside( a, b ) { return area( a.prev, a, a.next ) < 0 ? area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 : area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0; } // check if the middle point of a polygon diagonal is inside the polygon function middleInside( a, b ) { let p = a, inside = false; const px = ( a.x + b.x ) / 2, py = ( a.y + b.y ) / 2; do { if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y && ( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) ) inside = ! inside; p = p.next; } while ( p !== a ); return inside; } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring function splitPolygon( a, b ) { const a2 = new Node( a.i, a.x, a.y ), b2 = new Node( b.i, b.x, b.y ), an = a.next, bp = b.prev; a.next = b; b.prev = a; a2.next = an; an.prev = a2; b2.next = a2; a2.prev = b2; bp.next = b2; b2.prev = bp; return b2; } // create a node and optionally link it with previous one (in a circular doubly linked list) function insertNode( i, x, y, last ) { const p = new Node( i, x, y ); if ( ! last ) { p.prev = p; p.next = p; } else { p.next = last.next; p.prev = last; last.next.prev = p; last.next = p; } return p; } function removeNode( p ) { p.next.prev = p.prev; p.prev.next = p.next; if ( p.prevZ ) p.prevZ.nextZ = p.nextZ; if ( p.nextZ ) p.nextZ.prevZ = p.prevZ; } function Node( i, x, y ) { // vertex index in coordinates array this.i = i; // vertex coordinates this.x = x; this.y = y; // previous and next vertex nodes in a polygon ring this.prev = null; this.next = null; // z-order curve value this.z = null; // previous and next nodes in z-order this.prevZ = null; this.nextZ = null; // indicates whether this is a steiner point this.steiner = false; } function signedArea( data, start, end, dim ) { let sum = 0; for ( let i = start, j = end - dim; i < end; i += dim ) { sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] ); j = i; } return sum; } class ShapeUtils { // calculate area of the contour polygon static area( contour ) { const n = contour.length; let a = 0.0; for ( let p = n - 1, q = 0; q < n; p = q ++ ) { a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y; } return a * 0.5; } static isClockWise( pts ) { return ShapeUtils.area( pts ) < 0; } static triangulateShape( contour, holes ) { const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] const holeIndices = []; // array of hole indices const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ] removeDupEndPts( contour ); addContour( vertices, contour ); // let holeIndex = contour.length; holes.forEach( removeDupEndPts ); for ( let i = 0; i < holes.length; i ++ ) { holeIndices.push( holeIndex ); holeIndex += holes[ i ].length; addContour( vertices, holes[ i ] ); } // const triangles = Earcut.triangulate( vertices, holeIndices ); // for ( let i = 0; i < triangles.length; i += 3 ) { faces.push( triangles.slice( i, i + 3 ) ); } return faces; } } function removeDupEndPts( points ) { const l = points.length; if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) { points.pop(); } } function addContour( vertices, contour ) { for ( let i = 0; i < contour.length; i ++ ) { vertices.push( contour[ i ].x ); vertices.push( contour[ i ].y ); } } /** * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * depth: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline (including bevelOffset) is bevel * bevelOffset: , // how far from shape outline does bevel start * bevelSegments: , // number of bevel layers * * extrudePath: // curve to extrude shape along * * UVGenerator: // object that provides UV generator functions * * } */ class ExtrudeGeometry extends BufferGeometry { constructor( shapes = new Shape( [ new Vector2( 0.5, 0.5 ), new Vector2( - 0.5, 0.5 ), new Vector2( - 0.5, - 0.5 ), new Vector2( 0.5, - 0.5 ) ] ), options = {} ) { super(); this.type = 'ExtrudeGeometry'; this.parameters = { shapes: shapes, options: options }; shapes = Array.isArray( shapes ) ? shapes : [ shapes ]; const scope = this; const verticesArray = []; const uvArray = []; for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; addShape( shape ); } // build geometry this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) ); this.computeVertexNormals(); // functions function addShape( shape ) { const placeholder = []; // options const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; const steps = options.steps !== undefined ? options.steps : 1; const depth = options.depth !== undefined ? options.depth : 1; let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2; let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1; let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0; let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; const extrudePath = options.extrudePath; const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // let extrudePts, extrudeByPath = false; let splineTube, binormal, normal, position2; if ( extrudePath ) { extrudePts = extrudePath.getSpacedPoints( steps ); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // TODO1 - have a .isClosed in spline? splineTube = extrudePath.computeFrenetFrames( steps, false ); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new Vector3(); normal = new Vector3(); position2 = new Vector3(); } // Safeguards if bevels are not enabled if ( ! bevelEnabled ) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; bevelOffset = 0; } // Variables initialization const shapePoints = shape.extractPoints( curveSegments ); let vertices = shapePoints.shape; const holes = shapePoints.holes; const reverse = ! ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; if ( ShapeUtils.isClockWise( ahole ) ) { holes[ h ] = ahole.reverse(); } } } const faces = ShapeUtils.triangulateShape( vertices, holes ); /* Vertices */ const contour = vertices; // vertices has all points but contour has only points of circumference for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; vertices = vertices.concat( ahole ); } function scalePt2( pt, vec, size ) { if ( ! vec ) console.error( 'THREE.ExtrudeGeometry: vec does not exist' ); return vec.clone().multiplyScalar( size ).add( pt ); } const vlen = vertices.length, flen = faces.length; // Find directions for point movement function getBevelVec( inPt, inPrev, inNext ) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html const v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; const v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; const v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); // check for collinear edges const collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); if ( Math.abs( collinear0 ) > Number.EPSILON ) { // not collinear // length of vectors for normalizing const v_prev_len = Math.sqrt( v_prev_lensq ); const v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); // shift adjacent points by unit vectors to the left const ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); const ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); const ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); const ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); // scaling factor for v_prev to intersection point const sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x ); // vector from inPt to intersection point v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes const v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); if ( v_trans_lensq <= 2 ) { return new Vector2( v_trans_x, v_trans_y ); } else { shrink_by = Math.sqrt( v_trans_lensq / 2 ); } } else { // handle special case of collinear edges let direction_eq = false; // assumes: opposite if ( v_prev_x > Number.EPSILON ) { if ( v_next_x > Number.EPSILON ) { direction_eq = true; } } else { if ( v_prev_x < - Number.EPSILON ) { if ( v_next_x < - Number.EPSILON ) { direction_eq = true; } } else { if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) { direction_eq = true; } } } if ( direction_eq ) { // console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq ); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 ); } } return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); } const contourMovements = []; for ( let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); } const holesMovements = []; let oneHoleMovements, verticesMovements = contourMovements.concat(); for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = []; for ( let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] ); } holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements ); } // Loop bevelSegments, 1 for the front, 1 for the back for ( let b = 0; b < bevelSegments; b ++ ) { //for ( b = bevelSegments; b > 0; b -- ) { const t = b / bevelSegments; const z = bevelThickness * Math.cos( t * Math.PI / 2 ); const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; // contract shape for ( let i = 0, il = contour.length; i < il; i ++ ) { const vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, - z ); } // expand holes for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( let i = 0, il = ahole.length; i < il; i ++ ) { const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); v( vert.x, vert.y, - z ); } } } const bs = bevelSize + bevelOffset; // Back facing vertices for ( let i = 0; i < vlen; i ++ ) { const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, 0 ); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } // Add stepped vertices... // Including front facing vertices for ( let s = 1; s <= steps; s ++ ) { for ( let i = 0; i < vlen; i ++ ) { const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, depth / steps * s ); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ s ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for ( let b = bevelSegments - 1; b >= 0; b -- ) { const t = b / bevelSegments; const z = bevelThickness * Math.cos( t * Math.PI / 2 ); const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; // contract shape for ( let i = 0, il = contour.length; i < il; i ++ ) { const vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, depth + z ); } // expand holes for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( let i = 0, il = ahole.length; i < il; i ++ ) { const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); if ( ! extrudeByPath ) { v( vert.x, vert.y, depth + z ); } else { v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z ); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { const start = verticesArray.length / 3; if ( bevelEnabled ) { let layer = 0; // steps + 1 let offset = vlen * layer; // Bottom faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset ); } } else { // Bottom faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 2 ], face[ 1 ], face[ 0 ] ); } // Top faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps ); } } scope.addGroup( start, verticesArray.length / 3 - start, 0 ); } // Create faces for the z-sides of the shape function buildSideFaces() { const start = verticesArray.length / 3; let layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length; for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; sidewalls( ahole, layeroffset ); //, true layeroffset += ahole.length; } scope.addGroup( start, verticesArray.length / 3 - start, 1 ); } function sidewalls( contour, layeroffset ) { let i = contour.length; while ( -- i >= 0 ) { const j = i; let k = i - 1; if ( k < 0 ) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); for ( let s = 0, sl = ( steps + bevelSegments * 2 ); s < sl; s ++ ) { const slen1 = vlen * s; const slen2 = vlen * ( s + 1 ); const a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4( a, b, c, d ); } } } function v( x, y, z ) { placeholder.push( x ); placeholder.push( y ); placeholder.push( z ); } function f3( a, b, c ) { addVertex( a ); addVertex( b ); addVertex( c ); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); } function f4( a, b, c, d ) { addVertex( a ); addVertex( b ); addVertex( d ); addVertex( b ); addVertex( c ); addVertex( d ); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 3 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); addUV( uvs[ 3 ] ); } function addVertex( index ) { verticesArray.push( placeholder[ index * 3 + 0 ] ); verticesArray.push( placeholder[ index * 3 + 1 ] ); verticesArray.push( placeholder[ index * 3 + 2 ] ); } function addUV( vector2 ) { uvArray.push( vector2.x ); uvArray.push( vector2.y ); } } } toJSON() { const data = super.toJSON(); const shapes = this.parameters.shapes; const options = this.parameters.options; return toJSON$1( shapes, options, data ); } static fromJSON( data, shapes ) { const geometryShapes = []; for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) { const shape = shapes[ data.shapes[ j ] ]; geometryShapes.push( shape ); } const extrudePath = data.options.extrudePath; if ( extrudePath !== undefined ) { data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath ); } return new ExtrudeGeometry( geometryShapes, data.options ); } } const WorldUVGenerator = { generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) { const a_x = vertices[ indexA * 3 ]; const a_y = vertices[ indexA * 3 + 1 ]; const b_x = vertices[ indexB * 3 ]; const b_y = vertices[ indexB * 3 + 1 ]; const c_x = vertices[ indexC * 3 ]; const c_y = vertices[ indexC * 3 + 1 ]; return [ new Vector2( a_x, a_y ), new Vector2( b_x, b_y ), new Vector2( c_x, c_y ) ]; }, generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) { const a_x = vertices[ indexA * 3 ]; const a_y = vertices[ indexA * 3 + 1 ]; const a_z = vertices[ indexA * 3 + 2 ]; const b_x = vertices[ indexB * 3 ]; const b_y = vertices[ indexB * 3 + 1 ]; const b_z = vertices[ indexB * 3 + 2 ]; const c_x = vertices[ indexC * 3 ]; const c_y = vertices[ indexC * 3 + 1 ]; const c_z = vertices[ indexC * 3 + 2 ]; const d_x = vertices[ indexD * 3 ]; const d_y = vertices[ indexD * 3 + 1 ]; const d_z = vertices[ indexD * 3 + 2 ]; if ( Math.abs( a_y - b_y ) < Math.abs( a_x - b_x ) ) { return [ new Vector2( a_x, 1 - a_z ), new Vector2( b_x, 1 - b_z ), new Vector2( c_x, 1 - c_z ), new Vector2( d_x, 1 - d_z ) ]; } else { return [ new Vector2( a_y, 1 - a_z ), new Vector2( b_y, 1 - b_z ), new Vector2( c_y, 1 - c_z ), new Vector2( d_y, 1 - d_z ) ]; } } }; function toJSON$1( shapes, options, data ) { data.shapes = []; if ( Array.isArray( shapes ) ) { for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; data.shapes.push( shape.uuid ); } } else { data.shapes.push( shapes.uuid ); } data.options = Object.assign( {}, options ); if ( options.extrudePath !== undefined ) data.options.extrudePath = options.extrudePath.toJSON(); return data; } class MeshStandardMaterial extends Material { constructor( parameters ) { super(); this.isMeshStandardMaterial = true; this.defines = { 'STANDARD': '' }; this.type = 'MeshStandardMaterial'; this.color = new Color$2( 0xffffff ); // diffuse this.roughness = 1.0; this.metalness = 0.0; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color$2( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.roughnessMap = null; this.metalnessMap = null; this.alphaMap = null; this.envMap = null; this.envMapIntensity = 1.0; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.flatShading = false; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.defines = { 'STANDARD': '' }; this.color.copy( source.color ); this.roughness = source.roughness; this.metalness = source.metalness; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.roughnessMap = source.roughnessMap; this.metalnessMap = source.metalnessMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapIntensity = source.envMapIntensity; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; this.fog = source.fog; return this; } } class MeshPhysicalMaterial extends MeshStandardMaterial { constructor( parameters ) { super(); this.isMeshPhysicalMaterial = true; this.defines = { 'STANDARD': '', 'PHYSICAL': '' }; this.type = 'MeshPhysicalMaterial'; this.clearcoatMap = null; this.clearcoatRoughness = 0.0; this.clearcoatRoughnessMap = null; this.clearcoatNormalScale = new Vector2( 1, 1 ); this.clearcoatNormalMap = null; this.ior = 1.5; Object.defineProperty( this, 'reflectivity', { get: function () { return ( clamp$1( 2.5 * ( this.ior - 1 ) / ( this.ior + 1 ), 0, 1 ) ); }, set: function ( reflectivity ) { this.ior = ( 1 + 0.4 * reflectivity ) / ( 1 - 0.4 * reflectivity ); } } ); this.iridescenceMap = null; this.iridescenceIOR = 1.3; this.iridescenceThicknessRange = [ 100, 400 ]; this.iridescenceThicknessMap = null; this.sheenColor = new Color$2( 0x000000 ); this.sheenColorMap = null; this.sheenRoughness = 1.0; this.sheenRoughnessMap = null; this.transmissionMap = null; this.thickness = 0; this.thicknessMap = null; this.attenuationDistance = 0.0; this.attenuationColor = new Color$2( 1, 1, 1 ); this.specularIntensity = 1.0; this.specularIntensityMap = null; this.specularColor = new Color$2( 1, 1, 1 ); this.specularColorMap = null; this._sheen = 0.0; this._clearcoat = 0; this._iridescence = 0; this._transmission = 0; this.setValues( parameters ); } get sheen() { return this._sheen; } set sheen( value ) { if ( this._sheen > 0 !== value > 0 ) { this.version ++; } this._sheen = value; } get clearcoat() { return this._clearcoat; } set clearcoat( value ) { if ( this._clearcoat > 0 !== value > 0 ) { this.version ++; } this._clearcoat = value; } get iridescence() { return this._iridescence; } set iridescence( value ) { if ( this._iridescence > 0 !== value > 0 ) { this.version ++; } this._iridescence = value; } get transmission() { return this._transmission; } set transmission( value ) { if ( this._transmission > 0 !== value > 0 ) { this.version ++; } this._transmission = value; } copy( source ) { super.copy( source ); this.defines = { 'STANDARD': '', 'PHYSICAL': '' }; this.clearcoat = source.clearcoat; this.clearcoatMap = source.clearcoatMap; this.clearcoatRoughness = source.clearcoatRoughness; this.clearcoatRoughnessMap = source.clearcoatRoughnessMap; this.clearcoatNormalMap = source.clearcoatNormalMap; this.clearcoatNormalScale.copy( source.clearcoatNormalScale ); this.ior = source.ior; this.iridescence = source.iridescence; this.iridescenceMap = source.iridescenceMap; this.iridescenceIOR = source.iridescenceIOR; this.iridescenceThicknessRange = [ ...source.iridescenceThicknessRange ]; this.iridescenceThicknessMap = source.iridescenceThicknessMap; this.sheen = source.sheen; this.sheenColor.copy( source.sheenColor ); this.sheenColorMap = source.sheenColorMap; this.sheenRoughness = source.sheenRoughness; this.sheenRoughnessMap = source.sheenRoughnessMap; this.transmission = source.transmission; this.transmissionMap = source.transmissionMap; this.thickness = source.thickness; this.thicknessMap = source.thicknessMap; this.attenuationDistance = source.attenuationDistance; this.attenuationColor.copy( source.attenuationColor ); this.specularIntensity = source.specularIntensity; this.specularIntensityMap = source.specularIntensityMap; this.specularColor.copy( source.specularColor ); this.specularColorMap = source.specularColorMap; return this; } } class MeshPhongMaterial extends Material { constructor( parameters ) { super(); this.isMeshPhongMaterial = true; this.type = 'MeshPhongMaterial'; this.color = new Color$2( 0xffffff ); // diffuse this.specular = new Color$2( 0x111111 ); this.shininess = 30; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color$2( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.flatShading = false; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.specular.copy( source.specular ); this.shininess = source.shininess; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; this.fog = source.fog; return this; } } class MeshLambertMaterial extends Material { constructor( parameters ) { super(); this.isMeshLambertMaterial = true; this.type = 'MeshLambertMaterial'; this.color = new Color$2( 0xffffff ); // diffuse this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color$2( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.fog = source.fog; return this; } } // same as Array.prototype.slice, but also works on typed arrays function arraySlice( array, from, to ) { if ( isTypedArray( array ) ) { // in ios9 array.subarray(from, undefined) will return empty array // but array.subarray(from) or array.subarray(from, len) is correct return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) ); } return array.slice( from, to ); } // converts an array to a specific type function convertArray( array, type, forceClone ) { if ( ! array || // let 'undefined' and 'null' pass ! forceClone && array.constructor === type ) return array; if ( typeof type.BYTES_PER_ELEMENT === 'number' ) { return new type( array ); // create typed array } return Array.prototype.slice.call( array ); // create Array } function isTypedArray( object ) { return ArrayBuffer.isView( object ) && ! ( object instanceof DataView ); } // returns an array by which times and values can be sorted function getKeyframeOrder( times ) { function compareTime( i, j ) { return times[ i ] - times[ j ]; } const n = times.length; const result = new Array( n ); for ( let i = 0; i !== n; ++ i ) result[ i ] = i; result.sort( compareTime ); return result; } // uses the array previously returned by 'getKeyframeOrder' to sort data function sortedArray( values, stride, order ) { const nValues = values.length; const result = new values.constructor( nValues ); for ( let i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) { const srcOffset = order[ i ] * stride; for ( let j = 0; j !== stride; ++ j ) { result[ dstOffset ++ ] = values[ srcOffset + j ]; } } return result; } // function for parsing AOS keyframe formats function flattenJSON( jsonKeys, times, values, valuePropertyName ) { let i = 1, key = jsonKeys[ 0 ]; while ( key !== undefined && key[ valuePropertyName ] === undefined ) { key = jsonKeys[ i ++ ]; } if ( key === undefined ) return; // no data let value = key[ valuePropertyName ]; if ( value === undefined ) return; // no data if ( Array.isArray( value ) ) { do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push.apply( values, value ); // push all elements } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else if ( value.toArray !== undefined ) { // ...assume THREE.Math-ish do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); value.toArray( values, values.length ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else { // otherwise push as-is do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push( value ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } } /** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * */ class Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { this.parameterPositions = parameterPositions; this._cachedIndex = 0; this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor( sampleSize ); this.sampleValues = sampleValues; this.valueSize = sampleSize; this.settings = null; this.DefaultSettings_ = {}; } evaluate( t ) { const pp = this.parameterPositions; let i1 = this._cachedIndex, t1 = pp[ i1 ], t0 = pp[ i1 - 1 ]; validate_interval: { seek: { let right; linear_scan: { //- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if ( ! ( t < t1 ) ) { for ( let giveUpAt = i1 + 2; ; ) { if ( t1 === undefined ) { if ( t < t0 ) break forward_scan; // after end i1 = pp.length; this._cachedIndex = i1; return this.copySampleValue_( i1 - 1 ); } if ( i1 === giveUpAt ) break; // this loop t0 = t1; t1 = pp[ ++ i1 ]; if ( t < t1 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the right side of the index right = pp.length; break linear_scan; } //- slower code: //- if ( t < t0 || t0 === undefined ) { if ( ! ( t >= t0 ) ) { // looping? const t1global = pp[ 1 ]; if ( t < t1global ) { i1 = 2; // + 1, using the scan for the details t0 = t1global; } // linear reverse scan for ( let giveUpAt = i1 - 2; ; ) { if ( t0 === undefined ) { // before start this._cachedIndex = 0; return this.copySampleValue_( 0 ); } if ( i1 === giveUpAt ) break; // this loop t1 = t0; t0 = pp[ -- i1 - 1 ]; if ( t >= t0 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the left side of the index right = i1; i1 = 0; break linear_scan; } // the interval is valid break validate_interval; } // linear scan // binary search while ( i1 < right ) { const mid = ( i1 + right ) >>> 1; if ( t < pp[ mid ] ) { right = mid; } else { i1 = mid + 1; } } t1 = pp[ i1 ]; t0 = pp[ i1 - 1 ]; // check boundary cases, again if ( t0 === undefined ) { this._cachedIndex = 0; return this.copySampleValue_( 0 ); } if ( t1 === undefined ) { i1 = pp.length; this._cachedIndex = i1; return this.copySampleValue_( i1 - 1 ); } } // seek this._cachedIndex = i1; this.intervalChanged_( i1, t0, t1 ); } // validate_interval return this.interpolate_( i1, t0, t, t1 ); } getSettings_() { return this.settings || this.DefaultSettings_; } copySampleValue_( index ) { // copies a sample value to the result buffer const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride; for ( let i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset + i ]; } return result; } // Template methods for derived classes: interpolate_( /* i1, t0, t, t1 */ ) { throw new Error( 'call to abstract method' ); // implementations shall return this.resultBuffer } intervalChanged_( /* i1, t0, t1 */ ) { // empty } } /** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. */ class CubicInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); this._weightPrev = - 0; this._offsetPrev = - 0; this._weightNext = - 0; this._offsetNext = - 0; this.DefaultSettings_ = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; } intervalChanged_( i1, t0, t1 ) { const pp = this.parameterPositions; let iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[ iPrev ], tNext = pp[ iNext ]; if ( tPrev === undefined ) { switch ( this.getSettings_().endingStart ) { case ZeroSlopeEnding: // f'(t0) = 0 iPrev = i1; tPrev = 2 * t0 - t1; break; case WrapAroundEnding: // use the other end of the curve iPrev = pp.length - 2; tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ]; break; default: // ZeroCurvatureEnding // f''(t0) = 0 a.k.a. Natural Spline iPrev = i1; tPrev = t1; } } if ( tNext === undefined ) { switch ( this.getSettings_().endingEnd ) { case ZeroSlopeEnding: // f'(tN) = 0 iNext = i1; tNext = 2 * t1 - t0; break; case WrapAroundEnding: // use the other end of the curve iNext = 1; tNext = t1 + pp[ 1 ] - pp[ 0 ]; break; default: // ZeroCurvatureEnding // f''(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1; tNext = t0; } } const halfDt = ( t1 - t0 ) * 0.5, stride = this.valueSize; this._weightPrev = halfDt / ( t0 - tPrev ); this._weightNext = halfDt / ( tNext - t1 ); this._offsetPrev = iPrev * stride; this._offsetNext = iNext * stride; } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = ( t - t0 ) / ( t1 - t0 ), pp = p * p, ppp = pp * p; // evaluate polynomials const sP = - wP * ppp + 2 * wP * pp - wP * p; const s0 = ( 1 + wP ) * ppp + ( - 1.5 - 2 * wP ) * pp + ( - 0.5 + wP ) * p + 1; const s1 = ( - 1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p; const sN = wN * ppp - wN * pp; // combine data linearly for ( let i = 0; i !== stride; ++ i ) { result[ i ] = sP * values[ oP + i ] + s0 * values[ o0 + i ] + s1 * values[ o1 + i ] + sN * values[ oN + i ]; } return result; } } class LinearInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = ( t - t0 ) / ( t1 - t0 ), weight0 = 1 - weight1; for ( let i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset0 + i ] * weight0 + values[ offset1 + i ] * weight1; } return result; } } /** * * Interpolant that evaluates to the sample value at the position preceding * the parameter. */ class DiscreteInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); } interpolate_( i1 /*, t0, t, t1 */ ) { return this.copySampleValue_( i1 - 1 ); } } class KeyframeTrack { constructor( name, times, values, interpolation ) { if ( name === undefined ) throw new Error( 'THREE.KeyframeTrack: track name is undefined' ); if ( times === undefined || times.length === 0 ) throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name ); this.name = name; this.times = convertArray( times, this.TimeBufferType ); this.values = convertArray( values, this.ValueBufferType ); this.setInterpolation( interpolation || this.DefaultInterpolation ); } // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): static toJSON( track ) { const trackType = track.constructor; let json; // derived classes can define a static toJSON method if ( trackType.toJSON !== this.toJSON ) { json = trackType.toJSON( track ); } else { // by default, we assume the data can be serialized as-is json = { 'name': track.name, 'times': convertArray( track.times, Array ), 'values': convertArray( track.values, Array ) }; const interpolation = track.getInterpolation(); if ( interpolation !== track.DefaultInterpolation ) { json.interpolation = interpolation; } } json.type = track.ValueTypeName; // mandatory return json; } InterpolantFactoryMethodDiscrete( result ) { return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result ); } InterpolantFactoryMethodLinear( result ) { return new LinearInterpolant( this.times, this.values, this.getValueSize(), result ); } InterpolantFactoryMethodSmooth( result ) { return new CubicInterpolant( this.times, this.values, this.getValueSize(), result ); } setInterpolation( interpolation ) { let factoryMethod; switch ( interpolation ) { case InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete; break; case InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear; break; case InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth; break; } if ( factoryMethod === undefined ) { const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name; if ( this.createInterpolant === undefined ) { // fall back to default, unless the default itself is messed up if ( interpolation !== this.DefaultInterpolation ) { this.setInterpolation( this.DefaultInterpolation ); } else { throw new Error( message ); // fatal, in this case } } console.warn( 'THREE.KeyframeTrack:', message ); return this; } this.createInterpolant = factoryMethod; return this; } getInterpolation() { switch ( this.createInterpolant ) { case this.InterpolantFactoryMethodDiscrete: return InterpolateDiscrete; case this.InterpolantFactoryMethodLinear: return InterpolateLinear; case this.InterpolantFactoryMethodSmooth: return InterpolateSmooth; } } getValueSize() { return this.values.length / this.times.length; } // move all keyframes either forwards or backwards in time shift( timeOffset ) { if ( timeOffset !== 0.0 ) { const times = this.times; for ( let i = 0, n = times.length; i !== n; ++ i ) { times[ i ] += timeOffset; } } return this; } // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale( timeScale ) { if ( timeScale !== 1.0 ) { const times = this.times; for ( let i = 0, n = times.length; i !== n; ++ i ) { times[ i ] *= timeScale; } } return this; } // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim( startTime, endTime ) { const times = this.times, nKeys = times.length; let from = 0, to = nKeys - 1; while ( from !== nKeys && times[ from ] < startTime ) { ++ from; } while ( to !== - 1 && times[ to ] > endTime ) { -- to; } ++ to; // inclusive -> exclusive bound if ( from !== 0 || to !== nKeys ) { // empty tracks are forbidden, so keep at least one keyframe if ( from >= to ) { to = Math.max( to, 1 ); from = to - 1; } const stride = this.getValueSize(); this.times = arraySlice( times, from, to ); this.values = arraySlice( this.values, from * stride, to * stride ); } return this; } // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate() { let valid = true; const valueSize = this.getValueSize(); if ( valueSize - Math.floor( valueSize ) !== 0 ) { console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this ); valid = false; } const times = this.times, values = this.values, nKeys = times.length; if ( nKeys === 0 ) { console.error( 'THREE.KeyframeTrack: Track is empty.', this ); valid = false; } let prevTime = null; for ( let i = 0; i !== nKeys; i ++ ) { const currTime = times[ i ]; if ( typeof currTime === 'number' && isNaN( currTime ) ) { console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime ); valid = false; break; } if ( prevTime !== null && prevTime > currTime ) { console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime ); valid = false; break; } prevTime = currTime; } if ( values !== undefined ) { if ( isTypedArray( values ) ) { for ( let i = 0, n = values.length; i !== n; ++ i ) { const value = values[ i ]; if ( isNaN( value ) ) { console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i, value ); valid = false; break; } } } } return valid; } // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize() { // times or values may be shared with other tracks, so overwriting is unsafe const times = arraySlice( this.times ), values = arraySlice( this.values ), stride = this.getValueSize(), smoothInterpolation = this.getInterpolation() === InterpolateSmooth, lastIndex = times.length - 1; let writeIndex = 1; for ( let i = 1; i < lastIndex; ++ i ) { let keep = false; const time = times[ i ]; const timeNext = times[ i + 1 ]; // remove adjacent keyframes scheduled at the same time if ( time !== timeNext && ( i !== 1 || time !== times[ 0 ] ) ) { if ( ! smoothInterpolation ) { // remove unnecessary keyframes same as their neighbors const offset = i * stride, offsetP = offset - stride, offsetN = offset + stride; for ( let j = 0; j !== stride; ++ j ) { const value = values[ offset + j ]; if ( value !== values[ offsetP + j ] || value !== values[ offsetN + j ] ) { keep = true; break; } } } else { keep = true; } } // in-place compaction if ( keep ) { if ( i !== writeIndex ) { times[ writeIndex ] = times[ i ]; const readOffset = i * stride, writeOffset = writeIndex * stride; for ( let j = 0; j !== stride; ++ j ) { values[ writeOffset + j ] = values[ readOffset + j ]; } } ++ writeIndex; } } // flush last keyframe (compaction looks ahead) if ( lastIndex > 0 ) { times[ writeIndex ] = times[ lastIndex ]; for ( let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) { values[ writeOffset + j ] = values[ readOffset + j ]; } ++ writeIndex; } if ( writeIndex !== times.length ) { this.times = arraySlice( times, 0, writeIndex ); this.values = arraySlice( values, 0, writeIndex * stride ); } else { this.times = times; this.values = values; } return this; } clone() { const times = arraySlice( this.times, 0 ); const values = arraySlice( this.values, 0 ); const TypedKeyframeTrack = this.constructor; const track = new TypedKeyframeTrack( this.name, times, values ); // Interpolant argument to constructor is not saved, so copy the factory method directly. track.createInterpolant = this.createInterpolant; return track; } } KeyframeTrack.prototype.TimeBufferType = Float32Array; KeyframeTrack.prototype.ValueBufferType = Float32Array; KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; /** * A Track of Boolean keyframe values. */ class BooleanKeyframeTrack extends KeyframeTrack {} BooleanKeyframeTrack.prototype.ValueTypeName = 'bool'; BooleanKeyframeTrack.prototype.ValueBufferType = Array; BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; /** * A Track of keyframe values that represent color. */ class ColorKeyframeTrack extends KeyframeTrack {} ColorKeyframeTrack.prototype.ValueTypeName = 'color'; /** * A Track of numeric keyframe values. */ class NumberKeyframeTrack extends KeyframeTrack {} NumberKeyframeTrack.prototype.ValueTypeName = 'number'; /** * Spherical linear unit quaternion interpolant. */ class QuaternionLinearInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, alpha = ( t - t0 ) / ( t1 - t0 ); let offset = i1 * stride; for ( let end = offset + stride; offset !== end; offset += 4 ) { Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha ); } return result; } } /** * A Track of quaternion keyframe values. */ class QuaternionKeyframeTrack extends KeyframeTrack { InterpolantFactoryMethodLinear( result ) { return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result ); } } QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; /** * A Track that interpolates Strings */ class StringKeyframeTrack extends KeyframeTrack {} StringKeyframeTrack.prototype.ValueTypeName = 'string'; StringKeyframeTrack.prototype.ValueBufferType = Array; StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; /** * A Track of vectored keyframe values. */ class VectorKeyframeTrack extends KeyframeTrack {} VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; class AnimationClip { constructor( name, duration = - 1, tracks, blendMode = NormalAnimationBlendMode ) { this.name = name; this.tracks = tracks; this.duration = duration; this.blendMode = blendMode; this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks if ( this.duration < 0 ) { this.resetDuration(); } } static parse( json ) { const tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / ( json.fps || 1.0 ); for ( let i = 0, n = jsonTracks.length; i !== n; ++ i ) { tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) ); } const clip = new this( json.name, json.duration, tracks, json.blendMode ); clip.uuid = json.uuid; return clip; } static toJSON( clip ) { const tracks = [], clipTracks = clip.tracks; const json = { 'name': clip.name, 'duration': clip.duration, 'tracks': tracks, 'uuid': clip.uuid, 'blendMode': clip.blendMode }; for ( let i = 0, n = clipTracks.length; i !== n; ++ i ) { tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) ); } return json; } static CreateFromMorphTargetSequence( name, morphTargetSequence, fps, noLoop ) { const numMorphTargets = morphTargetSequence.length; const tracks = []; for ( let i = 0; i < numMorphTargets; i ++ ) { let times = []; let values = []; times.push( ( i + numMorphTargets - 1 ) % numMorphTargets, i, ( i + 1 ) % numMorphTargets ); values.push( 0, 1, 0 ); const order = getKeyframeOrder( times ); times = sortedArray( times, 1, order ); values = sortedArray( values, 1, order ); // if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if ( ! noLoop && times[ 0 ] === 0 ) { times.push( numMorphTargets ); values.push( values[ 0 ] ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']', times, values ).scale( 1.0 / fps ) ); } return new this( name, - 1, tracks ); } static findByName( objectOrClipArray, name ) { let clipArray = objectOrClipArray; if ( ! Array.isArray( objectOrClipArray ) ) { const o = objectOrClipArray; clipArray = o.geometry && o.geometry.animations || o.animations; } for ( let i = 0; i < clipArray.length; i ++ ) { if ( clipArray[ i ].name === name ) { return clipArray[ i ]; } } return null; } static CreateClipsFromMorphTargetSequences( morphTargets, fps, noLoop ) { const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for ( let i = 0, il = morphTargets.length; i < il; i ++ ) { const morphTarget = morphTargets[ i ]; const parts = morphTarget.name.match( pattern ); if ( parts && parts.length > 1 ) { const name = parts[ 1 ]; let animationMorphTargets = animationToMorphTargets[ name ]; if ( ! animationMorphTargets ) { animationToMorphTargets[ name ] = animationMorphTargets = []; } animationMorphTargets.push( morphTarget ); } } const clips = []; for ( const name in animationToMorphTargets ) { clips.push( this.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) ); } return clips; } // parse the animation.hierarchy format static parseAnimation( animation, bones ) { if ( ! animation ) { console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' ); return null; } const addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) { // only return track if there are actually keys. if ( animationKeys.length !== 0 ) { const times = []; const values = []; flattenJSON( animationKeys, times, values, propertyName ); // empty keys are filtered out, so check again if ( times.length !== 0 ) { destTracks.push( new trackType( trackName, times, values ) ); } } }; const tracks = []; const clipName = animation.name || 'default'; const fps = animation.fps || 30; const blendMode = animation.blendMode; // automatic length determination in AnimationClip. let duration = animation.length || - 1; const hierarchyTracks = animation.hierarchy || []; for ( let h = 0; h < hierarchyTracks.length; h ++ ) { const animationKeys = hierarchyTracks[ h ].keys; // skip empty tracks if ( ! animationKeys || animationKeys.length === 0 ) continue; // process morph targets if ( animationKeys[ 0 ].morphTargets ) { // figure out all morph targets used in this track const morphTargetNames = {}; let k; for ( k = 0; k < animationKeys.length; k ++ ) { if ( animationKeys[ k ].morphTargets ) { for ( let m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) { morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1; } } } // create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for ( const morphTargetName in morphTargetNames ) { const times = []; const values = []; for ( let m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) { const animationKey = animationKeys[ k ]; times.push( animationKey.time ); values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) ); } duration = morphTargetNames.length * fps; } else { // ...assume skeletal animation const boneName = '.bones[' + bones[ h ].name + ']'; addNonemptyTrack( VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks ); addNonemptyTrack( QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks ); addNonemptyTrack( VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks ); } } if ( tracks.length === 0 ) { return null; } const clip = new this( clipName, duration, tracks, blendMode ); return clip; } resetDuration() { const tracks = this.tracks; let duration = 0; for ( let i = 0, n = tracks.length; i !== n; ++ i ) { const track = this.tracks[ i ]; duration = Math.max( duration, track.times[ track.times.length - 1 ] ); } this.duration = duration; return this; } trim() { for ( let i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].trim( 0, this.duration ); } return this; } validate() { let valid = true; for ( let i = 0; i < this.tracks.length; i ++ ) { valid = valid && this.tracks[ i ].validate(); } return valid; } optimize() { for ( let i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].optimize(); } return this; } clone() { const tracks = []; for ( let i = 0; i < this.tracks.length; i ++ ) { tracks.push( this.tracks[ i ].clone() ); } return new this.constructor( this.name, this.duration, tracks, this.blendMode ); } toJSON() { return this.constructor.toJSON( this ); } } function getTrackTypeForValueTypeName( typeName ) { switch ( typeName.toLowerCase() ) { case 'scalar': case 'double': case 'float': case 'number': case 'integer': return NumberKeyframeTrack; case 'vector': case 'vector2': case 'vector3': case 'vector4': return VectorKeyframeTrack; case 'color': return ColorKeyframeTrack; case 'quaternion': return QuaternionKeyframeTrack; case 'bool': case 'boolean': return BooleanKeyframeTrack; case 'string': return StringKeyframeTrack; } throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName ); } function parseKeyframeTrack( json ) { if ( json.type === undefined ) { throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' ); } const trackType = getTrackTypeForValueTypeName( json.type ); if ( json.times === undefined ) { const times = [], values = []; flattenJSON( json.keys, times, values, 'value' ); json.times = times; json.values = values; } // derived classes can define a static parse method if ( trackType.parse !== undefined ) { return trackType.parse( json ); } else { // by default, we assume a constructor compatible with the base return new trackType( json.name, json.times, json.values, json.interpolation ); } } const Cache = { enabled: false, files: {}, add: function ( key, file ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[ key ] = file; }, get: function ( key ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[ key ]; }, remove: function ( key ) { delete this.files[ key ]; }, clear: function () { this.files = {}; } }; class LoadingManager { constructor( onLoad, onProgress, onError ) { const scope = this; let isLoading = false; let itemsLoaded = 0; let itemsTotal = 0; let urlModifier = undefined; const handlers = []; // Refer to #5689 for the reason why we don't set .onStart // in the constructor this.onStart = undefined; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function ( url ) { itemsTotal ++; if ( isLoading === false ) { if ( scope.onStart !== undefined ) { scope.onStart( url, itemsLoaded, itemsTotal ); } } isLoading = true; }; this.itemEnd = function ( url ) { itemsLoaded ++; if ( scope.onProgress !== undefined ) { scope.onProgress( url, itemsLoaded, itemsTotal ); } if ( itemsLoaded === itemsTotal ) { isLoading = false; if ( scope.onLoad !== undefined ) { scope.onLoad(); } } }; this.itemError = function ( url ) { if ( scope.onError !== undefined ) { scope.onError( url ); } }; this.resolveURL = function ( url ) { if ( urlModifier ) { return urlModifier( url ); } return url; }; this.setURLModifier = function ( transform ) { urlModifier = transform; return this; }; this.addHandler = function ( regex, loader ) { handlers.push( regex, loader ); return this; }; this.removeHandler = function ( regex ) { const index = handlers.indexOf( regex ); if ( index !== - 1 ) { handlers.splice( index, 2 ); } return this; }; this.getHandler = function ( file ) { for ( let i = 0, l = handlers.length; i < l; i += 2 ) { const regex = handlers[ i ]; const loader = handlers[ i + 1 ]; if ( regex.global ) regex.lastIndex = 0; // see #17920 if ( regex.test( file ) ) { return loader; } } return null; }; } } const DefaultLoadingManager = /*@__PURE__*/ new LoadingManager(); class Loader { constructor( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.crossOrigin = 'anonymous'; this.withCredentials = false; this.path = ''; this.resourcePath = ''; this.requestHeader = {}; } load( /* url, onLoad, onProgress, onError */ ) {} loadAsync( url, onProgress ) { const scope = this; return new Promise( function ( resolve, reject ) { scope.load( url, resolve, onProgress, reject ); } ); } parse( /* data */ ) {} setCrossOrigin( crossOrigin ) { this.crossOrigin = crossOrigin; return this; } setWithCredentials( value ) { this.withCredentials = value; return this; } setPath( path ) { this.path = path; return this; } setResourcePath( resourcePath ) { this.resourcePath = resourcePath; return this; } setRequestHeader( requestHeader ) { this.requestHeader = requestHeader; return this; } } const loading = {}; class HttpError extends Error { constructor( message, response ) { super( message ); this.response = response; } } class FileLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { if ( url === undefined ) url = ''; if ( this.path !== undefined ) url = this.path + url; url = this.manager.resolveURL( url ); const cached = Cache.get( url ); if ( cached !== undefined ) { this.manager.itemStart( url ); setTimeout( () => { if ( onLoad ) onLoad( cached ); this.manager.itemEnd( url ); }, 0 ); return cached; } // Check if request is duplicate if ( loading[ url ] !== undefined ) { loading[ url ].push( { onLoad: onLoad, onProgress: onProgress, onError: onError } ); return; } // Initialise array for duplicate requests loading[ url ] = []; loading[ url ].push( { onLoad: onLoad, onProgress: onProgress, onError: onError, } ); // create request const req = new Request( url, { headers: new Headers( this.requestHeader ), credentials: this.withCredentials ? 'include' : 'same-origin', // An abort controller could be added within a future PR } ); // record states ( avoid data race ) const mimeType = this.mimeType; const responseType = this.responseType; // start the fetch fetch( req ) .then( response => { if ( response.status === 200 || response.status === 0 ) { // Some browsers return HTTP Status 0 when using non-http protocol // e.g. 'file://' or 'data://'. Handle as success. if ( response.status === 0 ) { console.warn( 'THREE.FileLoader: HTTP Status 0 received.' ); } // Workaround: Checking if response.body === undefined for Alipay browser #23548 if ( typeof ReadableStream === 'undefined' || response.body === undefined || response.body.getReader === undefined ) { return response; } const callbacks = loading[ url ]; const reader = response.body.getReader(); const contentLength = response.headers.get( 'Content-Length' ); const total = contentLength ? parseInt( contentLength ) : 0; const lengthComputable = total !== 0; let loaded = 0; // periodically read data into the new stream tracking while download progress const stream = new ReadableStream( { start( controller ) { readData(); function readData() { reader.read().then( ( { done, value } ) => { if ( done ) { controller.close(); } else { loaded += value.byteLength; const event = new ProgressEvent( 'progress', { lengthComputable, loaded, total } ); for ( let i = 0, il = callbacks.length; i < il; i ++ ) { const callback = callbacks[ i ]; if ( callback.onProgress ) callback.onProgress( event ); } controller.enqueue( value ); readData(); } } ); } } } ); return new Response( stream ); } else { throw new HttpError( `fetch for "${response.url}" responded with ${response.status}: ${response.statusText}`, response ); } } ) .then( response => { switch ( responseType ) { case 'arraybuffer': return response.arrayBuffer(); case 'blob': return response.blob(); case 'document': return response.text() .then( text => { const parser = new DOMParser(); return parser.parseFromString( text, mimeType ); } ); case 'json': return response.json(); default: if ( mimeType === undefined ) { return response.text(); } else { // sniff encoding const re = /charset="?([^;"\s]*)"?/i; const exec = re.exec( mimeType ); const label = exec && exec[ 1 ] ? exec[ 1 ].toLowerCase() : undefined; const decoder = new TextDecoder( label ); return response.arrayBuffer().then( ab => decoder.decode( ab ) ); } } } ) .then( data => { // Add to cache only on HTTP success, so that we do not cache // error response bodies as proper responses to requests. Cache.add( url, data ); const callbacks = loading[ url ]; delete loading[ url ]; for ( let i = 0, il = callbacks.length; i < il; i ++ ) { const callback = callbacks[ i ]; if ( callback.onLoad ) callback.onLoad( data ); } } ) .catch( err => { // Abort errors and other errors are handled the same const callbacks = loading[ url ]; if ( callbacks === undefined ) { // When onLoad was called and url was deleted in `loading` this.manager.itemError( url ); throw err; } delete loading[ url ]; for ( let i = 0, il = callbacks.length; i < il; i ++ ) { const callback = callbacks[ i ]; if ( callback.onError ) callback.onError( err ); } this.manager.itemError( url ); } ) .finally( () => { this.manager.itemEnd( url ); } ); this.manager.itemStart( url ); } setResponseType( value ) { this.responseType = value; return this; } setMimeType( value ) { this.mimeType = value; return this; } } class ImageLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { if ( this.path !== undefined ) url = this.path + url; url = this.manager.resolveURL( url ); const scope = this; const cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); return cached; } const image = createElementNS( 'img' ); function onImageLoad() { removeEventListeners(); Cache.add( url, this ); if ( onLoad ) onLoad( this ); scope.manager.itemEnd( url ); } function onImageError( event ) { removeEventListeners(); if ( onError ) onError( event ); scope.manager.itemError( url ); scope.manager.itemEnd( url ); } function removeEventListeners() { image.removeEventListener( 'load', onImageLoad, false ); image.removeEventListener( 'error', onImageError, false ); } image.addEventListener( 'load', onImageLoad, false ); image.addEventListener( 'error', onImageError, false ); if ( url.slice( 0, 5 ) !== 'data:' ) { if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin; } scope.manager.itemStart( url ); image.src = url; return image; } } /** * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) * * Sub classes have to implement the parse() method which will be used in load(). */ class DataTextureLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const texture = new DataTexture(); const loader = new FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( this.requestHeader ); loader.setPath( this.path ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( buffer ) { const texData = scope.parse( buffer ); if ( ! texData ) return; if ( texData.image !== undefined ) { texture.image = texData.image; } else if ( texData.data !== undefined ) { texture.image.width = texData.width; texture.image.height = texData.height; texture.image.data = texData.data; } texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping; texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping; texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter; texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter; texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1; if ( texData.encoding !== undefined ) { texture.encoding = texData.encoding; } if ( texData.flipY !== undefined ) { texture.flipY = texData.flipY; } if ( texData.format !== undefined ) { texture.format = texData.format; } if ( texData.type !== undefined ) { texture.type = texData.type; } if ( texData.mipmaps !== undefined ) { texture.mipmaps = texData.mipmaps; texture.minFilter = LinearMipmapLinearFilter; // presumably... } if ( texData.mipmapCount === 1 ) { texture.minFilter = LinearFilter; } if ( texData.generateMipmaps !== undefined ) { texture.generateMipmaps = texData.generateMipmaps; } texture.needsUpdate = true; if ( onLoad ) onLoad( texture, texData ); }, onProgress, onError ); return texture; } } class TextureLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const texture = new Texture(); const loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); loader.load( url, function ( image ) { texture.image = image; texture.needsUpdate = true; if ( onLoad !== undefined ) { onLoad( texture ); } }, onProgress, onError ); return texture; } } class Light extends Object3D { constructor( color, intensity = 1 ) { super(); this.isLight = true; this.type = 'Light'; this.color = new Color$2( color ); this.intensity = intensity; } dispose() { // Empty here in base class; some subclasses override. } copy( source, recursive ) { super.copy( source, recursive ); this.color.copy( source.color ); this.intensity = source.intensity; return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.object.color = this.color.getHex(); data.object.intensity = this.intensity; if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex(); if ( this.distance !== undefined ) data.object.distance = this.distance; if ( this.angle !== undefined ) data.object.angle = this.angle; if ( this.decay !== undefined ) data.object.decay = this.decay; if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra; if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON(); return data; } } class HemisphereLight extends Light { constructor( skyColor, groundColor, intensity ) { super( skyColor, intensity ); this.isHemisphereLight = true; this.type = 'HemisphereLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.groundColor = new Color$2( groundColor ); } copy( source, recursive ) { super.copy( source, recursive ); this.groundColor.copy( source.groundColor ); return this; } } const _projScreenMatrix$1 = /*@__PURE__*/ new Matrix4(); const _lightPositionWorld$1 = /*@__PURE__*/ new Vector3(); const _lookTarget$1 = /*@__PURE__*/ new Vector3(); class LightShadow { constructor( camera ) { this.camera = camera; this.bias = 0; this.normalBias = 0; this.radius = 1; this.blurSamples = 8; this.mapSize = new Vector2( 512, 512 ); this.map = null; this.mapPass = null; this.matrix = new Matrix4(); this.autoUpdate = true; this.needsUpdate = false; this._frustum = new Frustum(); this._frameExtents = new Vector2( 1, 1 ); this._viewportCount = 1; this._viewports = [ new Vector4( 0, 0, 1, 1 ) ]; } getViewportCount() { return this._viewportCount; } getFrustum() { return this._frustum; } updateMatrices( light ) { const shadowCamera = this.camera; const shadowMatrix = this.matrix; _lightPositionWorld$1.setFromMatrixPosition( light.matrixWorld ); shadowCamera.position.copy( _lightPositionWorld$1 ); _lookTarget$1.setFromMatrixPosition( light.target.matrixWorld ); shadowCamera.lookAt( _lookTarget$1 ); shadowCamera.updateMatrixWorld(); _projScreenMatrix$1.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); this._frustum.setFromProjectionMatrix( _projScreenMatrix$1 ); shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiply( shadowCamera.projectionMatrix ); shadowMatrix.multiply( shadowCamera.matrixWorldInverse ); } getViewport( viewportIndex ) { return this._viewports[ viewportIndex ]; } getFrameExtents() { return this._frameExtents; } dispose() { if ( this.map ) { this.map.dispose(); } if ( this.mapPass ) { this.mapPass.dispose(); } } copy( source ) { this.camera = source.camera.clone(); this.bias = source.bias; this.radius = source.radius; this.mapSize.copy( source.mapSize ); return this; } clone() { return new this.constructor().copy( this ); } toJSON() { const object = {}; if ( this.bias !== 0 ) object.bias = this.bias; if ( this.normalBias !== 0 ) object.normalBias = this.normalBias; if ( this.radius !== 1 ) object.radius = this.radius; if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray(); object.camera = this.camera.toJSON( false ).object; delete object.camera.matrix; return object; } } class SpotLightShadow extends LightShadow { constructor() { super( new PerspectiveCamera( 50, 1, 0.5, 500 ) ); this.isSpotLightShadow = true; this.focus = 1; } updateMatrices( light ) { const camera = this.camera; const fov = RAD2DEG * 2 * light.angle * this.focus; const aspect = this.mapSize.width / this.mapSize.height; const far = light.distance || camera.far; if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) { camera.fov = fov; camera.aspect = aspect; camera.far = far; camera.updateProjectionMatrix(); } super.updateMatrices( light ); } copy( source ) { super.copy( source ); this.focus = source.focus; return this; } } class SpotLight extends Light { constructor( color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1 ) { super( color, intensity ); this.isSpotLight = true; this.type = 'SpotLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.target = new Object3D(); this.distance = distance; this.angle = angle; this.penumbra = penumbra; this.decay = decay; // for physically correct lights, should be 2. this.shadow = new SpotLightShadow(); } get power() { // compute the light's luminous power (in lumens) from its intensity (in candela) // by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd) return this.intensity * Math.PI; } set power( power ) { // set the light's intensity (in candela) from the desired luminous power (in lumens) this.intensity = power / Math.PI; } dispose() { this.shadow.dispose(); } copy( source, recursive ) { super.copy( source, recursive ); this.distance = source.distance; this.angle = source.angle; this.penumbra = source.penumbra; this.decay = source.decay; this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } const _projScreenMatrix = /*@__PURE__*/ new Matrix4(); const _lightPositionWorld = /*@__PURE__*/ new Vector3(); const _lookTarget = /*@__PURE__*/ new Vector3(); class PointLightShadow extends LightShadow { constructor() { super( new PerspectiveCamera( 90, 1, 0.5, 500 ) ); this.isPointLightShadow = true; this._frameExtents = new Vector2( 4, 2 ); this._viewportCount = 6; this._viewports = [ // These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X new Vector4( 2, 1, 1, 1 ), // negative X new Vector4( 0, 1, 1, 1 ), // positive Z new Vector4( 3, 1, 1, 1 ), // negative Z new Vector4( 1, 1, 1, 1 ), // positive Y new Vector4( 3, 0, 1, 1 ), // negative Y new Vector4( 1, 0, 1, 1 ) ]; this._cubeDirections = [ new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 ) ]; this._cubeUps = [ new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ) ]; } updateMatrices( light, viewportIndex = 0 ) { const camera = this.camera; const shadowMatrix = this.matrix; const far = light.distance || camera.far; if ( far !== camera.far ) { camera.far = far; camera.updateProjectionMatrix(); } _lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); camera.position.copy( _lightPositionWorld ); _lookTarget.copy( camera.position ); _lookTarget.add( this._cubeDirections[ viewportIndex ] ); camera.up.copy( this._cubeUps[ viewportIndex ] ); camera.lookAt( _lookTarget ); camera.updateMatrixWorld(); shadowMatrix.makeTranslation( - _lightPositionWorld.x, - _lightPositionWorld.y, - _lightPositionWorld.z ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); this._frustum.setFromProjectionMatrix( _projScreenMatrix ); } } class PointLight extends Light { constructor( color, intensity, distance = 0, decay = 1 ) { super( color, intensity ); this.isPointLight = true; this.type = 'PointLight'; this.distance = distance; this.decay = decay; // for physically correct lights, should be 2. this.shadow = new PointLightShadow(); } get power() { // compute the light's luminous power (in lumens) from its intensity (in candela) // for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd) return this.intensity * 4 * Math.PI; } set power( power ) { // set the light's intensity (in candela) from the desired luminous power (in lumens) this.intensity = power / ( 4 * Math.PI ); } dispose() { this.shadow.dispose(); } copy( source, recursive ) { super.copy( source, recursive ); this.distance = source.distance; this.decay = source.decay; this.shadow = source.shadow.clone(); return this; } } class DirectionalLightShadow extends LightShadow { constructor() { super( new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) ); this.isDirectionalLightShadow = true; } } class DirectionalLight extends Light { constructor( color, intensity ) { super( color, intensity ); this.isDirectionalLight = true; this.type = 'DirectionalLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.target = new Object3D(); this.shadow = new DirectionalLightShadow(); } dispose() { this.shadow.dispose(); } copy( source ) { super.copy( source ); this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } class AmbientLight extends Light { constructor( color, intensity ) { super( color, intensity ); this.isAmbientLight = true; this.type = 'AmbientLight'; } } class RectAreaLight extends Light { constructor( color, intensity, width = 10, height = 10 ) { super( color, intensity ); this.isRectAreaLight = true; this.type = 'RectAreaLight'; this.width = width; this.height = height; } get power() { // compute the light's luminous power (in lumens) from its intensity (in nits) return this.intensity * this.width * this.height * Math.PI; } set power( power ) { // set the light's intensity (in nits) from the desired luminous power (in lumens) this.intensity = power / ( this.width * this.height * Math.PI ); } copy( source ) { super.copy( source ); this.width = source.width; this.height = source.height; return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.object.width = this.width; data.object.height = this.height; return data; } } class LoaderUtils { static decodeText( array ) { if ( typeof TextDecoder !== 'undefined' ) { return new TextDecoder().decode( array ); } // Avoid the String.fromCharCode.apply(null, array) shortcut, which // throws a "maximum call stack size exceeded" error for large arrays. let s = ''; for ( let i = 0, il = array.length; i < il; i ++ ) { // Implicitly assumes little-endian. s += String.fromCharCode( array[ i ] ); } try { // merges multi-byte utf-8 characters. return decodeURIComponent( escape( s ) ); } catch ( e ) { // see #16358 return s; } } static extractUrlBase( url ) { const index = url.lastIndexOf( '/' ); if ( index === - 1 ) return './'; return url.slice( 0, index + 1 ); } static resolveURL( url, path ) { // Invalid URL if ( typeof url !== 'string' || url === '' ) return ''; // Host Relative URL if ( /^https?:\/\//i.test( path ) && /^\//.test( url ) ) { path = path.replace( /(^https?:\/\/[^\/]+).*/i, '$1' ); } // Absolute URL http://,https://,// if ( /^(https?:)?\/\//i.test( url ) ) return url; // Data URI if ( /^data:.*,.*$/i.test( url ) ) return url; // Blob URL if ( /^blob:.*$/i.test( url ) ) return url; // Relative URL return path + url; } } class ImageBitmapLoader extends Loader { constructor( manager ) { super( manager ); this.isImageBitmapLoader = true; if ( typeof createImageBitmap === 'undefined' ) { console.warn( 'THREE.ImageBitmapLoader: createImageBitmap() not supported.' ); } if ( typeof fetch === 'undefined' ) { console.warn( 'THREE.ImageBitmapLoader: fetch() not supported.' ); } this.options = { premultiplyAlpha: 'none' }; } setOptions( options ) { this.options = options; return this; } load( url, onLoad, onProgress, onError ) { if ( url === undefined ) url = ''; if ( this.path !== undefined ) url = this.path + url; url = this.manager.resolveURL( url ); const scope = this; const cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); return cached; } const fetchOptions = {}; fetchOptions.credentials = ( this.crossOrigin === 'anonymous' ) ? 'same-origin' : 'include'; fetchOptions.headers = this.requestHeader; fetch( url, fetchOptions ).then( function ( res ) { return res.blob(); } ).then( function ( blob ) { return createImageBitmap( blob, Object.assign( scope.options, { colorSpaceConversion: 'none' } ) ); } ).then( function ( imageBitmap ) { Cache.add( url, imageBitmap ); if ( onLoad ) onLoad( imageBitmap ); scope.manager.itemEnd( url ); } ).catch( function ( e ) { if ( onError ) onError( e ); scope.manager.itemError( url ); scope.manager.itemEnd( url ); } ); scope.manager.itemStart( url ); } } class Clock { constructor( autoStart = true ) { this.autoStart = autoStart; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; } start() { this.startTime = now$2(); this.oldTime = this.startTime; this.elapsedTime = 0; this.running = true; } stop() { this.getElapsedTime(); this.running = false; this.autoStart = false; } getElapsedTime() { this.getDelta(); return this.elapsedTime; } getDelta() { let diff = 0; if ( this.autoStart && ! this.running ) { this.start(); return 0; } if ( this.running ) { const newTime = now$2(); diff = ( newTime - this.oldTime ) / 1000; this.oldTime = newTime; this.elapsedTime += diff; } return diff; } } function now$2() { return ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732 } class PropertyMixer { constructor( binding, typeName, valueSize ) { this.binding = binding; this.valueSize = valueSize; let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property // // 'add' is used for additive cumulative results // // 'work' is optional and is only present for quaternion types. It is used // to store intermediate quaternion multiplication results switch ( typeName ) { case 'quaternion': mixFunction = this._slerp; mixFunctionAdditive = this._slerpAdditive; setIdentity = this._setAdditiveIdentityQuaternion; this.buffer = new Float64Array( valueSize * 6 ); this._workIndex = 5; break; case 'string': case 'bool': mixFunction = this._select; // Use the regular mix function and for additive on these types, // additive is not relevant for non-numeric types mixFunctionAdditive = this._select; setIdentity = this._setAdditiveIdentityOther; this.buffer = new Array( valueSize * 5 ); break; default: mixFunction = this._lerp; mixFunctionAdditive = this._lerpAdditive; setIdentity = this._setAdditiveIdentityNumeric; this.buffer = new Float64Array( valueSize * 5 ); } this._mixBufferRegion = mixFunction; this._mixBufferRegionAdditive = mixFunctionAdditive; this._setIdentity = setIdentity; this._origIndex = 3; this._addIndex = 4; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; this.useCount = 0; this.referenceCount = 0; } // accumulate data in the 'incoming' region into 'accu' accumulate( accuIndex, weight ) { // note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place const buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride; let currentWeight = this.cumulativeWeight; if ( currentWeight === 0 ) { // accuN := incoming * weight for ( let i = 0; i !== stride; ++ i ) { buffer[ offset + i ] = buffer[ i ]; } currentWeight = weight; } else { // accuN := accuN + incoming * weight currentWeight += weight; const mix = weight / currentWeight; this._mixBufferRegion( buffer, offset, 0, mix, stride ); } this.cumulativeWeight = currentWeight; } // accumulate data in the 'incoming' region into 'add' accumulateAdditive( weight ) { const buffer = this.buffer, stride = this.valueSize, offset = stride * this._addIndex; if ( this.cumulativeWeightAdditive === 0 ) { // add = identity this._setIdentity(); } // add := add + incoming * weight this._mixBufferRegionAdditive( buffer, offset, 0, weight, stride ); this.cumulativeWeightAdditive += weight; } // apply the state of 'accu' to the binding when accus differ apply( accuIndex ) { const stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, weightAdditive = this.cumulativeWeightAdditive, binding = this.binding; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; if ( weight < 1 ) { // accuN := accuN + original * ( 1 - cumulativeWeight ) const originalValueOffset = stride * this._origIndex; this._mixBufferRegion( buffer, offset, originalValueOffset, 1 - weight, stride ); } if ( weightAdditive > 0 ) { // accuN := accuN + additive accuN this._mixBufferRegionAdditive( buffer, offset, this._addIndex * stride, 1, stride ); } for ( let i = stride, e = stride + stride; i !== e; ++ i ) { if ( buffer[ i ] !== buffer[ i + stride ] ) { // value has changed -> update scene graph binding.setValue( buffer, offset ); break; } } } // remember the state of the bound property and copy it to both accus saveOriginalState() { const binding = this.binding; const buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * this._origIndex; binding.getValue( buffer, originalValueOffset ); // accu[0..1] := orig -- initially detect changes against the original for ( let i = stride, e = originalValueOffset; i !== e; ++ i ) { buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ]; } // Add to identity for additive this._setIdentity(); this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; } // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState() { const originalValueOffset = this.valueSize * 3; this.binding.setValue( this.buffer, originalValueOffset ); } _setAdditiveIdentityNumeric() { const startIndex = this._addIndex * this.valueSize; const endIndex = startIndex + this.valueSize; for ( let i = startIndex; i < endIndex; i ++ ) { this.buffer[ i ] = 0; } } _setAdditiveIdentityQuaternion() { this._setAdditiveIdentityNumeric(); this.buffer[ this._addIndex * this.valueSize + 3 ] = 1; } _setAdditiveIdentityOther() { const startIndex = this._origIndex * this.valueSize; const targetIndex = this._addIndex * this.valueSize; for ( let i = 0; i < this.valueSize; i ++ ) { this.buffer[ targetIndex + i ] = this.buffer[ startIndex + i ]; } } // mix functions _select( buffer, dstOffset, srcOffset, t, stride ) { if ( t >= 0.5 ) { for ( let i = 0; i !== stride; ++ i ) { buffer[ dstOffset + i ] = buffer[ srcOffset + i ]; } } } _slerp( buffer, dstOffset, srcOffset, t ) { Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t ); } _slerpAdditive( buffer, dstOffset, srcOffset, t, stride ) { const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset Quaternion.multiplyQuaternionsFlat( buffer, workOffset, buffer, dstOffset, buffer, srcOffset ); // Slerp to the intermediate result Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t ); } _lerp( buffer, dstOffset, srcOffset, t, stride ) { const s = 1 - t; for ( let i = 0; i !== stride; ++ i ) { const j = dstOffset + i; buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t; } } _lerpAdditive( buffer, dstOffset, srcOffset, t, stride ) { for ( let i = 0; i !== stride; ++ i ) { const j = dstOffset + i; buffer[ j ] = buffer[ j ] + buffer[ srcOffset + i ] * t; } } } // Characters [].:/ are reserved for track binding syntax. const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/'; const _reservedRe = new RegExp( '[' + _RESERVED_CHARS_RE + ']', 'g' ); // Attempts to allow node names from any language. ES5's `\w` regexp matches // only latin characters, and the unicode \p{L} is not yet supported. So // instead, we exclude reserved characters and match everything else. const _wordChar = '[^' + _RESERVED_CHARS_RE + ']'; const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace( '\\.', '' ) + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must // be matched to parse the rest of the track name. const _directoryRe = /*@__PURE__*/ /((?:WC+[\/:])*)/.source.replace( 'WC', _wordChar ); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. const _nodeRe = /*@__PURE__*/ /(WCOD+)?/.source.replace( 'WCOD', _wordCharOrDot ); // Object on target node, and accessor. May not contain reserved // characters. Accessor may contain any character except closing bracket. const _objectRe = /*@__PURE__*/ /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', _wordChar ); // Property and accessor. May not contain reserved characters. Accessor may // contain any non-bracket characters. const _propertyRe = /*@__PURE__*/ /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', _wordChar ); const _trackRe = new RegExp( '' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$' ); const _supportedObjectNames = [ 'material', 'materials', 'bones' ]; class Composite { constructor( targetGroup, path, optionalParsedPath ) { const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path ); this._targetGroup = targetGroup; this._bindings = targetGroup.subscribe_( path, parsedPath ); } getValue( array, offset ) { this.bind(); // bind all binding const firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[ firstValidIndex ]; // and only call .getValue on the first if ( binding !== undefined ) binding.getValue( array, offset ); } setValue( array, offset ) { const bindings = this._bindings; for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].setValue( array, offset ); } } bind() { const bindings = this._bindings; for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].bind(); } } unbind() { const bindings = this._bindings; for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].unbind(); } } } // Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops. class PropertyBinding { constructor( rootNode, path, parsedPath ) { this.path = path; this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path ); this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode; this.rootNode = rootNode; // initial state of these methods that calls 'bind' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } static create( root, path, parsedPath ) { if ( ! ( root && root.isAnimationObjectGroup ) ) { return new PropertyBinding( root, path, parsedPath ); } else { return new PropertyBinding.Composite( root, path, parsedPath ); } } /** * Replaces spaces with underscores and removes unsupported characters from * node names, to ensure compatibility with parseTrackName(). * * @param {string} name Node name to be sanitized. * @return {string} */ static sanitizeNodeName( name ) { return name.replace( /\s/g, '_' ).replace( _reservedRe, '' ); } static parseTrackName( trackName ) { const matches = _trackRe.exec( trackName ); if ( matches === null ) { throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName ); } const results = { // directoryName: matches[ 1 ], // (tschw) currently unused nodeName: matches[ 2 ], objectName: matches[ 3 ], objectIndex: matches[ 4 ], propertyName: matches[ 5 ], // required propertyIndex: matches[ 6 ] }; const lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' ); if ( lastDot !== undefined && lastDot !== - 1 ) { const objectName = results.nodeName.substring( lastDot + 1 ); // Object names must be checked against an allowlist. Otherwise, there // is no way to parse 'foo.bar.baz': 'baz' must be a property, but // 'bar' could be the objectName, or part of a nodeName (which can // include '.' characters). if ( _supportedObjectNames.indexOf( objectName ) !== - 1 ) { results.nodeName = results.nodeName.substring( 0, lastDot ); results.objectName = objectName; } } if ( results.propertyName === null || results.propertyName.length === 0 ) { throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName ); } return results; } static findNode( root, nodeName ) { if ( nodeName === undefined || nodeName === '' || nodeName === '.' || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) { return root; } // search into skeleton bones. if ( root.skeleton ) { const bone = root.skeleton.getBoneByName( nodeName ); if ( bone !== undefined ) { return bone; } } // search into node subtree. if ( root.children ) { const searchNodeSubtree = function ( children ) { for ( let i = 0; i < children.length; i ++ ) { const childNode = children[ i ]; if ( childNode.name === nodeName || childNode.uuid === nodeName ) { return childNode; } const result = searchNodeSubtree( childNode.children ); if ( result ) return result; } return null; }; const subTreeNode = searchNodeSubtree( root.children ); if ( subTreeNode ) { return subTreeNode; } } return null; } // these are used to "bind" a nonexistent property _getValue_unavailable() {} _setValue_unavailable() {} // Getters _getValue_direct( buffer, offset ) { buffer[ offset ] = this.targetObject[ this.propertyName ]; } _getValue_array( buffer, offset ) { const source = this.resolvedProperty; for ( let i = 0, n = source.length; i !== n; ++ i ) { buffer[ offset ++ ] = source[ i ]; } } _getValue_arrayElement( buffer, offset ) { buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ]; } _getValue_toArray( buffer, offset ) { this.resolvedProperty.toArray( buffer, offset ); } // Direct _setValue_direct( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; } _setValue_direct_setNeedsUpdate( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; this.targetObject.needsUpdate = true; } _setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } // EntireArray _setValue_array( buffer, offset ) { const dest = this.resolvedProperty; for ( let i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } } _setValue_array_setNeedsUpdate( buffer, offset ) { const dest = this.resolvedProperty; for ( let i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.needsUpdate = true; } _setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) { const dest = this.resolvedProperty; for ( let i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.matrixWorldNeedsUpdate = true; } // ArrayElement _setValue_arrayElement( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; } _setValue_arrayElement_setNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.needsUpdate = true; } _setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } // HasToFromArray _setValue_fromArray( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); } _setValue_fromArray_setNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.needsUpdate = true; } _setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.matrixWorldNeedsUpdate = true; } _getValue_unbound( targetArray, offset ) { this.bind(); this.getValue( targetArray, offset ); } _setValue_unbound( sourceArray, offset ) { this.bind(); this.setValue( sourceArray, offset ); } // create getter / setter pair for a property in the scene graph bind() { let targetObject = this.node; const parsedPath = this.parsedPath; const objectName = parsedPath.objectName; const propertyName = parsedPath.propertyName; let propertyIndex = parsedPath.propertyIndex; if ( ! targetObject ) { targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode; this.node = targetObject; } // set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable; this.setValue = this._setValue_unavailable; // ensure there is a value node if ( ! targetObject ) { console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.' ); return; } if ( objectName ) { let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials.... switch ( objectName ) { case 'materials': if ( ! targetObject.material ) { console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); return; } if ( ! targetObject.material.materials ) { console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this ); return; } targetObject = targetObject.material.materials; break; case 'bones': if ( ! targetObject.skeleton ) { console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this ); return; } // potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer. targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices. for ( let i = 0; i < targetObject.length; i ++ ) { if ( targetObject[ i ].name === objectIndex ) { objectIndex = i; break; } } break; default: if ( targetObject[ objectName ] === undefined ) { console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this ); return; } targetObject = targetObject[ objectName ]; } if ( objectIndex !== undefined ) { if ( targetObject[ objectIndex ] === undefined ) { console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject ); return; } targetObject = targetObject[ objectIndex ]; } } // resolve property const nodeProperty = targetObject[ propertyName ]; if ( nodeProperty === undefined ) { const nodeName = parsedPath.nodeName; console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject ); return; } // determine versioning scheme let versioning = this.Versioning.None; this.targetObject = targetObject; if ( targetObject.needsUpdate !== undefined ) { // material versioning = this.Versioning.NeedsUpdate; } else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform versioning = this.Versioning.MatrixWorldNeedsUpdate; } // determine how the property gets bound let bindingType = this.BindingType.Direct; if ( propertyIndex !== undefined ) { // access a sub element of the property array (only primitives are supported right now) if ( propertyName === 'morphTargetInfluences' ) { // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. // support resolving morphTarget names into indices. if ( ! targetObject.geometry ) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this ); return; } if ( ! targetObject.geometry.morphAttributes ) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this ); return; } if ( targetObject.morphTargetDictionary[ propertyIndex ] !== undefined ) { propertyIndex = targetObject.morphTargetDictionary[ propertyIndex ]; } } bindingType = this.BindingType.ArrayElement; this.resolvedProperty = nodeProperty; this.propertyIndex = propertyIndex; } else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) { // must use copy for Object3D.Euler/Quaternion bindingType = this.BindingType.HasFromToArray; this.resolvedProperty = nodeProperty; } else if ( Array.isArray( nodeProperty ) ) { bindingType = this.BindingType.EntireArray; this.resolvedProperty = nodeProperty; } else { this.propertyName = propertyName; } // select getter / setter this.getValue = this.GetterByBindingType[ bindingType ]; this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ]; } unbind() { this.node = null; // back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } } PropertyBinding.Composite = Composite; PropertyBinding.prototype.BindingType = { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 }; PropertyBinding.prototype.Versioning = { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 }; PropertyBinding.prototype.GetterByBindingType = [ PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray, ]; PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [ [ // Direct PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate, ], [ // EntireArray PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate, ], [ // ArrayElement PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate, ], [ // HasToFromArray PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate, ] ]; class AnimationAction { constructor( mixer, clip, localRoot = null, blendMode = clip.blendMode ) { this._mixer = mixer; this._clip = clip; this._localRoot = localRoot; this.blendMode = blendMode; const tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array( nTracks ); const interpolantSettings = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; for ( let i = 0; i !== nTracks; ++ i ) { const interpolant = tracks[ i ].createInterpolant( null ); interpolants[ i ] = interpolant; interpolant.settings = interpolantSettings; } this._interpolantSettings = interpolantSettings; this._interpolants = interpolants; // bound by the mixer // inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array( nTracks ); this._cacheIndex = null; // for the memory manager this._byClipCacheIndex = null; // for the memory manager this._timeScaleInterpolant = null; this._weightInterpolant = null; this.loop = LoopRepeat; this._loopCount = - 1; // global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null; // scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0; this.timeScale = 1; this._effectiveTimeScale = 1; this.weight = 1; this._effectiveWeight = 1; this.repetitions = Infinity; // no. of repetitions when looping this.paused = false; // true -> zero effective time scale this.enabled = true; // false -> zero effective weight this.clampWhenFinished = false;// keep feeding the last frame? this.zeroSlopeAtStart = true;// for smooth interpolation w/o separate this.zeroSlopeAtEnd = true;// clips for start, loop and end } // State & Scheduling play() { this._mixer._activateAction( this ); return this; } stop() { this._mixer._deactivateAction( this ); return this.reset(); } reset() { this.paused = false; this.enabled = true; this.time = 0; // restart clip this._loopCount = - 1;// forget previous loops this._startTime = null;// forget scheduling return this.stopFading().stopWarping(); } isRunning() { return this.enabled && ! this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction( this ); } // return true when play has been called isScheduled() { return this._mixer._isActiveAction( this ); } startAt( time ) { this._startTime = time; return this; } setLoop( mode, repetitions ) { this.loop = mode; this.repetitions = repetitions; return this; } // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight( weight ) { this.weight = weight; // note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0; return this.stopFading(); } // return the weight considering fading and .enabled getEffectiveWeight() { return this._effectiveWeight; } fadeIn( duration ) { return this._scheduleFading( duration, 0, 1 ); } fadeOut( duration ) { return this._scheduleFading( duration, 1, 0 ); } crossFadeFrom( fadeOutAction, duration, warp ) { fadeOutAction.fadeOut( duration ); this.fadeIn( duration ); if ( warp ) { const fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration; fadeOutAction.warp( 1.0, startEndRatio, duration ); this.warp( endStartRatio, 1.0, duration ); } return this; } crossFadeTo( fadeInAction, duration, warp ) { return fadeInAction.crossFadeFrom( this, duration, warp ); } stopFading() { const weightInterpolant = this._weightInterpolant; if ( weightInterpolant !== null ) { this._weightInterpolant = null; this._mixer._takeBackControlInterpolant( weightInterpolant ); } return this; } // Time Scale Control // set the time scale stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale( timeScale ) { this.timeScale = timeScale; this._effectiveTimeScale = this.paused ? 0 : timeScale; return this.stopWarping(); } // return the time scale considering warping and .paused getEffectiveTimeScale() { return this._effectiveTimeScale; } setDuration( duration ) { this.timeScale = this._clip.duration / duration; return this.stopWarping(); } syncWith( action ) { this.time = action.time; this.timeScale = action.timeScale; return this.stopWarping(); } halt( duration ) { return this.warp( this._effectiveTimeScale, 0, duration ); } warp( startTimeScale, endTimeScale, duration ) { const mixer = this._mixer, now = mixer.time, timeScale = this.timeScale; let interpolant = this._timeScaleInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(); this._timeScaleInterpolant = interpolant; } const times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; times[ 1 ] = now + duration; values[ 0 ] = startTimeScale / timeScale; values[ 1 ] = endTimeScale / timeScale; return this; } stopWarping() { const timeScaleInterpolant = this._timeScaleInterpolant; if ( timeScaleInterpolant !== null ) { this._timeScaleInterpolant = null; this._mixer._takeBackControlInterpolant( timeScaleInterpolant ); } return this; } // Object Accessors getMixer() { return this._mixer; } getClip() { return this._clip; } getRoot() { return this._localRoot || this._mixer._root; } // Interna _update( time, deltaTime, timeDirection, accuIndex ) { // called by the mixer if ( ! this.enabled ) { // call ._updateWeight() to update ._effectiveWeight this._updateWeight( time ); return; } const startTime = this._startTime; if ( startTime !== null ) { // check for scheduled start of action const timeRunning = ( time - startTime ) * timeDirection; if ( timeRunning < 0 || timeDirection === 0 ) { return; // yet to come / don't decide when delta = 0 } // start this._startTime = null; // unschedule deltaTime = timeDirection * timeRunning; } // apply time scale and advance time deltaTime *= this._updateTimeScale( time ); const clipTime = this._updateTime( deltaTime ); // note: _updateTime may disable the action resulting in // an effective weight of 0 const weight = this._updateWeight( time ); if ( weight > 0 ) { const interpolants = this._interpolants; const propertyMixers = this._propertyBindings; switch ( this.blendMode ) { case AdditiveAnimationBlendMode: for ( let j = 0, m = interpolants.length; j !== m; ++ j ) { interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulateAdditive( weight ); } break; case NormalAnimationBlendMode: default: for ( let j = 0, m = interpolants.length; j !== m; ++ j ) { interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulate( accuIndex, weight ); } } } } _updateWeight( time ) { let weight = 0; if ( this.enabled ) { weight = this.weight; const interpolant = this._weightInterpolant; if ( interpolant !== null ) { const interpolantValue = interpolant.evaluate( time )[ 0 ]; weight *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopFading(); if ( interpolantValue === 0 ) { // faded out, disable this.enabled = false; } } } } this._effectiveWeight = weight; return weight; } _updateTimeScale( time ) { let timeScale = 0; if ( ! this.paused ) { timeScale = this.timeScale; const interpolant = this._timeScaleInterpolant; if ( interpolant !== null ) { const interpolantValue = interpolant.evaluate( time )[ 0 ]; timeScale *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopWarping(); if ( timeScale === 0 ) { // motion has halted, pause this.paused = true; } else { // warp done - apply final time scale this.timeScale = timeScale; } } } } this._effectiveTimeScale = timeScale; return timeScale; } _updateTime( deltaTime ) { const duration = this._clip.duration; const loop = this.loop; let time = this.time + deltaTime; let loopCount = this._loopCount; const pingPong = ( loop === LoopPingPong ); if ( deltaTime === 0 ) { if ( loopCount === - 1 ) return time; return ( pingPong && ( loopCount & 1 ) === 1 ) ? duration - time : time; } if ( loop === LoopOnce ) { if ( loopCount === - 1 ) { // just started this._loopCount = 0; this._setEndings( true, true, false ); } handle_stop: { if ( time >= duration ) { time = duration; } else if ( time < 0 ) { time = 0; } else { this.time = time; break handle_stop; } if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; this.time = time; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime < 0 ? - 1 : 1 } ); } } else { // repetitive Repeat or PingPong if ( loopCount === - 1 ) { // just started if ( deltaTime >= 0 ) { loopCount = 0; this._setEndings( true, this.repetitions === 0, pingPong ); } else { // when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1 this._setEndings( this.repetitions === 0, true, pingPong ); } } if ( time >= duration || time < 0 ) { // wrap around const loopDelta = Math.floor( time / duration ); // signed time -= duration * loopDelta; loopCount += Math.abs( loopDelta ); const pending = this.repetitions - loopCount; if ( pending <= 0 ) { // have to stop (switch state, clamp time, fire event) if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; time = deltaTime > 0 ? duration : 0; this.time = time; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime > 0 ? 1 : - 1 } ); } else { // keep running if ( pending === 1 ) { // entering the last round const atStart = deltaTime < 0; this._setEndings( atStart, ! atStart, pingPong ); } else { this._setEndings( false, false, pingPong ); } this._loopCount = loopCount; this.time = time; this._mixer.dispatchEvent( { type: 'loop', action: this, loopDelta: loopDelta } ); } } else { this.time = time; } if ( pingPong && ( loopCount & 1 ) === 1 ) { // invert time for the "pong round" return duration - time; } } return time; } _setEndings( atStart, atEnd, pingPong ) { const settings = this._interpolantSettings; if ( pingPong ) { settings.endingStart = ZeroSlopeEnding; settings.endingEnd = ZeroSlopeEnding; } else { // assuming for LoopOnce atStart == atEnd == true if ( atStart ) { settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingStart = WrapAroundEnding; } if ( atEnd ) { settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingEnd = WrapAroundEnding; } } } _scheduleFading( duration, weightNow, weightThen ) { const mixer = this._mixer, now = mixer.time; let interpolant = this._weightInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(); this._weightInterpolant = interpolant; } const times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; values[ 0 ] = weightNow; times[ 1 ] = now + duration; values[ 1 ] = weightThen; return this; } } const _controlInterpolantsResultBuffer = new Float32Array( 1 ); class AnimationMixer extends EventDispatcher { constructor( root ) { super(); this._root = root; this._initMemoryManager(); this._accuIndex = 0; this.time = 0; this.timeScale = 1.0; } _bindAction( action, prototypeAction ) { const root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName; let bindingsByName = bindingsByRoot[ rootUuid ]; if ( bindingsByName === undefined ) { bindingsByName = {}; bindingsByRoot[ rootUuid ] = bindingsByName; } for ( let i = 0; i !== nTracks; ++ i ) { const track = tracks[ i ], trackName = track.name; let binding = bindingsByName[ trackName ]; if ( binding !== undefined ) { ++ binding.referenceCount; bindings[ i ] = binding; } else { binding = bindings[ i ]; if ( binding !== undefined ) { // existing binding, make sure the cache knows if ( binding._cacheIndex === null ) { ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); } continue; } const path = prototypeAction && prototypeAction. _propertyBindings[ i ].binding.parsedPath; binding = new PropertyMixer( PropertyBinding.create( root, trackName, path ), track.ValueTypeName, track.getValueSize() ); ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); bindings[ i ] = binding; } interpolants[ i ].resultBuffer = binding.buffer; } } _activateAction( action ) { if ( ! this._isActiveAction( action ) ) { if ( action._cacheIndex === null ) { // this action has been forgotten by the cache, but the user // appears to be still using it -> rebind const rootUuid = ( action._localRoot || this._root ).uuid, clipUuid = action._clip.uuid, actionsForClip = this._actionsByClip[ clipUuid ]; this._bindAction( action, actionsForClip && actionsForClip.knownActions[ 0 ] ); this._addInactiveAction( action, clipUuid, rootUuid ); } const bindings = action._propertyBindings; // increment reference counts / sort out state for ( let i = 0, n = bindings.length; i !== n; ++ i ) { const binding = bindings[ i ]; if ( binding.useCount ++ === 0 ) { this._lendBinding( binding ); binding.saveOriginalState(); } } this._lendAction( action ); } } _deactivateAction( action ) { if ( this._isActiveAction( action ) ) { const bindings = action._propertyBindings; // decrement reference counts / sort out state for ( let i = 0, n = bindings.length; i !== n; ++ i ) { const binding = bindings[ i ]; if ( -- binding.useCount === 0 ) { binding.restoreOriginalState(); this._takeBackBinding( binding ); } } this._takeBackAction( action ); } } // Memory manager _initMemoryManager() { this._actions = []; // 'nActiveActions' followed by inactive ones this._nActiveActions = 0; this._actionsByClip = {}; // inside: // { // knownActions: Array< AnimationAction > - used as prototypes // actionByRoot: AnimationAction - lookup // } this._bindings = []; // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0; this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > this._controlInterpolants = []; // same game as above this._nActiveControlInterpolants = 0; const scope = this; this.stats = { actions: { get total() { return scope._actions.length; }, get inUse() { return scope._nActiveActions; } }, bindings: { get total() { return scope._bindings.length; }, get inUse() { return scope._nActiveBindings; } }, controlInterpolants: { get total() { return scope._controlInterpolants.length; }, get inUse() { return scope._nActiveControlInterpolants; } } }; } // Memory management for AnimationAction objects _isActiveAction( action ) { const index = action._cacheIndex; return index !== null && index < this._nActiveActions; } _addInactiveAction( action, clipUuid, rootUuid ) { const actions = this._actions, actionsByClip = this._actionsByClip; let actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip === undefined ) { actionsForClip = { knownActions: [ action ], actionByRoot: {} }; action._byClipCacheIndex = 0; actionsByClip[ clipUuid ] = actionsForClip; } else { const knownActions = actionsForClip.knownActions; action._byClipCacheIndex = knownActions.length; knownActions.push( action ); } action._cacheIndex = actions.length; actions.push( action ); actionsForClip.actionByRoot[ rootUuid ] = action; } _removeInactiveAction( action ) { const actions = this._actions, lastInactiveAction = actions[ actions.length - 1 ], cacheIndex = action._cacheIndex; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); action._cacheIndex = null; const clipUuid = action._clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[ knownActionsForClip.length - 1 ], byClipCacheIndex = action._byClipCacheIndex; lastKnownAction._byClipCacheIndex = byClipCacheIndex; knownActionsForClip[ byClipCacheIndex ] = lastKnownAction; knownActionsForClip.pop(); action._byClipCacheIndex = null; const actionByRoot = actionsForClip.actionByRoot, rootUuid = ( action._localRoot || this._root ).uuid; delete actionByRoot[ rootUuid ]; if ( knownActionsForClip.length === 0 ) { delete actionsByClip[ clipUuid ]; } this._removeInactiveBindingsForAction( action ); } _removeInactiveBindingsForAction( action ) { const bindings = action._propertyBindings; for ( let i = 0, n = bindings.length; i !== n; ++ i ) { const binding = bindings[ i ]; if ( -- binding.referenceCount === 0 ) { this._removeInactiveBinding( binding ); } } } _lendAction( action ) { // [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s const actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions ++, firstInactiveAction = actions[ lastActiveIndex ]; action._cacheIndex = lastActiveIndex; actions[ lastActiveIndex ] = action; firstInactiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = firstInactiveAction; } _takeBackAction( action ) { // [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a const actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = -- this._nActiveActions, lastActiveAction = actions[ firstInactiveIndex ]; action._cacheIndex = firstInactiveIndex; actions[ firstInactiveIndex ] = action; lastActiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = lastActiveAction; } // Memory management for PropertyMixer objects _addInactiveBinding( binding, rootUuid, trackName ) { const bindingsByRoot = this._bindingsByRootAndName, bindings = this._bindings; let bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName === undefined ) { bindingByName = {}; bindingsByRoot[ rootUuid ] = bindingByName; } bindingByName[ trackName ] = binding; binding._cacheIndex = bindings.length; bindings.push( binding ); } _removeInactiveBinding( binding ) { const bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], lastInactiveBinding = bindings[ bindings.length - 1 ], cacheIndex = binding._cacheIndex; lastInactiveBinding._cacheIndex = cacheIndex; bindings[ cacheIndex ] = lastInactiveBinding; bindings.pop(); delete bindingByName[ trackName ]; if ( Object.keys( bindingByName ).length === 0 ) { delete bindingsByRoot[ rootUuid ]; } } _lendBinding( binding ) { const bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings ++, firstInactiveBinding = bindings[ lastActiveIndex ]; binding._cacheIndex = lastActiveIndex; bindings[ lastActiveIndex ] = binding; firstInactiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = firstInactiveBinding; } _takeBackBinding( binding ) { const bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = -- this._nActiveBindings, lastActiveBinding = bindings[ firstInactiveIndex ]; binding._cacheIndex = firstInactiveIndex; bindings[ firstInactiveIndex ] = binding; lastActiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = lastActiveBinding; } // Memory management of Interpolants for weight and time scale _lendControlInterpolant() { const interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants ++; let interpolant = interpolants[ lastActiveIndex ]; if ( interpolant === undefined ) { interpolant = new LinearInterpolant( new Float32Array( 2 ), new Float32Array( 2 ), 1, _controlInterpolantsResultBuffer ); interpolant.__cacheIndex = lastActiveIndex; interpolants[ lastActiveIndex ] = interpolant; } return interpolant; } _takeBackControlInterpolant( interpolant ) { const interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = -- this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[ firstInactiveIndex ]; interpolant.__cacheIndex = firstInactiveIndex; interpolants[ firstInactiveIndex ] = interpolant; lastActiveInterpolant.__cacheIndex = prevIndex; interpolants[ prevIndex ] = lastActiveInterpolant; } // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction( clip, optionalRoot, blendMode ) { const root = optionalRoot || this._root, rootUuid = root.uuid; let clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip; const clipUuid = clipObject !== null ? clipObject.uuid : clip; const actionsForClip = this._actionsByClip[ clipUuid ]; let prototypeAction = null; if ( blendMode === undefined ) { if ( clipObject !== null ) { blendMode = clipObject.blendMode; } else { blendMode = NormalAnimationBlendMode; } } if ( actionsForClip !== undefined ) { const existingAction = actionsForClip.actionByRoot[ rootUuid ]; if ( existingAction !== undefined && existingAction.blendMode === blendMode ) { return existingAction; } // we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[ 0 ]; // also, take the clip from the prototype action if ( clipObject === null ) clipObject = prototypeAction._clip; } // clip must be known when specified via string if ( clipObject === null ) return null; // allocate all resources required to run it const newAction = new AnimationAction( this, clipObject, optionalRoot, blendMode ); this._bindAction( newAction, prototypeAction ); // and make the action known to the memory manager this._addInactiveAction( newAction, clipUuid, rootUuid ); return newAction; } // get an existing action existingAction( clip, optionalRoot ) { const root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip, clipUuid = clipObject ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { return actionsForClip.actionByRoot[ rootUuid ] || null; } return null; } // deactivates all previously scheduled actions stopAllAction() { const actions = this._actions, nActions = this._nActiveActions; for ( let i = nActions - 1; i >= 0; -- i ) { actions[ i ].stop(); } return this; } // advance the time and update apply the animation update( deltaTime ) { deltaTime *= this.timeScale; const actions = this._actions, nActions = this._nActiveActions, time = this.time += deltaTime, timeDirection = Math.sign( deltaTime ), accuIndex = this._accuIndex ^= 1; // run active actions for ( let i = 0; i !== nActions; ++ i ) { const action = actions[ i ]; action._update( time, deltaTime, timeDirection, accuIndex ); } // update scene graph const bindings = this._bindings, nBindings = this._nActiveBindings; for ( let i = 0; i !== nBindings; ++ i ) { bindings[ i ].apply( accuIndex ); } return this; } // Allows you to seek to a specific time in an animation. setTime( timeInSeconds ) { this.time = 0; // Zero out time attribute for AnimationMixer object; for ( let i = 0; i < this._actions.length; i ++ ) { this._actions[ i ].time = 0; // Zero out time attribute for all associated AnimationAction objects. } return this.update( timeInSeconds ); // Update used to set exact time. Returns "this" AnimationMixer object. } // return this mixer's root target object getRoot() { return this._root; } // free all resources specific to a particular clip uncacheClip( clip ) { const actions = this._actions, clipUuid = clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { // note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away const actionsToRemove = actionsForClip.knownActions; for ( let i = 0, n = actionsToRemove.length; i !== n; ++ i ) { const action = actionsToRemove[ i ]; this._deactivateAction( action ); const cacheIndex = action._cacheIndex, lastInactiveAction = actions[ actions.length - 1 ]; action._cacheIndex = null; action._byClipCacheIndex = null; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); this._removeInactiveBindingsForAction( action ); } delete actionsByClip[ clipUuid ]; } } // free all resources specific to a particular root target object uncacheRoot( root ) { const rootUuid = root.uuid, actionsByClip = this._actionsByClip; for ( const clipUuid in actionsByClip ) { const actionByRoot = actionsByClip[ clipUuid ].actionByRoot, action = actionByRoot[ rootUuid ]; if ( action !== undefined ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } const bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName !== undefined ) { for ( const trackName in bindingByName ) { const binding = bindingByName[ trackName ]; binding.restoreOriginalState(); this._removeInactiveBinding( binding ); } } } // remove a targeted clip from the cache uncacheAction( clip, optionalRoot ) { const action = this.existingAction( clip, optionalRoot ); if ( action !== null ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } } class Raycaster { constructor( origin, direction, near = 0, far = Infinity ) { this.ray = new Ray( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations) this.near = near; this.far = far; this.camera = null; this.layers = new Layers(); this.params = { Mesh: {}, Line: { threshold: 1 }, LOD: {}, Points: { threshold: 1 }, Sprite: {} }; } set( origin, direction ) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set( origin, direction ); } setFromCamera( coords, camera ) { if ( camera.isPerspectiveCamera ) { this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize(); this.camera = camera; } else if ( camera.isOrthographicCamera ) { this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld ); this.camera = camera; } else { console.error( 'THREE.Raycaster: Unsupported camera type: ' + camera.type ); } } intersectObject( object, recursive = true, intersects = [] ) { intersectObject( object, this, intersects, recursive ); intersects.sort( ascSort ); return intersects; } intersectObjects( objects, recursive = true, intersects = [] ) { for ( let i = 0, l = objects.length; i < l; i ++ ) { intersectObject( objects[ i ], this, intersects, recursive ); } intersects.sort( ascSort ); return intersects; } } function ascSort( a, b ) { return a.distance - b.distance; } function intersectObject( object, raycaster, intersects, recursive ) { if ( object.layers.test( raycaster.layers ) ) { object.raycast( raycaster, intersects ); } if ( recursive === true ) { const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { intersectObject( children[ i ], raycaster, intersects, true ); } } } /** * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up. * The azimuthal angle (theta) is measured from the positive z-axis. */ class Spherical { constructor( radius = 1, phi = 0, theta = 0 ) { this.radius = radius; this.phi = phi; // polar angle this.theta = theta; // azimuthal angle return this; } set( radius, phi, theta ) { this.radius = radius; this.phi = phi; this.theta = theta; return this; } copy( other ) { this.radius = other.radius; this.phi = other.phi; this.theta = other.theta; return this; } // restrict phi to be between EPS and PI-EPS makeSafe() { const EPS = 0.000001; this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) ); return this; } setFromVector3( v ) { return this.setFromCartesianCoords( v.x, v.y, v.z ); } setFromCartesianCoords( x, y, z ) { this.radius = Math.sqrt( x * x + y * y + z * z ); if ( this.radius === 0 ) { this.theta = 0; this.phi = 0; } else { this.theta = Math.atan2( x, z ); this.phi = Math.acos( clamp$1( y / this.radius, - 1, 1 ) ); } return this; } clone() { return new this.constructor().copy( this ); } } class AxesHelper extends LineSegments { constructor( size = 1 ) { const vertices = [ 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size ]; const colors = [ 1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1 ]; const geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); super( geometry, material ); this.type = 'AxesHelper'; } setColors( xAxisColor, yAxisColor, zAxisColor ) { const color = new Color$2(); const array = this.geometry.attributes.color.array; color.set( xAxisColor ); color.toArray( array, 0 ); color.toArray( array, 3 ); color.set( yAxisColor ); color.toArray( array, 6 ); color.toArray( array, 9 ); color.set( zAxisColor ); color.toArray( array, 12 ); color.toArray( array, 15 ); this.geometry.attributes.color.needsUpdate = true; return this; } dispose() { this.geometry.dispose(); this.material.dispose(); } } // Fast Half Float Conversions, http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf const _tables = /*@__PURE__*/ _generateTables(); function _generateTables() { // float32 to float16 helpers const buffer = new ArrayBuffer( 4 ); const floatView = new Float32Array( buffer ); const uint32View = new Uint32Array( buffer ); const baseTable = new Uint32Array( 512 ); const shiftTable = new Uint32Array( 512 ); for ( let i = 0; i < 256; ++ i ) { const e = i - 127; // very small number (0, -0) if ( e < - 27 ) { baseTable[ i ] = 0x0000; baseTable[ i | 0x100 ] = 0x8000; shiftTable[ i ] = 24; shiftTable[ i | 0x100 ] = 24; // small number (denorm) } else if ( e < - 14 ) { baseTable[ i ] = 0x0400 >> ( - e - 14 ); baseTable[ i | 0x100 ] = ( 0x0400 >> ( - e - 14 ) ) | 0x8000; shiftTable[ i ] = - e - 1; shiftTable[ i | 0x100 ] = - e - 1; // normal number } else if ( e <= 15 ) { baseTable[ i ] = ( e + 15 ) << 10; baseTable[ i | 0x100 ] = ( ( e + 15 ) << 10 ) | 0x8000; shiftTable[ i ] = 13; shiftTable[ i | 0x100 ] = 13; // large number (Infinity, -Infinity) } else if ( e < 128 ) { baseTable[ i ] = 0x7c00; baseTable[ i | 0x100 ] = 0xfc00; shiftTable[ i ] = 24; shiftTable[ i | 0x100 ] = 24; // stay (NaN, Infinity, -Infinity) } else { baseTable[ i ] = 0x7c00; baseTable[ i | 0x100 ] = 0xfc00; shiftTable[ i ] = 13; shiftTable[ i | 0x100 ] = 13; } } // float16 to float32 helpers const mantissaTable = new Uint32Array( 2048 ); const exponentTable = new Uint32Array( 64 ); const offsetTable = new Uint32Array( 64 ); for ( let i = 1; i < 1024; ++ i ) { let m = i << 13; // zero pad mantissa bits let e = 0; // zero exponent // normalized while ( ( m & 0x00800000 ) === 0 ) { m <<= 1; e -= 0x00800000; // decrement exponent } m &= ~ 0x00800000; // clear leading 1 bit e += 0x38800000; // adjust bias mantissaTable[ i ] = m | e; } for ( let i = 1024; i < 2048; ++ i ) { mantissaTable[ i ] = 0x38000000 + ( ( i - 1024 ) << 13 ); } for ( let i = 1; i < 31; ++ i ) { exponentTable[ i ] = i << 23; } exponentTable[ 31 ] = 0x47800000; exponentTable[ 32 ] = 0x80000000; for ( let i = 33; i < 63; ++ i ) { exponentTable[ i ] = 0x80000000 + ( ( i - 32 ) << 23 ); } exponentTable[ 63 ] = 0xc7800000; for ( let i = 1; i < 64; ++ i ) { if ( i !== 32 ) { offsetTable[ i ] = 1024; } } return { floatView: floatView, uint32View: uint32View, baseTable: baseTable, shiftTable: shiftTable, mantissaTable: mantissaTable, exponentTable: exponentTable, offsetTable: offsetTable }; } // float32 to float16 function toHalfFloat( val ) { if ( Math.abs( val ) > 65504 ) console.warn( 'THREE.DataUtils.toHalfFloat(): Value out of range.' ); val = clamp$1( val, - 65504, 65504 ); _tables.floatView[ 0 ] = val; const f = _tables.uint32View[ 0 ]; const e = ( f >> 23 ) & 0x1ff; return _tables.baseTable[ e ] + ( ( f & 0x007fffff ) >> _tables.shiftTable[ e ] ); } // float16 to float32 function fromHalfFloat( val ) { const m = val >> 10; _tables.uint32View[ 0 ] = _tables.mantissaTable[ _tables.offsetTable[ m ] + ( val & 0x3ff ) ] + _tables.exponentTable[ m ]; return _tables.floatView[ 0 ]; } var DataUtils = /*#__PURE__*/Object.freeze({ __proto__: null, toHalfFloat: toHalfFloat, fromHalfFloat: fromHalfFloat }); if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: { revision: REVISION, } } ) ); } if ( typeof window !== 'undefined' ) { if ( window.__THREE__ ) { console.warn( 'WARNING: Multiple instances of Three.js being imported.' ); } else { window.__THREE__ = REVISION; } } // https://github.com/mrdoob/three.js/issues/5552 // http://en.wikipedia.org/wiki/RGBE_image_format class RGBELoader extends DataTextureLoader { constructor( manager ) { super( manager ); this.type = HalfFloatType; } // adapted from http://www.graphics.cornell.edu/~bjw/rgbe.html parse( buffer ) { const /* return codes for rgbe routines */ //RGBE_RETURN_SUCCESS = 0, RGBE_RETURN_FAILURE = - 1, /* default error routine. change this to change error handling */ rgbe_read_error = 1, rgbe_write_error = 2, rgbe_format_error = 3, rgbe_memory_error = 4, rgbe_error = function ( rgbe_error_code, msg ) { switch ( rgbe_error_code ) { case rgbe_read_error: console.error( 'THREE.RGBELoader Read Error: ' + ( msg || '' ) ); break; case rgbe_write_error: console.error( 'THREE.RGBELoader Write Error: ' + ( msg || '' ) ); break; case rgbe_format_error: console.error( 'THREE.RGBELoader Bad File Format: ' + ( msg || '' ) ); break; default: case rgbe_memory_error: console.error( 'THREE.RGBELoader: Error: ' + ( msg || '' ) ); } return RGBE_RETURN_FAILURE; }, /* offsets to red, green, and blue components in a data (float) pixel */ //RGBE_DATA_RED = 0, //RGBE_DATA_GREEN = 1, //RGBE_DATA_BLUE = 2, /* number of floats per pixel, use 4 since stored in rgba image format */ //RGBE_DATA_SIZE = 4, /* flags indicating which fields in an rgbe_header_info are valid */ RGBE_VALID_PROGRAMTYPE = 1, RGBE_VALID_FORMAT = 2, RGBE_VALID_DIMENSIONS = 4, NEWLINE = '\n', fgets = function ( buffer, lineLimit, consume ) { const chunkSize = 128; lineLimit = ! lineLimit ? 1024 : lineLimit; let p = buffer.pos, i = - 1, len = 0, s = '', chunk = String.fromCharCode.apply( null, new Uint16Array( buffer.subarray( p, p + chunkSize ) ) ); while ( ( 0 > ( i = chunk.indexOf( NEWLINE ) ) ) && ( len < lineLimit ) && ( p < buffer.byteLength ) ) { s += chunk; len += chunk.length; p += chunkSize; chunk += String.fromCharCode.apply( null, new Uint16Array( buffer.subarray( p, p + chunkSize ) ) ); } if ( - 1 < i ) { /*for (i=l-1; i>=0; i--) { byteCode = m.charCodeAt(i); if (byteCode > 0x7f && byteCode <= 0x7ff) byteLen++; else if (byteCode > 0x7ff && byteCode <= 0xffff) byteLen += 2; if (byteCode >= 0xDC00 && byteCode <= 0xDFFF) i--; //trail surrogate }*/ if ( false !== consume ) buffer.pos += len + i + 1; return s + chunk.slice( 0, i ); } return false; }, /* minimal header reading. modify if you want to parse more information */ RGBE_ReadHeader = function ( buffer ) { // regexes to parse header info fields const magic_token_re = /^#\?(\S+)/, gamma_re = /^\s*GAMMA\s*=\s*(\d+(\.\d+)?)\s*$/, exposure_re = /^\s*EXPOSURE\s*=\s*(\d+(\.\d+)?)\s*$/, format_re = /^\s*FORMAT=(\S+)\s*$/, dimensions_re = /^\s*\-Y\s+(\d+)\s+\+X\s+(\d+)\s*$/, // RGBE format header struct header = { valid: 0, /* indicate which fields are valid */ string: '', /* the actual header string */ comments: '', /* comments found in header */ programtype: 'RGBE', /* listed at beginning of file to identify it after "#?". defaults to "RGBE" */ format: '', /* RGBE format, default 32-bit_rle_rgbe */ gamma: 1.0, /* image has already been gamma corrected with given gamma. defaults to 1.0 (no correction) */ exposure: 1.0, /* a value of 1.0 in an image corresponds to watts/steradian/m^2. defaults to 1.0 */ width: 0, height: 0 /* image dimensions, width/height */ }; let line, match; if ( buffer.pos >= buffer.byteLength || ! ( line = fgets( buffer ) ) ) { return rgbe_error( rgbe_read_error, 'no header found' ); } /* if you want to require the magic token then uncomment the next line */ if ( ! ( match = line.match( magic_token_re ) ) ) { return rgbe_error( rgbe_format_error, 'bad initial token' ); } header.valid |= RGBE_VALID_PROGRAMTYPE; header.programtype = match[ 1 ]; header.string += line + '\n'; while ( true ) { line = fgets( buffer ); if ( false === line ) break; header.string += line + '\n'; if ( '#' === line.charAt( 0 ) ) { header.comments += line + '\n'; continue; // comment line } if ( match = line.match( gamma_re ) ) { header.gamma = parseFloat( match[ 1 ] ); } if ( match = line.match( exposure_re ) ) { header.exposure = parseFloat( match[ 1 ] ); } if ( match = line.match( format_re ) ) { header.valid |= RGBE_VALID_FORMAT; header.format = match[ 1 ];//'32-bit_rle_rgbe'; } if ( match = line.match( dimensions_re ) ) { header.valid |= RGBE_VALID_DIMENSIONS; header.height = parseInt( match[ 1 ], 10 ); header.width = parseInt( match[ 2 ], 10 ); } if ( ( header.valid & RGBE_VALID_FORMAT ) && ( header.valid & RGBE_VALID_DIMENSIONS ) ) break; } if ( ! ( header.valid & RGBE_VALID_FORMAT ) ) { return rgbe_error( rgbe_format_error, 'missing format specifier' ); } if ( ! ( header.valid & RGBE_VALID_DIMENSIONS ) ) { return rgbe_error( rgbe_format_error, 'missing image size specifier' ); } return header; }, RGBE_ReadPixels_RLE = function ( buffer, w, h ) { const scanline_width = w; if ( // run length encoding is not allowed so read flat ( ( scanline_width < 8 ) || ( scanline_width > 0x7fff ) ) || // this file is not run length encoded ( ( 2 !== buffer[ 0 ] ) || ( 2 !== buffer[ 1 ] ) || ( buffer[ 2 ] & 0x80 ) ) ) { // return the flat buffer return new Uint8Array( buffer ); } if ( scanline_width !== ( ( buffer[ 2 ] << 8 ) | buffer[ 3 ] ) ) { return rgbe_error( rgbe_format_error, 'wrong scanline width' ); } const data_rgba = new Uint8Array( 4 * w * h ); if ( ! data_rgba.length ) { return rgbe_error( rgbe_memory_error, 'unable to allocate buffer space' ); } let offset = 0, pos = 0; const ptr_end = 4 * scanline_width; const rgbeStart = new Uint8Array( 4 ); const scanline_buffer = new Uint8Array( ptr_end ); let num_scanlines = h; // read in each successive scanline while ( ( num_scanlines > 0 ) && ( pos < buffer.byteLength ) ) { if ( pos + 4 > buffer.byteLength ) { return rgbe_error( rgbe_read_error ); } rgbeStart[ 0 ] = buffer[ pos ++ ]; rgbeStart[ 1 ] = buffer[ pos ++ ]; rgbeStart[ 2 ] = buffer[ pos ++ ]; rgbeStart[ 3 ] = buffer[ pos ++ ]; if ( ( 2 != rgbeStart[ 0 ] ) || ( 2 != rgbeStart[ 1 ] ) || ( ( ( rgbeStart[ 2 ] << 8 ) | rgbeStart[ 3 ] ) != scanline_width ) ) { return rgbe_error( rgbe_format_error, 'bad rgbe scanline format' ); } // read each of the four channels for the scanline into the buffer // first red, then green, then blue, then exponent let ptr = 0, count; while ( ( ptr < ptr_end ) && ( pos < buffer.byteLength ) ) { count = buffer[ pos ++ ]; const isEncodedRun = count > 128; if ( isEncodedRun ) count -= 128; if ( ( 0 === count ) || ( ptr + count > ptr_end ) ) { return rgbe_error( rgbe_format_error, 'bad scanline data' ); } if ( isEncodedRun ) { // a (encoded) run of the same value const byteValue = buffer[ pos ++ ]; for ( let i = 0; i < count; i ++ ) { scanline_buffer[ ptr ++ ] = byteValue; } //ptr += count; } else { // a literal-run scanline_buffer.set( buffer.subarray( pos, pos + count ), ptr ); ptr += count; pos += count; } } // now convert data from buffer into rgba // first red, then green, then blue, then exponent (alpha) const l = scanline_width; //scanline_buffer.byteLength; for ( let i = 0; i < l; i ++ ) { let off = 0; data_rgba[ offset ] = scanline_buffer[ i + off ]; off += scanline_width; //1; data_rgba[ offset + 1 ] = scanline_buffer[ i + off ]; off += scanline_width; //1; data_rgba[ offset + 2 ] = scanline_buffer[ i + off ]; off += scanline_width; //1; data_rgba[ offset + 3 ] = scanline_buffer[ i + off ]; offset += 4; } num_scanlines --; } return data_rgba; }; const RGBEByteToRGBFloat = function ( sourceArray, sourceOffset, destArray, destOffset ) { const e = sourceArray[ sourceOffset + 3 ]; const scale = Math.pow( 2.0, e - 128.0 ) / 255.0; destArray[ destOffset + 0 ] = sourceArray[ sourceOffset + 0 ] * scale; destArray[ destOffset + 1 ] = sourceArray[ sourceOffset + 1 ] * scale; destArray[ destOffset + 2 ] = sourceArray[ sourceOffset + 2 ] * scale; destArray[ destOffset + 3 ] = 1; }; const RGBEByteToRGBHalf = function ( sourceArray, sourceOffset, destArray, destOffset ) { const e = sourceArray[ sourceOffset + 3 ]; const scale = Math.pow( 2.0, e - 128.0 ) / 255.0; // clamping to 65504, the maximum representable value in float16 destArray[ destOffset + 0 ] = DataUtils.toHalfFloat( Math.min( sourceArray[ sourceOffset + 0 ] * scale, 65504 ) ); destArray[ destOffset + 1 ] = DataUtils.toHalfFloat( Math.min( sourceArray[ sourceOffset + 1 ] * scale, 65504 ) ); destArray[ destOffset + 2 ] = DataUtils.toHalfFloat( Math.min( sourceArray[ sourceOffset + 2 ] * scale, 65504 ) ); destArray[ destOffset + 3 ] = DataUtils.toHalfFloat( 1 ); }; const byteArray = new Uint8Array( buffer ); byteArray.pos = 0; const rgbe_header_info = RGBE_ReadHeader( byteArray ); if ( RGBE_RETURN_FAILURE !== rgbe_header_info ) { const w = rgbe_header_info.width, h = rgbe_header_info.height, image_rgba_data = RGBE_ReadPixels_RLE( byteArray.subarray( byteArray.pos ), w, h ); if ( RGBE_RETURN_FAILURE !== image_rgba_data ) { let data, type; let numElements; switch ( this.type ) { case FloatType: numElements = image_rgba_data.length / 4; const floatArray = new Float32Array( numElements * 4 ); for ( let j = 0; j < numElements; j ++ ) { RGBEByteToRGBFloat( image_rgba_data, j * 4, floatArray, j * 4 ); } data = floatArray; type = FloatType; break; case HalfFloatType: numElements = image_rgba_data.length / 4; const halfArray = new Uint16Array( numElements * 4 ); for ( let j = 0; j < numElements; j ++ ) { RGBEByteToRGBHalf( image_rgba_data, j * 4, halfArray, j * 4 ); } data = halfArray; type = HalfFloatType; break; default: console.error( 'THREE.RGBELoader: unsupported type: ', this.type ); break; } return { width: w, height: h, data: data, header: rgbe_header_info.string, gamma: rgbe_header_info.gamma, exposure: rgbe_header_info.exposure, type: type }; } } return null; } setDataType( value ) { this.type = value; return this; } load( url, onLoad, onProgress, onError ) { function onLoadCallback( texture, texData ) { switch ( texture.type ) { case FloatType: case HalfFloatType: texture.encoding = LinearEncoding; texture.minFilter = LinearFilter; texture.magFilter = LinearFilter; texture.generateMipmaps = false; texture.flipY = true; break; } if ( onLoad ) onLoad( texture, texData ); } return super.load( url, onLoadCallback, onProgress, onError ); } } class HDRCubeTextureLoader extends Loader { constructor( manager ) { super( manager ); this.hdrLoader = new RGBELoader(); this.type = HalfFloatType; } load( urls, onLoad, onProgress, onError ) { if ( ! Array.isArray( urls ) ) { console.warn( 'THREE.HDRCubeTextureLoader signature has changed. Use .setDataType() instead.' ); this.setDataType( urls ); urls = onLoad; onLoad = onProgress; onProgress = onError; onError = arguments[ 4 ]; } const texture = new CubeTexture(); texture.type = this.type; switch ( texture.type ) { case FloatType: texture.encoding = LinearEncoding; texture.minFilter = LinearFilter; texture.magFilter = LinearFilter; texture.generateMipmaps = false; break; case HalfFloatType: texture.encoding = LinearEncoding; texture.minFilter = LinearFilter; texture.magFilter = LinearFilter; texture.generateMipmaps = false; break; } const scope = this; let loaded = 0; function loadHDRData( i, onLoad, onProgress, onError ) { new FileLoader( scope.manager ) .setPath( scope.path ) .setResponseType( 'arraybuffer' ) .setWithCredentials( scope.withCredentials ) .load( urls[ i ], function ( buffer ) { loaded ++; const texData = scope.hdrLoader.parse( buffer ); if ( ! texData ) return; if ( texData.data !== undefined ) { const dataTexture = new DataTexture( texData.data, texData.width, texData.height ); dataTexture.type = texture.type; dataTexture.encoding = texture.encoding; dataTexture.format = texture.format; dataTexture.minFilter = texture.minFilter; dataTexture.magFilter = texture.magFilter; dataTexture.generateMipmaps = texture.generateMipmaps; texture.images[ i ] = dataTexture; } if ( loaded === 6 ) { texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, onProgress, onError ); } for ( let i = 0; i < urls.length; i ++ ) { loadHDRData( i, onLoad, onProgress, onError ); } return texture; } setDataType( value ) { this.type = value; this.hdrLoader.setDataType( value ); return this; } } /** * Full-screen textured quad shader */ const CopyShader = { uniforms: { 'tDiffuse': { value: null }, 'opacity': { value: 1.0 } }, vertexShader: /* glsl */` varying vec2 vUv; void main() { vUv = uv; gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); }`, fragmentShader: /* glsl */` uniform float opacity; uniform sampler2D tDiffuse; varying vec2 vUv; void main() { gl_FragColor = texture2D( tDiffuse, vUv ); gl_FragColor.a *= opacity; }` }; class Pass { constructor() { // if set to true, the pass is processed by the composer this.enabled = true; // if set to true, the pass indicates to swap read and write buffer after rendering this.needsSwap = true; // if set to true, the pass clears its buffer before rendering this.clear = false; // if set to true, the result of the pass is rendered to screen. This is set automatically by EffectComposer. this.renderToScreen = false; } setSize( /* width, height */ ) {} render( /* renderer, writeBuffer, readBuffer, deltaTime, maskActive */ ) { console.error( 'THREE.Pass: .render() must be implemented in derived pass.' ); } } // Helper for passes that need to fill the viewport with a single quad. const _camera = new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); // https://github.com/mrdoob/three.js/pull/21358 const _geometry$1 = new BufferGeometry(); _geometry$1.setAttribute( 'position', new Float32BufferAttribute( [ - 1, 3, 0, - 1, - 1, 0, 3, - 1, 0 ], 3 ) ); _geometry$1.setAttribute( 'uv', new Float32BufferAttribute( [ 0, 2, 0, 0, 2, 0 ], 2 ) ); class FullScreenQuad { constructor( material ) { this._mesh = new Mesh( _geometry$1, material ); } dispose() { this._mesh.geometry.dispose(); } render( renderer ) { renderer.render( this._mesh, _camera ); } get material() { return this._mesh.material; } set material( value ) { this._mesh.material = value; } } class ShaderPass extends Pass { constructor( shader, textureID ) { super(); this.textureID = ( textureID !== undefined ) ? textureID : 'tDiffuse'; if ( shader instanceof ShaderMaterial ) { this.uniforms = shader.uniforms; this.material = shader; } else if ( shader ) { this.uniforms = UniformsUtils.clone( shader.uniforms ); this.material = new ShaderMaterial( { defines: Object.assign( {}, shader.defines ), uniforms: this.uniforms, vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader } ); } this.fsQuad = new FullScreenQuad( this.material ); } render( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) { if ( this.uniforms[ this.textureID ] ) { this.uniforms[ this.textureID ].value = readBuffer.texture; } this.fsQuad.material = this.material; if ( this.renderToScreen ) { renderer.setRenderTarget( null ); this.fsQuad.render( renderer ); } else { renderer.setRenderTarget( writeBuffer ); // TODO: Avoid using autoClear properties, see https://github.com/mrdoob/three.js/pull/15571#issuecomment-465669600 if ( this.clear ) renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); this.fsQuad.render( renderer ); } } } class MaskPass extends Pass { constructor( scene, camera ) { super(); this.scene = scene; this.camera = camera; this.clear = true; this.needsSwap = false; this.inverse = false; } render( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) { const context = renderer.getContext(); const state = renderer.state; // don't update color or depth state.buffers.color.setMask( false ); state.buffers.depth.setMask( false ); // lock buffers state.buffers.color.setLocked( true ); state.buffers.depth.setLocked( true ); // set up stencil let writeValue, clearValue; if ( this.inverse ) { writeValue = 0; clearValue = 1; } else { writeValue = 1; clearValue = 0; } state.buffers.stencil.setTest( true ); state.buffers.stencil.setOp( context.REPLACE, context.REPLACE, context.REPLACE ); state.buffers.stencil.setFunc( context.ALWAYS, writeValue, 0xffffffff ); state.buffers.stencil.setClear( clearValue ); state.buffers.stencil.setLocked( true ); // draw into the stencil buffer renderer.setRenderTarget( readBuffer ); if ( this.clear ) renderer.clear(); renderer.render( this.scene, this.camera ); renderer.setRenderTarget( writeBuffer ); if ( this.clear ) renderer.clear(); renderer.render( this.scene, this.camera ); // unlock color and depth buffer for subsequent rendering state.buffers.color.setLocked( false ); state.buffers.depth.setLocked( false ); // only render where stencil is set to 1 state.buffers.stencil.setLocked( false ); state.buffers.stencil.setFunc( context.EQUAL, 1, 0xffffffff ); // draw if == 1 state.buffers.stencil.setOp( context.KEEP, context.KEEP, context.KEEP ); state.buffers.stencil.setLocked( true ); } } class ClearMaskPass extends Pass { constructor() { super(); this.needsSwap = false; } render( renderer /*, writeBuffer, readBuffer, deltaTime, maskActive */ ) { renderer.state.buffers.stencil.setLocked( false ); renderer.state.buffers.stencil.setTest( false ); } } class EffectComposer { constructor( renderer, renderTarget ) { this.renderer = renderer; if ( renderTarget === undefined ) { const size = renderer.getSize( new Vector2() ); this._pixelRatio = renderer.getPixelRatio(); this._width = size.width; this._height = size.height; renderTarget = new WebGLRenderTarget( this._width * this._pixelRatio, this._height * this._pixelRatio ); renderTarget.texture.name = 'EffectComposer.rt1'; } else { this._pixelRatio = 1; this._width = renderTarget.width; this._height = renderTarget.height; } this.renderTarget1 = renderTarget; this.renderTarget2 = renderTarget.clone(); this.renderTarget2.texture.name = 'EffectComposer.rt2'; this.writeBuffer = this.renderTarget1; this.readBuffer = this.renderTarget2; this.renderToScreen = true; this.passes = []; // dependencies if ( CopyShader === undefined ) { console.error( 'THREE.EffectComposer relies on CopyShader' ); } if ( ShaderPass === undefined ) { console.error( 'THREE.EffectComposer relies on ShaderPass' ); } this.copyPass = new ShaderPass( CopyShader ); this.clock = new Clock(); } swapBuffers() { const tmp = this.readBuffer; this.readBuffer = this.writeBuffer; this.writeBuffer = tmp; } addPass( pass ) { this.passes.push( pass ); pass.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio ); } insertPass( pass, index ) { this.passes.splice( index, 0, pass ); pass.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio ); } removePass( pass ) { const index = this.passes.indexOf( pass ); if ( index !== - 1 ) { this.passes.splice( index, 1 ); } } isLastEnabledPass( passIndex ) { for ( let i = passIndex + 1; i < this.passes.length; i ++ ) { if ( this.passes[ i ].enabled ) { return false; } } return true; } render( deltaTime ) { // deltaTime value is in seconds if ( deltaTime === undefined ) { deltaTime = this.clock.getDelta(); } const currentRenderTarget = this.renderer.getRenderTarget(); let maskActive = false; for ( let i = 0, il = this.passes.length; i < il; i ++ ) { const pass = this.passes[ i ]; if ( pass.enabled === false ) continue; pass.renderToScreen = ( this.renderToScreen && this.isLastEnabledPass( i ) ); pass.render( this.renderer, this.writeBuffer, this.readBuffer, deltaTime, maskActive ); if ( pass.needsSwap ) { if ( maskActive ) { const context = this.renderer.getContext(); const stencil = this.renderer.state.buffers.stencil; //context.stencilFunc( context.NOTEQUAL, 1, 0xffffffff ); stencil.setFunc( context.NOTEQUAL, 1, 0xffffffff ); this.copyPass.render( this.renderer, this.writeBuffer, this.readBuffer, deltaTime ); //context.stencilFunc( context.EQUAL, 1, 0xffffffff ); stencil.setFunc( context.EQUAL, 1, 0xffffffff ); } this.swapBuffers(); } if ( MaskPass !== undefined ) { if ( pass instanceof MaskPass ) { maskActive = true; } else if ( pass instanceof ClearMaskPass ) { maskActive = false; } } } this.renderer.setRenderTarget( currentRenderTarget ); } reset( renderTarget ) { if ( renderTarget === undefined ) { const size = this.renderer.getSize( new Vector2() ); this._pixelRatio = this.renderer.getPixelRatio(); this._width = size.width; this._height = size.height; renderTarget = this.renderTarget1.clone(); renderTarget.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio ); } this.renderTarget1.dispose(); this.renderTarget2.dispose(); this.renderTarget1 = renderTarget; this.renderTarget2 = renderTarget.clone(); this.writeBuffer = this.renderTarget1; this.readBuffer = this.renderTarget2; } setSize( width, height ) { this._width = width; this._height = height; const effectiveWidth = this._width * this._pixelRatio; const effectiveHeight = this._height * this._pixelRatio; this.renderTarget1.setSize( effectiveWidth, effectiveHeight ); this.renderTarget2.setSize( effectiveWidth, effectiveHeight ); for ( let i = 0; i < this.passes.length; i ++ ) { this.passes[ i ].setSize( effectiveWidth, effectiveHeight ); } } setPixelRatio( pixelRatio ) { this._pixelRatio = pixelRatio; this.setSize( this._width, this._height ); } } // Helper for passes that need to fill the viewport with a single quad. new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); // https://github.com/mrdoob/three.js/pull/21358 const _geometry = new BufferGeometry(); _geometry.setAttribute( 'position', new Float32BufferAttribute( [ - 1, 3, 0, - 1, - 1, 0, 3, - 1, 0 ], 3 ) ); _geometry.setAttribute( 'uv', new Float32BufferAttribute( [ 0, 2, 0, 0, 2, 0 ], 2 ) ); class GLTFLoader extends Loader { constructor( manager ) { super( manager ); this.dracoLoader = null; this.ktx2Loader = null; this.meshoptDecoder = null; this.pluginCallbacks = []; this.register( function ( parser ) { return new GLTFMaterialsClearcoatExtension( parser ); } ); this.register( function ( parser ) { return new GLTFTextureBasisUExtension( parser ); } ); this.register( function ( parser ) { return new GLTFTextureWebPExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsSheenExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsTransmissionExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsVolumeExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsIorExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsEmissiveStrengthExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsSpecularExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMaterialsIridescenceExtension( parser ); } ); this.register( function ( parser ) { return new GLTFLightsExtension( parser ); } ); this.register( function ( parser ) { return new GLTFMeshoptCompression( parser ); } ); } load( url, onLoad, onProgress, onError ) { const scope = this; let resourcePath; if ( this.resourcePath !== '' ) { resourcePath = this.resourcePath; } else if ( this.path !== '' ) { resourcePath = this.path; } else { resourcePath = LoaderUtils.extractUrlBase( url ); } // Tells the LoadingManager to track an extra item, which resolves after // the model is fully loaded. This means the count of items loaded will // be incorrect, but ensures manager.onLoad() does not fire early. this.manager.itemStart( url ); const _onError = function ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); scope.manager.itemEnd( url ); }; const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( data ) { try { scope.parse( data, resourcePath, function ( gltf ) { onLoad( gltf ); scope.manager.itemEnd( url ); }, _onError ); } catch ( e ) { _onError( e ); } }, onProgress, _onError ); } setDRACOLoader( dracoLoader ) { this.dracoLoader = dracoLoader; return this; } setDDSLoader() { throw new Error( 'THREE.GLTFLoader: "MSFT_texture_dds" no longer supported. Please update to "KHR_texture_basisu".' ); } setKTX2Loader( ktx2Loader ) { this.ktx2Loader = ktx2Loader; return this; } setMeshoptDecoder( meshoptDecoder ) { this.meshoptDecoder = meshoptDecoder; return this; } register( callback ) { if ( this.pluginCallbacks.indexOf( callback ) === - 1 ) { this.pluginCallbacks.push( callback ); } return this; } unregister( callback ) { if ( this.pluginCallbacks.indexOf( callback ) !== - 1 ) { this.pluginCallbacks.splice( this.pluginCallbacks.indexOf( callback ), 1 ); } return this; } parse( data, path, onLoad, onError ) { let content; const extensions = {}; const plugins = {}; if ( typeof data === 'string' ) { content = data; } else { const magic = LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) ); if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) { try { extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data ); } catch ( error ) { if ( onError ) onError( error ); return; } content = extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content; } else { content = LoaderUtils.decodeText( new Uint8Array( data ) ); } } const json = JSON.parse( content ); if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) { if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) ); return; } const parser = new GLTFParser( json, { path: path || this.resourcePath || '', crossOrigin: this.crossOrigin, requestHeader: this.requestHeader, manager: this.manager, ktx2Loader: this.ktx2Loader, meshoptDecoder: this.meshoptDecoder } ); parser.fileLoader.setRequestHeader( this.requestHeader ); for ( let i = 0; i < this.pluginCallbacks.length; i ++ ) { const plugin = this.pluginCallbacks[ i ]( parser ); plugins[ plugin.name ] = plugin; // Workaround to avoid determining as unknown extension // in addUnknownExtensionsToUserData(). // Remove this workaround if we move all the existing // extension handlers to plugin system extensions[ plugin.name ] = true; } if ( json.extensionsUsed ) { for ( let i = 0; i < json.extensionsUsed.length; ++ i ) { const extensionName = json.extensionsUsed[ i ]; const extensionsRequired = json.extensionsRequired || []; switch ( extensionName ) { case EXTENSIONS.KHR_MATERIALS_UNLIT: extensions[ extensionName ] = new GLTFMaterialsUnlitExtension(); break; case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension(); break; case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION: extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader ); break; case EXTENSIONS.KHR_TEXTURE_TRANSFORM: extensions[ extensionName ] = new GLTFTextureTransformExtension(); break; case EXTENSIONS.KHR_MESH_QUANTIZATION: extensions[ extensionName ] = new GLTFMeshQuantizationExtension(); break; default: if ( extensionsRequired.indexOf( extensionName ) >= 0 && plugins[ extensionName ] === undefined ) { console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' ); } } } } parser.setExtensions( extensions ); parser.setPlugins( plugins ); parser.parse( onLoad, onError ); } parseAsync( data, path ) { const scope = this; return new Promise( function ( resolve, reject ) { scope.parse( data, path, resolve, reject ); } ); } } /* GLTFREGISTRY */ function GLTFRegistry() { let objects = {}; return { get: function ( key ) { return objects[ key ]; }, add: function ( key, object ) { objects[ key ] = object; }, remove: function ( key ) { delete objects[ key ]; }, removeAll: function () { objects = {}; } }; } /*********************************/ /********** EXTENSIONS ***********/ /*********************************/ const EXTENSIONS = { KHR_BINARY_GLTF: 'KHR_binary_glTF', KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression', KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual', KHR_MATERIALS_CLEARCOAT: 'KHR_materials_clearcoat', KHR_MATERIALS_IOR: 'KHR_materials_ior', KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness', KHR_MATERIALS_SHEEN: 'KHR_materials_sheen', KHR_MATERIALS_SPECULAR: 'KHR_materials_specular', KHR_MATERIALS_TRANSMISSION: 'KHR_materials_transmission', KHR_MATERIALS_IRIDESCENCE: 'KHR_materials_iridescence', KHR_MATERIALS_UNLIT: 'KHR_materials_unlit', KHR_MATERIALS_VOLUME: 'KHR_materials_volume', KHR_TEXTURE_BASISU: 'KHR_texture_basisu', KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform', KHR_MESH_QUANTIZATION: 'KHR_mesh_quantization', KHR_MATERIALS_EMISSIVE_STRENGTH: 'KHR_materials_emissive_strength', EXT_TEXTURE_WEBP: 'EXT_texture_webp', EXT_MESHOPT_COMPRESSION: 'EXT_meshopt_compression' }; /** * Punctual Lights Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual */ class GLTFLightsExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL; // Object3D instance caches this.cache = { refs: {}, uses: {} }; } _markDefs() { const parser = this.parser; const nodeDefs = this.parser.json.nodes || []; for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) { const nodeDef = nodeDefs[ nodeIndex ]; if ( nodeDef.extensions && nodeDef.extensions[ this.name ] && nodeDef.extensions[ this.name ].light !== undefined ) { parser._addNodeRef( this.cache, nodeDef.extensions[ this.name ].light ); } } } _loadLight( lightIndex ) { const parser = this.parser; const cacheKey = 'light:' + lightIndex; let dependency = parser.cache.get( cacheKey ); if ( dependency ) return dependency; const json = parser.json; const extensions = ( json.extensions && json.extensions[ this.name ] ) || {}; const lightDefs = extensions.lights || []; const lightDef = lightDefs[ lightIndex ]; let lightNode; const color = new Color$2( 0xffffff ); if ( lightDef.color !== undefined ) color.fromArray( lightDef.color ); const range = lightDef.range !== undefined ? lightDef.range : 0; switch ( lightDef.type ) { case 'directional': lightNode = new DirectionalLight( color ); lightNode.target.position.set( 0, 0, - 1 ); lightNode.add( lightNode.target ); break; case 'point': lightNode = new PointLight( color ); lightNode.distance = range; break; case 'spot': lightNode = new SpotLight( color ); lightNode.distance = range; // Handle spotlight properties. lightDef.spot = lightDef.spot || {}; lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0; lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0; lightNode.angle = lightDef.spot.outerConeAngle; lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle; lightNode.target.position.set( 0, 0, - 1 ); lightNode.add( lightNode.target ); break; default: throw new Error( 'THREE.GLTFLoader: Unexpected light type: ' + lightDef.type ); } // Some lights (e.g. spot) default to a position other than the origin. Reset the position // here, because node-level parsing will only override position if explicitly specified. lightNode.position.set( 0, 0, 0 ); lightNode.decay = 2; if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity; lightNode.name = parser.createUniqueName( lightDef.name || ( 'light_' + lightIndex ) ); dependency = Promise.resolve( lightNode ); parser.cache.add( cacheKey, dependency ); return dependency; } createNodeAttachment( nodeIndex ) { const self = this; const parser = this.parser; const json = parser.json; const nodeDef = json.nodes[ nodeIndex ]; const lightDef = ( nodeDef.extensions && nodeDef.extensions[ this.name ] ) || {}; const lightIndex = lightDef.light; if ( lightIndex === undefined ) return null; return this._loadLight( lightIndex ).then( function ( light ) { return parser._getNodeRef( self.cache, lightIndex, light ); } ); } } /** * Unlit Materials Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit */ class GLTFMaterialsUnlitExtension { constructor() { this.name = EXTENSIONS.KHR_MATERIALS_UNLIT; } getMaterialType() { return MeshBasicMaterial; } extendParams( materialParams, materialDef, parser ) { const pending = []; materialParams.color = new Color$2( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0; const metallicRoughness = materialDef.pbrMetallicRoughness; if ( metallicRoughness ) { if ( Array.isArray( metallicRoughness.baseColorFactor ) ) { const array = metallicRoughness.baseColorFactor; materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ]; } if ( metallicRoughness.baseColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, sRGBEncoding ) ); } } return Promise.all( pending ); } } /** * Materials Emissive Strength Extension * * Specification: https://github.com/KhronosGroup/glTF/blob/5768b3ce0ef32bc39cdf1bef10b948586635ead3/extensions/2.0/Khronos/KHR_materials_emissive_strength/README.md */ class GLTFMaterialsEmissiveStrengthExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_EMISSIVE_STRENGTH; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const emissiveStrength = materialDef.extensions[ this.name ].emissiveStrength; if ( emissiveStrength !== undefined ) { materialParams.emissiveIntensity = emissiveStrength; } return Promise.resolve(); } } /** * Clearcoat Materials Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat */ class GLTFMaterialsClearcoatExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; if ( extension.clearcoatFactor !== undefined ) { materialParams.clearcoat = extension.clearcoatFactor; } if ( extension.clearcoatTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) ); } if ( extension.clearcoatRoughnessFactor !== undefined ) { materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor; } if ( extension.clearcoatRoughnessTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) ); } if ( extension.clearcoatNormalTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) ); if ( extension.clearcoatNormalTexture.scale !== undefined ) { const scale = extension.clearcoatNormalTexture.scale; materialParams.clearcoatNormalScale = new Vector2( scale, scale ); } } return Promise.all( pending ); } } /** * Iridescence Materials Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_iridescence */ class GLTFMaterialsIridescenceExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_IRIDESCENCE; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; if ( extension.iridescenceFactor !== undefined ) { materialParams.iridescence = extension.iridescenceFactor; } if ( extension.iridescenceTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'iridescenceMap', extension.iridescenceTexture ) ); } if ( extension.iridescenceIor !== undefined ) { materialParams.iridescenceIOR = extension.iridescenceIor; } if ( materialParams.iridescenceThicknessRange === undefined ) { materialParams.iridescenceThicknessRange = [ 100, 400 ]; } if ( extension.iridescenceThicknessMinimum !== undefined ) { materialParams.iridescenceThicknessRange[ 0 ] = extension.iridescenceThicknessMinimum; } if ( extension.iridescenceThicknessMaximum !== undefined ) { materialParams.iridescenceThicknessRange[ 1 ] = extension.iridescenceThicknessMaximum; } if ( extension.iridescenceThicknessTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'iridescenceThicknessMap', extension.iridescenceThicknessTexture ) ); } return Promise.all( pending ); } } /** * Sheen Materials Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_sheen */ class GLTFMaterialsSheenExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_SHEEN; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; materialParams.sheenColor = new Color$2( 0, 0, 0 ); materialParams.sheenRoughness = 0; materialParams.sheen = 1; const extension = materialDef.extensions[ this.name ]; if ( extension.sheenColorFactor !== undefined ) { materialParams.sheenColor.fromArray( extension.sheenColorFactor ); } if ( extension.sheenRoughnessFactor !== undefined ) { materialParams.sheenRoughness = extension.sheenRoughnessFactor; } if ( extension.sheenColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'sheenColorMap', extension.sheenColorTexture, sRGBEncoding ) ); } if ( extension.sheenRoughnessTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'sheenRoughnessMap', extension.sheenRoughnessTexture ) ); } return Promise.all( pending ); } } /** * Transmission Materials Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_transmission * Draft: https://github.com/KhronosGroup/glTF/pull/1698 */ class GLTFMaterialsTransmissionExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; if ( extension.transmissionFactor !== undefined ) { materialParams.transmission = extension.transmissionFactor; } if ( extension.transmissionTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'transmissionMap', extension.transmissionTexture ) ); } return Promise.all( pending ); } } /** * Materials Volume Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_volume */ class GLTFMaterialsVolumeExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_VOLUME; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; materialParams.thickness = extension.thicknessFactor !== undefined ? extension.thicknessFactor : 0; if ( extension.thicknessTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'thicknessMap', extension.thicknessTexture ) ); } materialParams.attenuationDistance = extension.attenuationDistance || 0; const colorArray = extension.attenuationColor || [ 1, 1, 1 ]; materialParams.attenuationColor = new Color$2( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ] ); return Promise.all( pending ); } } /** * Materials ior Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_ior */ class GLTFMaterialsIorExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_IOR; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const extension = materialDef.extensions[ this.name ]; materialParams.ior = extension.ior !== undefined ? extension.ior : 1.5; return Promise.resolve(); } } /** * Materials specular Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_specular */ class GLTFMaterialsSpecularExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_SPECULAR; } getMaterialType( materialIndex ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; return MeshPhysicalMaterial; } extendMaterialParams( materialIndex, materialParams ) { const parser = this.parser; const materialDef = parser.json.materials[ materialIndex ]; if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[ this.name ]; materialParams.specularIntensity = extension.specularFactor !== undefined ? extension.specularFactor : 1.0; if ( extension.specularTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'specularIntensityMap', extension.specularTexture ) ); } const colorArray = extension.specularColorFactor || [ 1, 1, 1 ]; materialParams.specularColor = new Color$2( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ] ); if ( extension.specularColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'specularColorMap', extension.specularColorTexture, sRGBEncoding ) ); } return Promise.all( pending ); } } /** * BasisU Texture Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_basisu */ class GLTFTextureBasisUExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.KHR_TEXTURE_BASISU; } loadTexture( textureIndex ) { const parser = this.parser; const json = parser.json; const textureDef = json.textures[ textureIndex ]; if ( ! textureDef.extensions || ! textureDef.extensions[ this.name ] ) { return null; } const extension = textureDef.extensions[ this.name ]; const loader = parser.options.ktx2Loader; if ( ! loader ) { if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) { throw new Error( 'THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures' ); } else { // Assumes that the extension is optional and that a fallback texture is present return null; } } return parser.loadTextureImage( textureIndex, extension.source, loader ); } } /** * WebP Texture Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_texture_webp */ class GLTFTextureWebPExtension { constructor( parser ) { this.parser = parser; this.name = EXTENSIONS.EXT_TEXTURE_WEBP; this.isSupported = null; } loadTexture( textureIndex ) { const name = this.name; const parser = this.parser; const json = parser.json; const textureDef = json.textures[ textureIndex ]; if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) { return null; } const extension = textureDef.extensions[ name ]; const source = json.images[ extension.source ]; let loader = parser.textureLoader; if ( source.uri ) { const handler = parser.options.manager.getHandler( source.uri ); if ( handler !== null ) loader = handler; } return this.detectSupport().then( function ( isSupported ) { if ( isSupported ) return parser.loadTextureImage( textureIndex, extension.source, loader ); if ( json.extensionsRequired && json.extensionsRequired.indexOf( name ) >= 0 ) { throw new Error( 'THREE.GLTFLoader: WebP required by asset but unsupported.' ); } // Fall back to PNG or JPEG. return parser.loadTexture( textureIndex ); } ); } detectSupport() { if ( ! this.isSupported ) { this.isSupported = new Promise( function ( resolve ) { const image = new Image(); // Lossy test image. Support for lossy images doesn't guarantee support for all // WebP images, unfortunately. image.src = ''; image.onload = image.onerror = function () { resolve( image.height === 1 ); }; } ); } return this.isSupported; } } /** * meshopt BufferView Compression Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_meshopt_compression */ class GLTFMeshoptCompression { constructor( parser ) { this.name = EXTENSIONS.EXT_MESHOPT_COMPRESSION; this.parser = parser; } loadBufferView( index ) { const json = this.parser.json; const bufferView = json.bufferViews[ index ]; if ( bufferView.extensions && bufferView.extensions[ this.name ] ) { const extensionDef = bufferView.extensions[ this.name ]; const buffer = this.parser.getDependency( 'buffer', extensionDef.buffer ); const decoder = this.parser.options.meshoptDecoder; if ( ! decoder || ! decoder.supported ) { if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) { throw new Error( 'THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files' ); } else { // Assumes that the extension is optional and that fallback buffer data is present return null; } } return Promise.all( [ buffer, decoder.ready ] ).then( function ( res ) { const byteOffset = extensionDef.byteOffset || 0; const byteLength = extensionDef.byteLength || 0; const count = extensionDef.count; const stride = extensionDef.byteStride; const result = new ArrayBuffer( count * stride ); const source = new Uint8Array( res[ 0 ], byteOffset, byteLength ); decoder.decodeGltfBuffer( new Uint8Array( result ), count, stride, source, extensionDef.mode, extensionDef.filter ); return result; } ); } else { return null; } } } /* BINARY EXTENSION */ const BINARY_EXTENSION_HEADER_MAGIC = 'glTF'; const BINARY_EXTENSION_HEADER_LENGTH = 12; const BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 }; class GLTFBinaryExtension { constructor( data ) { this.name = EXTENSIONS.KHR_BINARY_GLTF; this.content = null; this.body = null; const headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH ); this.header = { magic: LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ), version: headerView.getUint32( 4, true ), length: headerView.getUint32( 8, true ) }; if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) { throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' ); } else if ( this.header.version < 2.0 ) { throw new Error( 'THREE.GLTFLoader: Legacy binary file detected.' ); } const chunkContentsLength = this.header.length - BINARY_EXTENSION_HEADER_LENGTH; const chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH ); let chunkIndex = 0; while ( chunkIndex < chunkContentsLength ) { const chunkLength = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4; const chunkType = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4; if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) { const contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength ); this.content = LoaderUtils.decodeText( contentArray ); } else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) { const byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; this.body = data.slice( byteOffset, byteOffset + chunkLength ); } // Clients must ignore chunks with unknown types. chunkIndex += chunkLength; } if ( this.content === null ) { throw new Error( 'THREE.GLTFLoader: JSON content not found.' ); } } } /** * DRACO Mesh Compression Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression */ class GLTFDracoMeshCompressionExtension { constructor( json, dracoLoader ) { if ( ! dracoLoader ) { throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' ); } this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; this.json = json; this.dracoLoader = dracoLoader; this.dracoLoader.preload(); } decodePrimitive( primitive, parser ) { const json = this.json; const dracoLoader = this.dracoLoader; const bufferViewIndex = primitive.extensions[ this.name ].bufferView; const gltfAttributeMap = primitive.extensions[ this.name ].attributes; const threeAttributeMap = {}; const attributeNormalizedMap = {}; const attributeTypeMap = {}; for ( const attributeName in gltfAttributeMap ) { const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase(); threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ]; } for ( const attributeName in primitive.attributes ) { const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase(); if ( gltfAttributeMap[ attributeName ] !== undefined ) { const accessorDef = json.accessors[ primitive.attributes[ attributeName ] ]; const componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; attributeTypeMap[ threeAttributeName ] = componentType; attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true; } } return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) { return new Promise( function ( resolve ) { dracoLoader.decodeDracoFile( bufferView, function ( geometry ) { for ( const attributeName in geometry.attributes ) { const attribute = geometry.attributes[ attributeName ]; const normalized = attributeNormalizedMap[ attributeName ]; if ( normalized !== undefined ) attribute.normalized = normalized; } resolve( geometry ); }, threeAttributeMap, attributeTypeMap ); } ); } ); } } /** * Texture Transform Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_transform */ class GLTFTextureTransformExtension { constructor() { this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM; } extendTexture( texture, transform ) { if ( transform.texCoord !== undefined ) { console.warn( 'THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.' ); } if ( transform.offset === undefined && transform.rotation === undefined && transform.scale === undefined ) { // See https://github.com/mrdoob/three.js/issues/21819. return texture; } texture = texture.clone(); if ( transform.offset !== undefined ) { texture.offset.fromArray( transform.offset ); } if ( transform.rotation !== undefined ) { texture.rotation = transform.rotation; } if ( transform.scale !== undefined ) { texture.repeat.fromArray( transform.scale ); } texture.needsUpdate = true; return texture; } } /** * Specular-Glossiness Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Archived/KHR_materials_pbrSpecularGlossiness */ /** * A sub class of StandardMaterial with some of the functionality * changed via the `onBeforeCompile` callback * @pailhead */ class GLTFMeshStandardSGMaterial extends MeshStandardMaterial { constructor( params ) { super(); this.isGLTFSpecularGlossinessMaterial = true; //various chunks that need replacing const specularMapParsFragmentChunk = [ '#ifdef USE_SPECULARMAP', ' uniform sampler2D specularMap;', '#endif' ].join( '\n' ); const glossinessMapParsFragmentChunk = [ '#ifdef USE_GLOSSINESSMAP', ' uniform sampler2D glossinessMap;', '#endif' ].join( '\n' ); const specularMapFragmentChunk = [ 'vec3 specularFactor = specular;', '#ifdef USE_SPECULARMAP', ' vec4 texelSpecular = texture2D( specularMap, vUv );', ' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture', ' specularFactor *= texelSpecular.rgb;', '#endif' ].join( '\n' ); const glossinessMapFragmentChunk = [ 'float glossinessFactor = glossiness;', '#ifdef USE_GLOSSINESSMAP', ' vec4 texelGlossiness = texture2D( glossinessMap, vUv );', ' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture', ' glossinessFactor *= texelGlossiness.a;', '#endif' ].join( '\n' ); const lightPhysicalFragmentChunk = [ 'PhysicalMaterial material;', 'material.diffuseColor = diffuseColor.rgb * ( 1. - max( specularFactor.r, max( specularFactor.g, specularFactor.b ) ) );', 'vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );', 'float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );', 'material.roughness = max( 1.0 - glossinessFactor, 0.0525 ); // 0.0525 corresponds to the base mip of a 256 cubemap.', 'material.roughness += geometryRoughness;', 'material.roughness = min( material.roughness, 1.0 );', 'material.specularColor = specularFactor;', ].join( '\n' ); const uniforms = { specular: { value: new Color$2().setHex( 0xffffff ) }, glossiness: { value: 1 }, specularMap: { value: null }, glossinessMap: { value: null } }; this._extraUniforms = uniforms; this.onBeforeCompile = function ( shader ) { for ( const uniformName in uniforms ) { shader.uniforms[ uniformName ] = uniforms[ uniformName ]; } shader.fragmentShader = shader.fragmentShader .replace( 'uniform float roughness;', 'uniform vec3 specular;' ) .replace( 'uniform float metalness;', 'uniform float glossiness;' ) .replace( '#include ', specularMapParsFragmentChunk ) .replace( '#include ', glossinessMapParsFragmentChunk ) .replace( '#include ', specularMapFragmentChunk ) .replace( '#include ', glossinessMapFragmentChunk ) .replace( '#include ', lightPhysicalFragmentChunk ); }; Object.defineProperties( this, { specular: { get: function () { return uniforms.specular.value; }, set: function ( v ) { uniforms.specular.value = v; } }, specularMap: { get: function () { return uniforms.specularMap.value; }, set: function ( v ) { uniforms.specularMap.value = v; if ( v ) { this.defines.USE_SPECULARMAP = ''; // USE_UV is set by the renderer for specular maps } else { delete this.defines.USE_SPECULARMAP; } } }, glossiness: { get: function () { return uniforms.glossiness.value; }, set: function ( v ) { uniforms.glossiness.value = v; } }, glossinessMap: { get: function () { return uniforms.glossinessMap.value; }, set: function ( v ) { uniforms.glossinessMap.value = v; if ( v ) { this.defines.USE_GLOSSINESSMAP = ''; this.defines.USE_UV = ''; } else { delete this.defines.USE_GLOSSINESSMAP; delete this.defines.USE_UV; } } } } ); delete this.metalness; delete this.roughness; delete this.metalnessMap; delete this.roughnessMap; this.setValues( params ); } copy( source ) { super.copy( source ); this.specularMap = source.specularMap; this.specular.copy( source.specular ); this.glossinessMap = source.glossinessMap; this.glossiness = source.glossiness; delete this.metalness; delete this.roughness; delete this.metalnessMap; delete this.roughnessMap; return this; } } class GLTFMaterialsPbrSpecularGlossinessExtension { constructor() { this.name = EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS; this.specularGlossinessParams = [ 'color', 'map', 'lightMap', 'lightMapIntensity', 'aoMap', 'aoMapIntensity', 'emissive', 'emissiveIntensity', 'emissiveMap', 'bumpMap', 'bumpScale', 'normalMap', 'normalMapType', 'displacementMap', 'displacementScale', 'displacementBias', 'specularMap', 'specular', 'glossinessMap', 'glossiness', 'alphaMap', 'envMap', 'envMapIntensity' ]; } getMaterialType() { return GLTFMeshStandardSGMaterial; } extendParams( materialParams, materialDef, parser ) { const pbrSpecularGlossiness = materialDef.extensions[ this.name ]; materialParams.color = new Color$2( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0; const pending = []; if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) { const array = pbrSpecularGlossiness.diffuseFactor; materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ]; } if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'map', pbrSpecularGlossiness.diffuseTexture, sRGBEncoding ) ); } materialParams.emissive = new Color$2( 0.0, 0.0, 0.0 ); materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0; materialParams.specular = new Color$2( 1.0, 1.0, 1.0 ); if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) { materialParams.specular.fromArray( pbrSpecularGlossiness.specularFactor ); } if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) { const specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture; pending.push( parser.assignTexture( materialParams, 'glossinessMap', specGlossMapDef ) ); pending.push( parser.assignTexture( materialParams, 'specularMap', specGlossMapDef, sRGBEncoding ) ); } return Promise.all( pending ); } createMaterial( materialParams ) { const material = new GLTFMeshStandardSGMaterial( materialParams ); material.fog = true; material.color = materialParams.color; material.map = materialParams.map === undefined ? null : materialParams.map; material.lightMap = null; material.lightMapIntensity = 1.0; material.aoMap = materialParams.aoMap === undefined ? null : materialParams.aoMap; material.aoMapIntensity = 1.0; material.emissive = materialParams.emissive; material.emissiveIntensity = materialParams.emissiveIntensity === undefined ? 1.0 : materialParams.emissiveIntensity; material.emissiveMap = materialParams.emissiveMap === undefined ? null : materialParams.emissiveMap; material.bumpMap = materialParams.bumpMap === undefined ? null : materialParams.bumpMap; material.bumpScale = 1; material.normalMap = materialParams.normalMap === undefined ? null : materialParams.normalMap; material.normalMapType = TangentSpaceNormalMap; if ( materialParams.normalScale ) material.normalScale = materialParams.normalScale; material.displacementMap = null; material.displacementScale = 1; material.displacementBias = 0; material.specularMap = materialParams.specularMap === undefined ? null : materialParams.specularMap; material.specular = materialParams.specular; material.glossinessMap = materialParams.glossinessMap === undefined ? null : materialParams.glossinessMap; material.glossiness = materialParams.glossiness; material.alphaMap = null; material.envMap = materialParams.envMap === undefined ? null : materialParams.envMap; material.envMapIntensity = 1.0; return material; } } /** * Mesh Quantization Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization */ class GLTFMeshQuantizationExtension { constructor() { this.name = EXTENSIONS.KHR_MESH_QUANTIZATION; } } /*********************************/ /********** INTERPOLATION ********/ /*********************************/ // Spline Interpolation // Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation class GLTFCubicSplineInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); } copySampleValue_( index ) { // Copies a sample value to the result buffer. See description of glTF // CUBICSPLINE values layout in interpolate_() function below. const result = this.resultBuffer, values = this.sampleValues, valueSize = this.valueSize, offset = index * valueSize * 3 + valueSize; for ( let i = 0; i !== valueSize; i ++ ) { result[ i ] = values[ offset + i ]; } return result; } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer; const values = this.sampleValues; const stride = this.valueSize; const stride2 = stride * 2; const stride3 = stride * 3; const td = t1 - t0; const p = ( t - t0 ) / td; const pp = p * p; const ppp = pp * p; const offset1 = i1 * stride3; const offset0 = offset1 - stride3; const s2 = - 2 * ppp + 3 * pp; const s3 = ppp - pp; const s0 = 1 - s2; const s1 = s3 - pp + p; // Layout of keyframe output values for CUBICSPLINE animations: // [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ] for ( let i = 0; i !== stride; i ++ ) { const p0 = values[ offset0 + i + stride ]; // splineVertex_k const m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k) const p1 = values[ offset1 + i + stride ]; // splineVertex_k+1 const m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k) result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1; } return result; } } const _q = new Quaternion(); class GLTFCubicSplineQuaternionInterpolant extends GLTFCubicSplineInterpolant { interpolate_( i1, t0, t, t1 ) { const result = super.interpolate_( i1, t0, t, t1 ); _q.fromArray( result ).normalize().toArray( result ); return result; } } /*********************************/ /********** INTERNALS ************/ /*********************************/ /* CONSTANTS */ const WEBGL_CONSTANTS = { FLOAT: 5126, //FLOAT_MAT2: 35674, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLOAT_VEC2: 35664, FLOAT_VEC3: 35665, FLOAT_VEC4: 35666, LINEAR: 9729, REPEAT: 10497, SAMPLER_2D: 35678, POINTS: 0, LINES: 1, LINE_LOOP: 2, LINE_STRIP: 3, TRIANGLES: 4, TRIANGLE_STRIP: 5, TRIANGLE_FAN: 6, UNSIGNED_BYTE: 5121, UNSIGNED_SHORT: 5123 }; const WEBGL_COMPONENT_TYPES = { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 5125: Uint32Array, 5126: Float32Array }; const WEBGL_FILTERS = { 9728: NearestFilter, 9729: LinearFilter, 9984: NearestMipmapNearestFilter, 9985: LinearMipmapNearestFilter, 9986: NearestMipmapLinearFilter, 9987: LinearMipmapLinearFilter }; const WEBGL_WRAPPINGS = { 33071: ClampToEdgeWrapping, 33648: MirroredRepeatWrapping, 10497: RepeatWrapping }; const WEBGL_TYPE_SIZES = { 'SCALAR': 1, 'VEC2': 2, 'VEC3': 3, 'VEC4': 4, 'MAT2': 4, 'MAT3': 9, 'MAT4': 16 }; const ATTRIBUTES = { POSITION: 'position', NORMAL: 'normal', TANGENT: 'tangent', TEXCOORD_0: 'uv', TEXCOORD_1: 'uv2', COLOR_0: 'color', WEIGHTS_0: 'skinWeight', JOINTS_0: 'skinIndex', }; const PATH_PROPERTIES = { scale: 'scale', translation: 'position', rotation: 'quaternion', weights: 'morphTargetInfluences' }; const INTERPOLATION = { CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each // keyframe track will be initialized with a default interpolation type, then modified. LINEAR: InterpolateLinear, STEP: InterpolateDiscrete }; const ALPHA_MODES = { OPAQUE: 'OPAQUE', MASK: 'MASK', BLEND: 'BLEND' }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material */ function createDefaultMaterial( cache ) { if ( cache[ 'DefaultMaterial' ] === undefined ) { cache[ 'DefaultMaterial' ] = new MeshStandardMaterial( { color: 0xFFFFFF, emissive: 0x000000, metalness: 1, roughness: 1, transparent: false, depthTest: true, side: FrontSide } ); } return cache[ 'DefaultMaterial' ]; } function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) { // Add unknown glTF extensions to an object's userData. for ( const name in objectDef.extensions ) { if ( knownExtensions[ name ] === undefined ) { object.userData.gltfExtensions = object.userData.gltfExtensions || {}; object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ]; } } } /** * @param {Object3D|Material|BufferGeometry} object * @param {GLTF.definition} gltfDef */ function assignExtrasToUserData( object, gltfDef ) { if ( gltfDef.extras !== undefined ) { if ( typeof gltfDef.extras === 'object' ) { Object.assign( object.userData, gltfDef.extras ); } else { console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras ); } } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets * * @param {BufferGeometry} geometry * @param {Array} targets * @param {GLTFParser} parser * @return {Promise} */ function addMorphTargets( geometry, targets, parser ) { let hasMorphPosition = false; let hasMorphNormal = false; let hasMorphColor = false; for ( let i = 0, il = targets.length; i < il; i ++ ) { const target = targets[ i ]; if ( target.POSITION !== undefined ) hasMorphPosition = true; if ( target.NORMAL !== undefined ) hasMorphNormal = true; if ( target.COLOR_0 !== undefined ) hasMorphColor = true; if ( hasMorphPosition && hasMorphNormal && hasMorphColor ) break; } if ( ! hasMorphPosition && ! hasMorphNormal && ! hasMorphColor ) return Promise.resolve( geometry ); const pendingPositionAccessors = []; const pendingNormalAccessors = []; const pendingColorAccessors = []; for ( let i = 0, il = targets.length; i < il; i ++ ) { const target = targets[ i ]; if ( hasMorphPosition ) { const pendingAccessor = target.POSITION !== undefined ? parser.getDependency( 'accessor', target.POSITION ) : geometry.attributes.position; pendingPositionAccessors.push( pendingAccessor ); } if ( hasMorphNormal ) { const pendingAccessor = target.NORMAL !== undefined ? parser.getDependency( 'accessor', target.NORMAL ) : geometry.attributes.normal; pendingNormalAccessors.push( pendingAccessor ); } if ( hasMorphColor ) { const pendingAccessor = target.COLOR_0 !== undefined ? parser.getDependency( 'accessor', target.COLOR_0 ) : geometry.attributes.color; pendingColorAccessors.push( pendingAccessor ); } } return Promise.all( [ Promise.all( pendingPositionAccessors ), Promise.all( pendingNormalAccessors ), Promise.all( pendingColorAccessors ) ] ).then( function ( accessors ) { const morphPositions = accessors[ 0 ]; const morphNormals = accessors[ 1 ]; const morphColors = accessors[ 2 ]; if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions; if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals; if ( hasMorphColor ) geometry.morphAttributes.color = morphColors; geometry.morphTargetsRelative = true; return geometry; } ); } /** * @param {Mesh} mesh * @param {GLTF.Mesh} meshDef */ function updateMorphTargets( mesh, meshDef ) { mesh.updateMorphTargets(); if ( meshDef.weights !== undefined ) { for ( let i = 0, il = meshDef.weights.length; i < il; i ++ ) { mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ]; } } // .extras has user-defined data, so check that .extras.targetNames is an array. if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) { const targetNames = meshDef.extras.targetNames; if ( mesh.morphTargetInfluences.length === targetNames.length ) { mesh.morphTargetDictionary = {}; for ( let i = 0, il = targetNames.length; i < il; i ++ ) { mesh.morphTargetDictionary[ targetNames[ i ] ] = i; } } else { console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' ); } } } function createPrimitiveKey( primitiveDef ) { const dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]; let geometryKey; if ( dracoExtension ) { geometryKey = 'draco:' + dracoExtension.bufferView + ':' + dracoExtension.indices + ':' + createAttributesKey( dracoExtension.attributes ); } else { geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode; } return geometryKey; } function createAttributesKey( attributes ) { let attributesKey = ''; const keys = Object.keys( attributes ).sort(); for ( let i = 0, il = keys.length; i < il; i ++ ) { attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';'; } return attributesKey; } function getNormalizedComponentScale( constructor ) { // Reference: // https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization#encoding-quantized-data switch ( constructor ) { case Int8Array: return 1 / 127; case Uint8Array: return 1 / 255; case Int16Array: return 1 / 32767; case Uint16Array: return 1 / 65535; default: throw new Error( 'THREE.GLTFLoader: Unsupported normalized accessor component type.' ); } } function getImageURIMimeType( uri ) { if ( uri.search( /\.jpe?g($|\?)/i ) > 0 || uri.search( /^data\:image\/jpeg/ ) === 0 ) return 'image/jpeg'; if ( uri.search( /\.webp($|\?)/i ) > 0 || uri.search( /^data\:image\/webp/ ) === 0 ) return 'image/webp'; return 'image/png'; } /* GLTF PARSER */ class GLTFParser { constructor( json = {}, options = {} ) { this.json = json; this.extensions = {}; this.plugins = {}; this.options = options; // loader object cache this.cache = new GLTFRegistry(); // associations between Three.js objects and glTF elements this.associations = new Map(); // BufferGeometry caching this.primitiveCache = {}; // Object3D instance caches this.meshCache = { refs: {}, uses: {} }; this.cameraCache = { refs: {}, uses: {} }; this.lightCache = { refs: {}, uses: {} }; this.sourceCache = {}; this.textureCache = {}; // Track node names, to ensure no duplicates this.nodeNamesUsed = {}; // Use an ImageBitmapLoader if imageBitmaps are supported. Moves much of the // expensive work of uploading a texture to the GPU off the main thread. const isSafari = /^((?!chrome|android).)*safari/i.test( navigator.userAgent ) === true; const isFirefox = navigator.userAgent.indexOf( 'Firefox' ) > - 1; const firefoxVersion = isFirefox ? navigator.userAgent.match( /Firefox\/([0-9]+)\./ )[ 1 ] : - 1; if ( typeof createImageBitmap === 'undefined' || isSafari || ( isFirefox && firefoxVersion < 98 ) ) { this.textureLoader = new TextureLoader( this.options.manager ); } else { this.textureLoader = new ImageBitmapLoader( this.options.manager ); } this.textureLoader.setCrossOrigin( this.options.crossOrigin ); this.textureLoader.setRequestHeader( this.options.requestHeader ); this.fileLoader = new FileLoader( this.options.manager ); this.fileLoader.setResponseType( 'arraybuffer' ); if ( this.options.crossOrigin === 'use-credentials' ) { this.fileLoader.setWithCredentials( true ); } } setExtensions( extensions ) { this.extensions = extensions; } setPlugins( plugins ) { this.plugins = plugins; } parse( onLoad, onError ) { const parser = this; const json = this.json; const extensions = this.extensions; // Clear the loader cache this.cache.removeAll(); // Mark the special nodes/meshes in json for efficient parse this._invokeAll( function ( ext ) { return ext._markDefs && ext._markDefs(); } ); Promise.all( this._invokeAll( function ( ext ) { return ext.beforeRoot && ext.beforeRoot(); } ) ).then( function () { return Promise.all( [ parser.getDependencies( 'scene' ), parser.getDependencies( 'animation' ), parser.getDependencies( 'camera' ), ] ); } ).then( function ( dependencies ) { const result = { scene: dependencies[ 0 ][ json.scene || 0 ], scenes: dependencies[ 0 ], animations: dependencies[ 1 ], cameras: dependencies[ 2 ], asset: json.asset, parser: parser, userData: {} }; addUnknownExtensionsToUserData( extensions, result, json ); assignExtrasToUserData( result, json ); Promise.all( parser._invokeAll( function ( ext ) { return ext.afterRoot && ext.afterRoot( result ); } ) ).then( function () { onLoad( result ); } ); } ).catch( onError ); } /** * Marks the special nodes/meshes in json for efficient parse. */ _markDefs() { const nodeDefs = this.json.nodes || []; const skinDefs = this.json.skins || []; const meshDefs = this.json.meshes || []; // Nothing in the node definition indicates whether it is a Bone or an // Object3D. Use the skins' joint references to mark bones. for ( let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) { const joints = skinDefs[ skinIndex ].joints; for ( let i = 0, il = joints.length; i < il; i ++ ) { nodeDefs[ joints[ i ] ].isBone = true; } } // Iterate over all nodes, marking references to shared resources, // as well as skeleton joints. for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) { const nodeDef = nodeDefs[ nodeIndex ]; if ( nodeDef.mesh !== undefined ) { this._addNodeRef( this.meshCache, nodeDef.mesh ); // Nothing in the mesh definition indicates whether it is // a SkinnedMesh or Mesh. Use the node's mesh reference // to mark SkinnedMesh if node has skin. if ( nodeDef.skin !== undefined ) { meshDefs[ nodeDef.mesh ].isSkinnedMesh = true; } } if ( nodeDef.camera !== undefined ) { this._addNodeRef( this.cameraCache, nodeDef.camera ); } } } /** * Counts references to shared node / Object3D resources. These resources * can be reused, or "instantiated", at multiple nodes in the scene * hierarchy. Mesh, Camera, and Light instances are instantiated and must * be marked. Non-scenegraph resources (like Materials, Geometries, and * Textures) can be reused directly and are not marked here. * * Example: CesiumMilkTruck sample model reuses "Wheel" meshes. */ _addNodeRef( cache, index ) { if ( index === undefined ) return; if ( cache.refs[ index ] === undefined ) { cache.refs[ index ] = cache.uses[ index ] = 0; } cache.refs[ index ] ++; } /** Returns a reference to a shared resource, cloning it if necessary. */ _getNodeRef( cache, index, object ) { if ( cache.refs[ index ] <= 1 ) return object; const ref = object.clone(); // Propagates mappings to the cloned object, prevents mappings on the // original object from being lost. const updateMappings = ( original, clone ) => { const mappings = this.associations.get( original ); if ( mappings != null ) { this.associations.set( clone, mappings ); } for ( const [ i, child ] of original.children.entries() ) { updateMappings( child, clone.children[ i ] ); } }; updateMappings( object, ref ); ref.name += '_instance_' + ( cache.uses[ index ] ++ ); return ref; } _invokeOne( func ) { const extensions = Object.values( this.plugins ); extensions.push( this ); for ( let i = 0; i < extensions.length; i ++ ) { const result = func( extensions[ i ] ); if ( result ) return result; } return null; } _invokeAll( func ) { const extensions = Object.values( this.plugins ); extensions.unshift( this ); const pending = []; for ( let i = 0; i < extensions.length; i ++ ) { const result = func( extensions[ i ] ); if ( result ) pending.push( result ); } return pending; } /** * Requests the specified dependency asynchronously, with caching. * @param {string} type * @param {number} index * @return {Promise} */ getDependency( type, index ) { const cacheKey = type + ':' + index; let dependency = this.cache.get( cacheKey ); if ( ! dependency ) { switch ( type ) { case 'scene': dependency = this.loadScene( index ); break; case 'node': dependency = this.loadNode( index ); break; case 'mesh': dependency = this._invokeOne( function ( ext ) { return ext.loadMesh && ext.loadMesh( index ); } ); break; case 'accessor': dependency = this.loadAccessor( index ); break; case 'bufferView': dependency = this._invokeOne( function ( ext ) { return ext.loadBufferView && ext.loadBufferView( index ); } ); break; case 'buffer': dependency = this.loadBuffer( index ); break; case 'material': dependency = this._invokeOne( function ( ext ) { return ext.loadMaterial && ext.loadMaterial( index ); } ); break; case 'texture': dependency = this._invokeOne( function ( ext ) { return ext.loadTexture && ext.loadTexture( index ); } ); break; case 'skin': dependency = this.loadSkin( index ); break; case 'animation': dependency = this._invokeOne( function ( ext ) { return ext.loadAnimation && ext.loadAnimation( index ); } ); break; case 'camera': dependency = this.loadCamera( index ); break; default: throw new Error( 'Unknown type: ' + type ); } this.cache.add( cacheKey, dependency ); } return dependency; } /** * Requests all dependencies of the specified type asynchronously, with caching. * @param {string} type * @return {Promise>} */ getDependencies( type ) { let dependencies = this.cache.get( type ); if ( ! dependencies ) { const parser = this; const defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || []; dependencies = Promise.all( defs.map( function ( def, index ) { return parser.getDependency( type, index ); } ) ); this.cache.add( type, dependencies ); } return dependencies; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferIndex * @return {Promise} */ loadBuffer( bufferIndex ) { const bufferDef = this.json.buffers[ bufferIndex ]; const loader = this.fileLoader; if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) { throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' ); } // If present, GLB container is required to be the first buffer. if ( bufferDef.uri === undefined && bufferIndex === 0 ) { return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body ); } const options = this.options; return new Promise( function ( resolve, reject ) { loader.load( LoaderUtils.resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () { reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) ); } ); } ); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferViewIndex * @return {Promise} */ loadBufferView( bufferViewIndex ) { const bufferViewDef = this.json.bufferViews[ bufferViewIndex ]; return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) { const byteLength = bufferViewDef.byteLength || 0; const byteOffset = bufferViewDef.byteOffset || 0; return buffer.slice( byteOffset, byteOffset + byteLength ); } ); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors * @param {number} accessorIndex * @return {Promise} */ loadAccessor( accessorIndex ) { const parser = this; const json = this.json; const accessorDef = this.json.accessors[ accessorIndex ]; if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) { // Ignore empty accessors, which may be used to declare runtime // information about attributes coming from another source (e.g. Draco // compression extension). return Promise.resolve( null ); } const pendingBufferViews = []; if ( accessorDef.bufferView !== undefined ) { pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) ); } else { pendingBufferViews.push( null ); } if ( accessorDef.sparse !== undefined ) { pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) ); pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) ); } return Promise.all( pendingBufferViews ).then( function ( bufferViews ) { const bufferView = bufferViews[ 0 ]; const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ]; const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; // For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12. const elementBytes = TypedArray.BYTES_PER_ELEMENT; const itemBytes = elementBytes * itemSize; const byteOffset = accessorDef.byteOffset || 0; const byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined; const normalized = accessorDef.normalized === true; let array, bufferAttribute; // The buffer is not interleaved if the stride is the item size in bytes. if ( byteStride && byteStride !== itemBytes ) { // Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer // This makes sure that IBA.count reflects accessor.count properly const ibSlice = Math.floor( byteOffset / byteStride ); const ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count; let ib = parser.cache.get( ibCacheKey ); if ( ! ib ) { array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes ); // Integer parameters to IB/IBA are in array elements, not bytes. ib = new InterleavedBuffer( array, byteStride / elementBytes ); parser.cache.add( ibCacheKey, ib ); } bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized ); } else { if ( bufferView === null ) { array = new TypedArray( accessorDef.count * itemSize ); } else { array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize ); } bufferAttribute = new BufferAttribute( array, itemSize, normalized ); } // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors if ( accessorDef.sparse !== undefined ) { const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR; const TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ]; const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0; const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0; const sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices ); const sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize ); if ( bufferView !== null ) { // Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes. bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized ); } for ( let i = 0, il = sparseIndices.length; i < il; i ++ ) { const index = sparseIndices[ i ]; bufferAttribute.setX( index, sparseValues[ i * itemSize ] ); if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] ); if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] ); if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] ); if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' ); } } return bufferAttribute; } ); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures * @param {number} textureIndex * @return {Promise} */ loadTexture( textureIndex ) { const json = this.json; const options = this.options; const textureDef = json.textures[ textureIndex ]; const sourceIndex = textureDef.source; const sourceDef = json.images[ sourceIndex ]; let loader = this.textureLoader; if ( sourceDef.uri ) { const handler = options.manager.getHandler( sourceDef.uri ); if ( handler !== null ) loader = handler; } return this.loadTextureImage( textureIndex, sourceIndex, loader ); } loadTextureImage( textureIndex, sourceIndex, loader ) { const parser = this; const json = this.json; const textureDef = json.textures[ textureIndex ]; const sourceDef = json.images[ sourceIndex ]; const cacheKey = ( sourceDef.uri || sourceDef.bufferView ) + ':' + textureDef.sampler; if ( this.textureCache[ cacheKey ] ) { // See https://github.com/mrdoob/three.js/issues/21559. return this.textureCache[ cacheKey ]; } const promise = this.loadImageSource( sourceIndex, loader ).then( function ( texture ) { texture.flipY = false; if ( textureDef.name ) texture.name = textureDef.name; const samplers = json.samplers || {}; const sampler = samplers[ textureDef.sampler ] || {}; texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter; texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter; texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping; texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping; parser.associations.set( texture, { textures: textureIndex } ); return texture; } ).catch( function () { return null; } ); this.textureCache[ cacheKey ] = promise; return promise; } loadImageSource( sourceIndex, loader ) { const parser = this; const json = this.json; const options = this.options; if ( this.sourceCache[ sourceIndex ] !== undefined ) { return this.sourceCache[ sourceIndex ].then( ( texture ) => texture.clone() ); } const sourceDef = json.images[ sourceIndex ]; const URL = self.URL || self.webkitURL; let sourceURI = sourceDef.uri || ''; let isObjectURL = false; if ( sourceDef.bufferView !== undefined ) { // Load binary image data from bufferView, if provided. sourceURI = parser.getDependency( 'bufferView', sourceDef.bufferView ).then( function ( bufferView ) { isObjectURL = true; const blob = new Blob( [ bufferView ], { type: sourceDef.mimeType } ); sourceURI = URL.createObjectURL( blob ); return sourceURI; } ); } else if ( sourceDef.uri === undefined ) { throw new Error( 'THREE.GLTFLoader: Image ' + sourceIndex + ' is missing URI and bufferView' ); } const promise = Promise.resolve( sourceURI ).then( function ( sourceURI ) { return new Promise( function ( resolve, reject ) { let onLoad = resolve; if ( loader.isImageBitmapLoader === true ) { onLoad = function ( imageBitmap ) { const texture = new Texture( imageBitmap ); texture.needsUpdate = true; resolve( texture ); }; } loader.load( LoaderUtils.resolveURL( sourceURI, options.path ), onLoad, undefined, reject ); } ); } ).then( function ( texture ) { // Clean up resources and configure Texture. if ( isObjectURL === true ) { URL.revokeObjectURL( sourceURI ); } texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType( sourceDef.uri ); return texture; } ).catch( function ( error ) { console.error( 'THREE.GLTFLoader: Couldn\'t load texture', sourceURI ); throw error; } ); this.sourceCache[ sourceIndex ] = promise; return promise; } /** * Asynchronously assigns a texture to the given material parameters. * @param {Object} materialParams * @param {string} mapName * @param {Object} mapDef * @return {Promise} */ assignTexture( materialParams, mapName, mapDef, encoding ) { const parser = this; return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) { // Materials sample aoMap from UV set 1 and other maps from UV set 0 - this can't be configured // However, we will copy UV set 0 to UV set 1 on demand for aoMap if ( mapDef.texCoord !== undefined && mapDef.texCoord != 0 && ! ( mapName === 'aoMap' && mapDef.texCoord == 1 ) ) { console.warn( 'THREE.GLTFLoader: Custom UV set ' + mapDef.texCoord + ' for texture ' + mapName + ' not yet supported.' ); } if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) { const transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined; if ( transform ) { const gltfReference = parser.associations.get( texture ); texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform ); parser.associations.set( texture, gltfReference ); } } if ( encoding !== undefined ) { texture.encoding = encoding; } materialParams[ mapName ] = texture; return texture; } ); } /** * Assigns final material to a Mesh, Line, or Points instance. The instance * already has a material (generated from the glTF material options alone) * but reuse of the same glTF material may require multiple threejs materials * to accommodate different primitive types, defines, etc. New materials will * be created if necessary, and reused from a cache. * @param {Object3D} mesh Mesh, Line, or Points instance. */ assignFinalMaterial( mesh ) { const geometry = mesh.geometry; let material = mesh.material; const useDerivativeTangents = geometry.attributes.tangent === undefined; const useVertexColors = geometry.attributes.color !== undefined; const useFlatShading = geometry.attributes.normal === undefined; if ( mesh.isPoints ) { const cacheKey = 'PointsMaterial:' + material.uuid; let pointsMaterial = this.cache.get( cacheKey ); if ( ! pointsMaterial ) { pointsMaterial = new PointsMaterial(); Material.prototype.copy.call( pointsMaterial, material ); pointsMaterial.color.copy( material.color ); pointsMaterial.map = material.map; pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px this.cache.add( cacheKey, pointsMaterial ); } material = pointsMaterial; } else if ( mesh.isLine ) { const cacheKey = 'LineBasicMaterial:' + material.uuid; let lineMaterial = this.cache.get( cacheKey ); if ( ! lineMaterial ) { lineMaterial = new LineBasicMaterial(); Material.prototype.copy.call( lineMaterial, material ); lineMaterial.color.copy( material.color ); this.cache.add( cacheKey, lineMaterial ); } material = lineMaterial; } // Clone the material if it will be modified if ( useDerivativeTangents || useVertexColors || useFlatShading ) { let cacheKey = 'ClonedMaterial:' + material.uuid + ':'; if ( material.isGLTFSpecularGlossinessMaterial ) cacheKey += 'specular-glossiness:'; if ( useDerivativeTangents ) cacheKey += 'derivative-tangents:'; if ( useVertexColors ) cacheKey += 'vertex-colors:'; if ( useFlatShading ) cacheKey += 'flat-shading:'; let cachedMaterial = this.cache.get( cacheKey ); if ( ! cachedMaterial ) { cachedMaterial = material.clone(); if ( useVertexColors ) cachedMaterial.vertexColors = true; if ( useFlatShading ) cachedMaterial.flatShading = true; if ( useDerivativeTangents ) { // https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995 if ( cachedMaterial.normalScale ) cachedMaterial.normalScale.y *= - 1; if ( cachedMaterial.clearcoatNormalScale ) cachedMaterial.clearcoatNormalScale.y *= - 1; } this.cache.add( cacheKey, cachedMaterial ); this.associations.set( cachedMaterial, this.associations.get( material ) ); } material = cachedMaterial; } // workarounds for mesh and geometry if ( material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined ) { geometry.setAttribute( 'uv2', geometry.attributes.uv ); } mesh.material = material; } getMaterialType( /* materialIndex */ ) { return MeshStandardMaterial; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials * @param {number} materialIndex * @return {Promise} */ loadMaterial( materialIndex ) { const parser = this; const json = this.json; const extensions = this.extensions; const materialDef = json.materials[ materialIndex ]; let materialType; const materialParams = {}; const materialExtensions = materialDef.extensions || {}; const pending = []; if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] ) { const sgExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ]; materialType = sgExtension.getMaterialType(); pending.push( sgExtension.extendParams( materialParams, materialDef, parser ) ); } else if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) { const kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ]; materialType = kmuExtension.getMaterialType(); pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) ); } else { // Specification: // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material const metallicRoughness = materialDef.pbrMetallicRoughness || {}; materialParams.color = new Color$2( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0; if ( Array.isArray( metallicRoughness.baseColorFactor ) ) { const array = metallicRoughness.baseColorFactor; materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ]; } if ( metallicRoughness.baseColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, sRGBEncoding ) ); } materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0; materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0; if ( metallicRoughness.metallicRoughnessTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) ); pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) ); } materialType = this._invokeOne( function ( ext ) { return ext.getMaterialType && ext.getMaterialType( materialIndex ); } ); pending.push( Promise.all( this._invokeAll( function ( ext ) { return ext.extendMaterialParams && ext.extendMaterialParams( materialIndex, materialParams ); } ) ) ); } if ( materialDef.doubleSided === true ) { materialParams.side = DoubleSide; } const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE; if ( alphaMode === ALPHA_MODES.BLEND ) { materialParams.transparent = true; // See: https://github.com/mrdoob/three.js/issues/17706 materialParams.depthWrite = false; } else { materialParams.transparent = false; if ( alphaMode === ALPHA_MODES.MASK ) { materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5; } } if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) { pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) ); materialParams.normalScale = new Vector2( 1, 1 ); if ( materialDef.normalTexture.scale !== undefined ) { const scale = materialDef.normalTexture.scale; materialParams.normalScale.set( scale, scale ); } } if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) { pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) ); if ( materialDef.occlusionTexture.strength !== undefined ) { materialParams.aoMapIntensity = materialDef.occlusionTexture.strength; } } if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) { materialParams.emissive = new Color$2().fromArray( materialDef.emissiveFactor ); } if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) { pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture, sRGBEncoding ) ); } return Promise.all( pending ).then( function () { let material; if ( materialType === GLTFMeshStandardSGMaterial ) { material = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].createMaterial( materialParams ); } else { material = new materialType( materialParams ); } if ( materialDef.name ) material.name = materialDef.name; assignExtrasToUserData( material, materialDef ); parser.associations.set( material, { materials: materialIndex } ); if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef ); return material; } ); } /** When Object3D instances are targeted by animation, they need unique names. */ createUniqueName( originalName ) { const sanitizedName = PropertyBinding.sanitizeNodeName( originalName || '' ); let name = sanitizedName; for ( let i = 1; this.nodeNamesUsed[ name ]; ++ i ) { name = sanitizedName + '_' + i; } this.nodeNamesUsed[ name ] = true; return name; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry * * Creates BufferGeometries from primitives. * * @param {Array} primitives * @return {Promise>} */ loadGeometries( primitives ) { const parser = this; const extensions = this.extensions; const cache = this.primitiveCache; function createDracoPrimitive( primitive ) { return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] .decodePrimitive( primitive, parser ) .then( function ( geometry ) { return addPrimitiveAttributes( geometry, primitive, parser ); } ); } const pending = []; for ( let i = 0, il = primitives.length; i < il; i ++ ) { const primitive = primitives[ i ]; const cacheKey = createPrimitiveKey( primitive ); // See if we've already created this geometry const cached = cache[ cacheKey ]; if ( cached ) { // Use the cached geometry if it exists pending.push( cached.promise ); } else { let geometryPromise; if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) { // Use DRACO geometry if available geometryPromise = createDracoPrimitive( primitive ); } else { // Otherwise create a new geometry geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser ); } // Cache this geometry cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise }; pending.push( geometryPromise ); } } return Promise.all( pending ); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes * @param {number} meshIndex * @return {Promise} */ loadMesh( meshIndex ) { const parser = this; const json = this.json; const extensions = this.extensions; const meshDef = json.meshes[ meshIndex ]; const primitives = meshDef.primitives; const pending = []; for ( let i = 0, il = primitives.length; i < il; i ++ ) { const material = primitives[ i ].material === undefined ? createDefaultMaterial( this.cache ) : this.getDependency( 'material', primitives[ i ].material ); pending.push( material ); } pending.push( parser.loadGeometries( primitives ) ); return Promise.all( pending ).then( function ( results ) { const materials = results.slice( 0, results.length - 1 ); const geometries = results[ results.length - 1 ]; const meshes = []; for ( let i = 0, il = geometries.length; i < il; i ++ ) { const geometry = geometries[ i ]; const primitive = primitives[ i ]; // 1. create Mesh let mesh; const material = materials[ i ]; if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || primitive.mode === undefined ) { // .isSkinnedMesh isn't in glTF spec. See ._markDefs() mesh = meshDef.isSkinnedMesh === true ? new SkinnedMesh( geometry, material ) : new Mesh( geometry, material ); if ( mesh.isSkinnedMesh === true && ! mesh.geometry.attributes.skinWeight.normalized ) { // we normalize floating point skin weight array to fix malformed assets (see #15319) // it's important to skip this for non-float32 data since normalizeSkinWeights assumes non-normalized inputs mesh.normalizeSkinWeights(); } if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) { mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode ); } else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) { mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode ); } } else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) { mesh = new LineSegments( geometry, material ); } else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) { mesh = new Line( geometry, material ); } else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) { mesh = new LineLoop( geometry, material ); } else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) { mesh = new Points( geometry, material ); } else { throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode ); } if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) { updateMorphTargets( mesh, meshDef ); } mesh.name = parser.createUniqueName( meshDef.name || ( 'mesh_' + meshIndex ) ); assignExtrasToUserData( mesh, meshDef ); if ( primitive.extensions ) addUnknownExtensionsToUserData( extensions, mesh, primitive ); parser.assignFinalMaterial( mesh ); meshes.push( mesh ); } for ( let i = 0, il = meshes.length; i < il; i ++ ) { parser.associations.set( meshes[ i ], { meshes: meshIndex, primitives: i } ); } if ( meshes.length === 1 ) { return meshes[ 0 ]; } const group = new Group$1(); parser.associations.set( group, { meshes: meshIndex } ); for ( let i = 0, il = meshes.length; i < il; i ++ ) { group.add( meshes[ i ] ); } return group; } ); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras * @param {number} cameraIndex * @return {Promise} */ loadCamera( cameraIndex ) { let camera; const cameraDef = this.json.cameras[ cameraIndex ]; const params = cameraDef[ cameraDef.type ]; if ( ! params ) { console.warn( 'THREE.GLTFLoader: Missing camera parameters.' ); return; } if ( cameraDef.type === 'perspective' ) { camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 ); } else if ( cameraDef.type === 'orthographic' ) { camera = new OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar ); } if ( cameraDef.name ) camera.name = this.createUniqueName( cameraDef.name ); assignExtrasToUserData( camera, cameraDef ); return Promise.resolve( camera ); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins * @param {number} skinIndex * @return {Promise} */ loadSkin( skinIndex ) { const skinDef = this.json.skins[ skinIndex ]; const skinEntry = { joints: skinDef.joints }; if ( skinDef.inverseBindMatrices === undefined ) { return Promise.resolve( skinEntry ); } return this.getDependency( 'accessor', skinDef.inverseBindMatrices ).then( function ( accessor ) { skinEntry.inverseBindMatrices = accessor; return skinEntry; } ); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations * @param {number} animationIndex * @return {Promise} */ loadAnimation( animationIndex ) { const json = this.json; const animationDef = json.animations[ animationIndex ]; const pendingNodes = []; const pendingInputAccessors = []; const pendingOutputAccessors = []; const pendingSamplers = []; const pendingTargets = []; for ( let i = 0, il = animationDef.channels.length; i < il; i ++ ) { const channel = animationDef.channels[ i ]; const sampler = animationDef.samplers[ channel.sampler ]; const target = channel.target; const name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated. const input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input; const output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output; pendingNodes.push( this.getDependency( 'node', name ) ); pendingInputAccessors.push( this.getDependency( 'accessor', input ) ); pendingOutputAccessors.push( this.getDependency( 'accessor', output ) ); pendingSamplers.push( sampler ); pendingTargets.push( target ); } return Promise.all( [ Promise.all( pendingNodes ), Promise.all( pendingInputAccessors ), Promise.all( pendingOutputAccessors ), Promise.all( pendingSamplers ), Promise.all( pendingTargets ) ] ).then( function ( dependencies ) { const nodes = dependencies[ 0 ]; const inputAccessors = dependencies[ 1 ]; const outputAccessors = dependencies[ 2 ]; const samplers = dependencies[ 3 ]; const targets = dependencies[ 4 ]; const tracks = []; for ( let i = 0, il = nodes.length; i < il; i ++ ) { const node = nodes[ i ]; const inputAccessor = inputAccessors[ i ]; const outputAccessor = outputAccessors[ i ]; const sampler = samplers[ i ]; const target = targets[ i ]; if ( node === undefined ) continue; node.updateMatrix(); let TypedKeyframeTrack; switch ( PATH_PROPERTIES[ target.path ] ) { case PATH_PROPERTIES.weights: TypedKeyframeTrack = NumberKeyframeTrack; break; case PATH_PROPERTIES.rotation: TypedKeyframeTrack = QuaternionKeyframeTrack; break; case PATH_PROPERTIES.position: case PATH_PROPERTIES.scale: default: TypedKeyframeTrack = VectorKeyframeTrack; break; } const targetName = node.name ? node.name : node.uuid; const interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear; const targetNames = []; if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) { node.traverse( function ( object ) { if ( object.morphTargetInfluences ) { targetNames.push( object.name ? object.name : object.uuid ); } } ); } else { targetNames.push( targetName ); } let outputArray = outputAccessor.array; if ( outputAccessor.normalized ) { const scale = getNormalizedComponentScale( outputArray.constructor ); const scaled = new Float32Array( outputArray.length ); for ( let j = 0, jl = outputArray.length; j < jl; j ++ ) { scaled[ j ] = outputArray[ j ] * scale; } outputArray = scaled; } for ( let j = 0, jl = targetNames.length; j < jl; j ++ ) { const track = new TypedKeyframeTrack( targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ], inputAccessor.array, outputArray, interpolation ); // Override interpolation with custom factory method. if ( sampler.interpolation === 'CUBICSPLINE' ) { track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) { // A CUBICSPLINE keyframe in glTF has three output values for each input value, // representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize() // must be divided by three to get the interpolant's sampleSize argument. const interpolantType = ( this instanceof QuaternionKeyframeTrack ) ? GLTFCubicSplineQuaternionInterpolant : GLTFCubicSplineInterpolant; return new interpolantType( this.times, this.values, this.getValueSize() / 3, result ); }; // Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants. track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true; } tracks.push( track ); } } const name = animationDef.name ? animationDef.name : 'animation_' + animationIndex; return new AnimationClip( name, undefined, tracks ); } ); } createNodeMesh( nodeIndex ) { const json = this.json; const parser = this; const nodeDef = json.nodes[ nodeIndex ]; if ( nodeDef.mesh === undefined ) return null; return parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) { const node = parser._getNodeRef( parser.meshCache, nodeDef.mesh, mesh ); // if weights are provided on the node, override weights on the mesh. if ( nodeDef.weights !== undefined ) { node.traverse( function ( o ) { if ( ! o.isMesh ) return; for ( let i = 0, il = nodeDef.weights.length; i < il; i ++ ) { o.morphTargetInfluences[ i ] = nodeDef.weights[ i ]; } } ); } return node; } ); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy * @param {number} nodeIndex * @return {Promise} */ loadNode( nodeIndex ) { const json = this.json; const extensions = this.extensions; const parser = this; const nodeDef = json.nodes[ nodeIndex ]; // reserve node's name before its dependencies, so the root has the intended name. const nodeName = nodeDef.name ? parser.createUniqueName( nodeDef.name ) : ''; return ( function () { const pending = []; const meshPromise = parser._invokeOne( function ( ext ) { return ext.createNodeMesh && ext.createNodeMesh( nodeIndex ); } ); if ( meshPromise ) { pending.push( meshPromise ); } if ( nodeDef.camera !== undefined ) { pending.push( parser.getDependency( 'camera', nodeDef.camera ).then( function ( camera ) { return parser._getNodeRef( parser.cameraCache, nodeDef.camera, camera ); } ) ); } parser._invokeAll( function ( ext ) { return ext.createNodeAttachment && ext.createNodeAttachment( nodeIndex ); } ).forEach( function ( promise ) { pending.push( promise ); } ); return Promise.all( pending ); }() ).then( function ( objects ) { let node; // .isBone isn't in glTF spec. See ._markDefs if ( nodeDef.isBone === true ) { node = new Bone(); } else if ( objects.length > 1 ) { node = new Group$1(); } else if ( objects.length === 1 ) { node = objects[ 0 ]; } else { node = new Object3D(); } if ( node !== objects[ 0 ] ) { for ( let i = 0, il = objects.length; i < il; i ++ ) { node.add( objects[ i ] ); } } if ( nodeDef.name ) { node.userData.name = nodeDef.name; node.name = nodeName; } assignExtrasToUserData( node, nodeDef ); if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef ); if ( nodeDef.matrix !== undefined ) { const matrix = new Matrix4(); matrix.fromArray( nodeDef.matrix ); node.applyMatrix4( matrix ); } else { if ( nodeDef.translation !== undefined ) { node.position.fromArray( nodeDef.translation ); } if ( nodeDef.rotation !== undefined ) { node.quaternion.fromArray( nodeDef.rotation ); } if ( nodeDef.scale !== undefined ) { node.scale.fromArray( nodeDef.scale ); } } if ( ! parser.associations.has( node ) ) { parser.associations.set( node, {} ); } parser.associations.get( node ).nodes = nodeIndex; return node; } ); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes * @param {number} sceneIndex * @return {Promise} */ loadScene( sceneIndex ) { const json = this.json; const extensions = this.extensions; const sceneDef = this.json.scenes[ sceneIndex ]; const parser = this; // Loader returns Group, not Scene. // See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172 const scene = new Group$1(); if ( sceneDef.name ) scene.name = parser.createUniqueName( sceneDef.name ); assignExtrasToUserData( scene, sceneDef ); if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef ); const nodeIds = sceneDef.nodes || []; const pending = []; for ( let i = 0, il = nodeIds.length; i < il; i ++ ) { pending.push( buildNodeHierarchy( nodeIds[ i ], scene, json, parser ) ); } return Promise.all( pending ).then( function () { // Removes dangling associations, associations that reference a node that // didn't make it into the scene. const reduceAssociations = ( node ) => { const reducedAssociations = new Map(); for ( const [ key, value ] of parser.associations ) { if ( key instanceof Material || key instanceof Texture ) { reducedAssociations.set( key, value ); } } node.traverse( ( node ) => { const mappings = parser.associations.get( node ); if ( mappings != null ) { reducedAssociations.set( node, mappings ); } } ); return reducedAssociations; }; parser.associations = reduceAssociations( scene ); return scene; } ); } } function buildNodeHierarchy( nodeId, parentObject, json, parser ) { const nodeDef = json.nodes[ nodeId ]; return parser.getDependency( 'node', nodeId ).then( function ( node ) { if ( nodeDef.skin === undefined ) return node; // build skeleton here as well let skinEntry; return parser.getDependency( 'skin', nodeDef.skin ).then( function ( skin ) { skinEntry = skin; const pendingJoints = []; for ( let i = 0, il = skinEntry.joints.length; i < il; i ++ ) { pendingJoints.push( parser.getDependency( 'node', skinEntry.joints[ i ] ) ); } return Promise.all( pendingJoints ); } ).then( function ( jointNodes ) { node.traverse( function ( mesh ) { if ( ! mesh.isMesh ) return; const bones = []; const boneInverses = []; for ( let j = 0, jl = jointNodes.length; j < jl; j ++ ) { const jointNode = jointNodes[ j ]; if ( jointNode ) { bones.push( jointNode ); const mat = new Matrix4(); if ( skinEntry.inverseBindMatrices !== undefined ) { mat.fromArray( skinEntry.inverseBindMatrices.array, j * 16 ); } boneInverses.push( mat ); } else { console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[ j ] ); } } mesh.bind( new Skeleton( bones, boneInverses ), mesh.matrixWorld ); } ); return node; } ); } ).then( function ( node ) { // build node hierachy parentObject.add( node ); const pending = []; if ( nodeDef.children ) { const children = nodeDef.children; for ( let i = 0, il = children.length; i < il; i ++ ) { const child = children[ i ]; pending.push( buildNodeHierarchy( child, node, json, parser ) ); } } return Promise.all( pending ); } ); } /** * @param {BufferGeometry} geometry * @param {GLTF.Primitive} primitiveDef * @param {GLTFParser} parser */ function computeBounds( geometry, primitiveDef, parser ) { const attributes = primitiveDef.attributes; const box = new Box3(); if ( attributes.POSITION !== undefined ) { const accessor = parser.json.accessors[ attributes.POSITION ]; const min = accessor.min; const max = accessor.max; // glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement. if ( min !== undefined && max !== undefined ) { box.set( new Vector3( min[ 0 ], min[ 1 ], min[ 2 ] ), new Vector3( max[ 0 ], max[ 1 ], max[ 2 ] ) ); if ( accessor.normalized ) { const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] ); box.min.multiplyScalar( boxScale ); box.max.multiplyScalar( boxScale ); } } else { console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' ); return; } } else { return; } const targets = primitiveDef.targets; if ( targets !== undefined ) { const maxDisplacement = new Vector3(); const vector = new Vector3(); for ( let i = 0, il = targets.length; i < il; i ++ ) { const target = targets[ i ]; if ( target.POSITION !== undefined ) { const accessor = parser.json.accessors[ target.POSITION ]; const min = accessor.min; const max = accessor.max; // glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement. if ( min !== undefined && max !== undefined ) { // we need to get max of absolute components because target weight is [-1,1] vector.setX( Math.max( Math.abs( min[ 0 ] ), Math.abs( max[ 0 ] ) ) ); vector.setY( Math.max( Math.abs( min[ 1 ] ), Math.abs( max[ 1 ] ) ) ); vector.setZ( Math.max( Math.abs( min[ 2 ] ), Math.abs( max[ 2 ] ) ) ); if ( accessor.normalized ) { const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] ); vector.multiplyScalar( boxScale ); } // Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative // to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets // are used to implement key-frame animations and as such only two are active at a time - this results in very large // boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size. maxDisplacement.max( vector ); } else { console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' ); } } } // As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets. box.expandByVector( maxDisplacement ); } geometry.boundingBox = box; const sphere = new Sphere(); box.getCenter( sphere.center ); sphere.radius = box.min.distanceTo( box.max ) / 2; geometry.boundingSphere = sphere; } /** * @param {BufferGeometry} geometry * @param {GLTF.Primitive} primitiveDef * @param {GLTFParser} parser * @return {Promise} */ function addPrimitiveAttributes( geometry, primitiveDef, parser ) { const attributes = primitiveDef.attributes; const pending = []; function assignAttributeAccessor( accessorIndex, attributeName ) { return parser.getDependency( 'accessor', accessorIndex ) .then( function ( accessor ) { geometry.setAttribute( attributeName, accessor ); } ); } for ( const gltfAttributeName in attributes ) { const threeAttributeName = ATTRIBUTES[ gltfAttributeName ] || gltfAttributeName.toLowerCase(); // Skip attributes already provided by e.g. Draco extension. if ( threeAttributeName in geometry.attributes ) continue; pending.push( assignAttributeAccessor( attributes[ gltfAttributeName ], threeAttributeName ) ); } if ( primitiveDef.indices !== undefined && ! geometry.index ) { const accessor = parser.getDependency( 'accessor', primitiveDef.indices ).then( function ( accessor ) { geometry.setIndex( accessor ); } ); pending.push( accessor ); } assignExtrasToUserData( geometry, primitiveDef ); computeBounds( geometry, primitiveDef, parser ); return Promise.all( pending ).then( function () { return primitiveDef.targets !== undefined ? addMorphTargets( geometry, primitiveDef.targets, parser ) : geometry; } ); } /** * @param {BufferGeometry} geometry * @param {Number} drawMode * @return {BufferGeometry} */ function toTrianglesDrawMode( geometry, drawMode ) { let index = geometry.getIndex(); // generate index if not present if ( index === null ) { const indices = []; const position = geometry.getAttribute( 'position' ); if ( position !== undefined ) { for ( let i = 0; i < position.count; i ++ ) { indices.push( i ); } geometry.setIndex( indices ); index = geometry.getIndex(); } else { console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' ); return geometry; } } // const numberOfTriangles = index.count - 2; const newIndices = []; if ( drawMode === TriangleFanDrawMode ) { // gl.TRIANGLE_FAN for ( let i = 1; i <= numberOfTriangles; i ++ ) { newIndices.push( index.getX( 0 ) ); newIndices.push( index.getX( i ) ); newIndices.push( index.getX( i + 1 ) ); } } else { // gl.TRIANGLE_STRIP for ( let i = 0; i < numberOfTriangles; i ++ ) { if ( i % 2 === 0 ) { newIndices.push( index.getX( i ) ); newIndices.push( index.getX( i + 1 ) ); newIndices.push( index.getX( i + 2 ) ); } else { newIndices.push( index.getX( i + 2 ) ); newIndices.push( index.getX( i + 1 ) ); newIndices.push( index.getX( i ) ); } } } if ( ( newIndices.length / 3 ) !== numberOfTriangles ) { console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' ); } // build final geometry const newGeometry = geometry.clone(); newGeometry.setIndex( newIndices ); return newGeometry; } class p{constructor(){this._listeners={};}on(t,e,s){this._listeners[t]?this._listeners[t].push({callback:e,isOnce:s}):this._listeners[t]=[{callback:e,isOnce:s}];}off(t,e){if(!e)throw new Error("\u53D6\u6D88\u4E8B\u4EF6\u65F6\u9700\u8981\u4F20\u5165\u539F\u56DE\u8C03\u51FD\u6570");const s=this._listeners[t];if(s&&s.length>0){for(let i=0;i0)for(let i=0;i{u$1(t);});}function u$1(l){const t=s=>{s.geometry&&s.geometry.dispose(),s.material&&s.material.dispose&&s.material.dispose(),s.material.texture&&s.material.texture.dispose&&s.material.texture.dispose();},e=s=>{let i=s.children.filter(o=>o);i.forEach(o=>{o.children.length?e(o):o.isMesh&&t(o);}),i=null;};e(l);}class M extends p{constructor(t,e){super(),this.frameTimer=-1,this.needsUpdate=!1,e=e||{},this.customCoords=t.customCoords,this.center=e.customCoordsCenter||t.getCenter().toArray(),this.customCoords.lngLatsToCoords([this.center]);const s={zooms:[2,20],opacity:1,alpha:!1,antialias:!1,visible:!0,zIndex:120};this.options=Object.assign({},s,e),this.map=t,this.init();}init(){const t=this.map,e=this.options,s={zooms:e.zooms,opacity:e.opacity,visible:e.visible,zIndex:e.zIndex,init:i=>{const o=t.getContainer(),n=o.offsetWidth,r=o.offsetHeight;let a;t.getView().type==="3D"?a=new PerspectiveCamera(60,n/r,100,1<<30):a=new OrthographicCamera(n/-2,n/2,r/2,r/-2,1,1e3);const h=new WebGLRenderer({context:i,alpha:e.alpha,antialias:e.antialias});h.setSize(n,r),h.autoClear=!1;const c=new Scene;this.camera=a,this.renderer=h,this.scene=c,e.onInit&&e.onInit(h,c,a),this.animate(),this.emit("complete");},render:()=>{var i,o,n;(i=this.renderer)===null||i===void 0||i.resetState(),this.customCoords.setCenter(this.center);const r=this.camera;if(t.getView().type==="3D"){const{near:a,far:h,fov:c,up:m,lookAt:d,position:f}=this.customCoords.getCameraParams();r.near=a,r.far=h,r.fov=c,r.position.set(...f),r.up.set(...m),r.lookAt(...d),r.updateProjectionMatrix();}else {const{top:a,bottom:h,left:c,right:m,position:d}=this.customCoords.getCameraParams();r.top=a,r.bottom=h,r.left=c,r.right=m,r.position.set(...d),r.updateProjectionMatrix();}this.camera=r,e.onRender?e.onRender(this.renderer,this.scene,this.camera):(o=this.renderer)===null||o===void 0||o.render(this.scene,r),(n=this.renderer)===null||n===void 0||n.resetState();}};this.layer=new AMap.GLCustomLayer(s),this.layer.setMap(t);}update(){this.needsUpdate=!0;}animate(){this.needsUpdate&&(this.refreshMap(),this.needsUpdate=!1),this.frameTimer=requestAnimationFrame(()=>{this.animate();});}refreshMap(){this.map&&this.map.render();}convertLngLat(t){return this.customCoords.lngLatsToCoords([t])[0]}add(t){var e;(e=this.scene)===null||e===void 0||e.add(t),this.refreshMap();}remove(t){var e;(e=this.scene)===null||e===void 0||e.remove(t),this.refreshMap();}getScene(){return this.scene}getCamera(){return this.camera}getRender(){return this.renderer}destroy(){var t;cancelAnimationFrame(this.frameTimer),this.layer.setMap(null),this.customCoords=null,z(this.scene),this.scene=void 0,this.camera=void 0,(t=this.renderer)===null||t===void 0||t.dispose(),this.renderer=void 0,this.layer=null,this.map=null,Cache.clear(),this.options=null;}getMap(){return this.map?this.map:null}getOpacity(){return this.layer.getOpacity()}setOpacity(t){this.layer.setOpacity(t);}getZooms(){return this.layer.getZooms()}setZooms(t){this.layer.setZooms(t);}getzIndex(){return this.layer.getzIndex()}setzIndex(t){this.layer.setzIndex(t);}show(){this.layer.show();}hide(){this.layer.hide();}}class w extends p{constructor(t,e){super(),this.linerAnimationFrame=-1,this.layer=t,e=Object.assign({},{url:"",position:[0,0],height:0,rotation:{x:0,y:0,z:0},scale:1,angle:0},e),this.init(e);}init(t){new GLTFLoader().load(t.url,e=>{const s=e.scene,i=e.animations;this.layer.add(s),this.object=s,this.animations=i,this.setScale(t.scale),this.setRotation(t.rotation),this.setAngle(t.angle),this.setPosition(t.position),this.setHeight(t.height),t.onLoaded&&t.onLoaded(s,i),this.emit("complete",{target:s,animations:i});});}setScale(t){let e;typeof t=="number"?e={x:t,y:t,z:t}:e=t,this.object.scale.set(e.x,e.y,e.z),this.refresh();}setPosition(t){const e=this.layer.convertLngLat(t);this.object.position.setX(e[0]),this.object.position.setY(e[1]),this.refresh();}setRotation(t){if(t){const e=Math.PI/180*(t.x||0),s=Math.PI/180*(t.y||0),i=Math.PI/180*(t.z||0);this.object.rotation.set(e,s,i),this.refresh();}}setAngle(t){const e=this.object.rotation.x,s=this.object.rotation.z,i=Math.PI/180*t;this.object.rotation.set(e,i,s),this.refresh();}setHeight(t){t!==void 0&&(this.object.position.setZ(t),this.refresh());}getAnimations(){return this.animations}getObject(){return this.object}refresh(){this.layer.update();}show(){this.object.visible=!0,this.refresh();}hide(){this.object.visible=!1,this.refresh();}animate(t){this.linerAnimationFrame=requestAnimationFrame(()=>{this.animate(t);}),t();}startAnimations(){if(this.animations){const t=this.animations,e=new AnimationMixer(this.object),s={};for(let o=0;o{const o=i.getDelta();e&&e.update(o),this.refresh();});}}stopAnimations(){cancelAnimationFrame(this.linerAnimationFrame);}remove(){this.object&&this.layer.remove(this.object);}destroy(){this.stopAnimations(),this.object&&(u$1(this.object),this.object=null,this.layer=null);}} class RenderPass extends Pass { constructor( scene, camera, overrideMaterial, clearColor, clearAlpha ) { super(); this.scene = scene; this.camera = camera; this.overrideMaterial = overrideMaterial; this.clearColor = clearColor; this.clearAlpha = ( clearAlpha !== undefined ) ? clearAlpha : 0; this.clear = true; this.clearDepth = false; this.needsSwap = false; this._oldClearColor = new Color$2(); } render( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) { const oldAutoClear = renderer.autoClear; renderer.autoClear = false; let oldClearAlpha, oldOverrideMaterial; if ( this.overrideMaterial !== undefined ) { oldOverrideMaterial = this.scene.overrideMaterial; this.scene.overrideMaterial = this.overrideMaterial; } if ( this.clearColor ) { renderer.getClearColor( this._oldClearColor ); oldClearAlpha = renderer.getClearAlpha(); renderer.setClearColor( this.clearColor, this.clearAlpha ); } if ( this.clearDepth ) { renderer.clearDepth(); } renderer.setRenderTarget( this.renderToScreen ? null : readBuffer ); // TODO: Avoid using autoClear properties, see https://github.com/mrdoob/three.js/pull/15571#issuecomment-465669600 if ( this.clear ) renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); renderer.render( this.scene, this.camera ); if ( this.clearColor ) { renderer.setClearColor( this._oldClearColor, oldClearAlpha ); } if ( this.overrideMaterial !== undefined ) { this.scene.overrideMaterial = oldOverrideMaterial; } renderer.autoClear = oldAutoClear; } } class ThreeRenderPass extends RenderPass { constructor(scene, camera, overrideMaterial, clearColor, clearAlpha) { super(scene, camera, overrideMaterial, clearColor, clearAlpha); this.clear = false; } setCamera(camera) { this.camera = camera; } } class CustomThreeLayer extends M { constructor(map, options, callback) { options.onInit = (render, scene) => { this.raycaster = new Raycaster(); if (options.axesHelper) { const axesHelper = new AxesHelper(1e4); scene.add(axesHelper); } this.createEffect(); this.createLights(options.lights || []); this.createHDR(options.hdr); this.bindEvents(); if (callback) { callback(); } }; super(map, options); this.lightTypes = { AmbientLight, DirectionalLight, HemisphereLight, PointLight, RectAreaLight, SpotLight }; this.passNum = 0; this.passList = []; this.mouse = new Vector2(); } createEffect() { var _a; const size = (_a = this.renderer) == null ? void 0 : _a.getSize(new Vector2()); this.effectComposer = new EffectComposer(this.renderer); this.effectComposer.setSize(size == null ? void 0 : size.x, size == null ? void 0 : size.y); const renderPass = new ThreeRenderPass(this.scene, this.camera); this.renderPass = renderPass; this.effectComposer.addPass(renderPass); } addPass(pass) { this.effectComposer.addPass(pass); this.passNum++; this.passList.push(pass); } removePass(pass) { const index = this.passList.indexOf(pass); if (index !== -1) { this.passList.splice(index, 1); } this.effectComposer.removePass(pass); this.passNum--; } createLights(lights) { const defaultLightOptions = { type: "DirectionalLight", args: [] }; if (lights && lights.length > 0) { lights.forEach((lightOptions) => { lightOptions = merge$1({}, defaultLightOptions, lightOptions); if (this.lightTypes[lightOptions.type]) { const light = new this.lightTypes[lightOptions.type](...lightOptions.args); const position = lightOptions.position; const lookAt = lightOptions.lookAt; if (position) { light.position.set(position.x, position.y, position.z); } if (lookAt) { light.lookAt(lookAt.x, lookAt.y, lookAt.z); } this.add(light); } else { console.warn("\u5F53\u524D\u8BBE\u7F6E\u7684\u706F\u5149\u7C7B\u578B\u4E0D\u5B58\u5728"); } }); } } createHDR(hdr) { if (!hdr) { return; } const options = merge$1({}, { urls: [], path: "/", exposure: 1 }, hdr); const render = this.renderer; render.physicallyCorrectLights = true; render.outputEncoding = sRGBEncoding; render.toneMappingExposure = options.exposure; const hdrUrls = options.urls; let pmremGenerator = new PMREMGenerator(render); pmremGenerator.compileCubemapShader(); const hdrCubeMap = new HDRCubeTextureLoader().setPath(options.path).load(hdrUrls, () => { const hdrCubeRenderTarget = pmremGenerator.fromCubemap(hdrCubeMap); hdrCubeMap.magFilter = LinearFilter; hdrCubeMap.needsUpdate = true; this.envMap = hdrCubeRenderTarget ? hdrCubeRenderTarget.texture : null; this.addEnvMap(this.scene); pmremGenerator.dispose(); pmremGenerator = null; this.refreshMap(); }); } addEnvMap(object) { this.scene.environment = this.envMap; } bindEvents() { this.clickFun = v(this._clickEvent, this); this.hoverFun = v(this._hoverEvent, this); this.map.on("click", this.clickFun); this.map.on("mousemove", this.hoverFun); } ubBindEvents() { this.map.off("click", this.clickFun); this.map.off("mousemove", this.hoverFun); } _clickEvent(e) { const group = this._intersectGltf(e); if (group) { group.$vue.$emit("click", group); } } _hoverEvent(e) { var _a; const group = this._intersectGltf(e); if (group) { if (!group.isHover) { group.isHover = true; group.$vue.$emit("mouseover", group); } } else { const children = (_a = this.scene) == null ? void 0 : _a.children; children == null ? void 0 : children.forEach((object) => { if (object.isCustomGroup && object.isHover === true) { object.isHover = false; object.$vue.$emit("mouseout", object); } }); } } _intersectGltf(e) { var _a, _b; const client = this.map.getContainer(); const getBoundingClientRect = client.getBoundingClientRect(); const offsetTop = getBoundingClientRect.top + window.pageYOffset - client.clientTop; const offsetLeft = getBoundingClientRect.left + window.pageXOffset - client.clientLeft; this.mouse.x = (e.originEvent.x + window.pageXOffset - offsetLeft) / getBoundingClientRect.width * 2 - 1; this.mouse.y = -((e.originEvent.y + window.pageYOffset - offsetTop) / getBoundingClientRect.height) * 2 + 1; const camera = this.camera; (_a = this.raycaster) == null ? void 0 : _a.setFromCamera(this.mouse, camera); const intersects = (_b = this.raycaster) == null ? void 0 : _b.intersectObjects([this.scene], true); const length = intersects == null ? void 0 : intersects.length; if (length && length > 0) { let group = null; for (let i = 0; i < length; i++) { const object = intersects[i]; group = this._getGroup(object.object); if (group !== null) { break; } } return group; } return null; } _getGroup(object) { if (!object) { return null; } if (object.isCustomGroup) { return object; } return this._getGroup(object.parent); } destroy() { this.ubBindEvents(); if (this.envMap) { this.envMap.dispose(); this.envMap = null; } super.destroy(); this.lightTypes = null; this.raycaster = void 0; } } var CustomThreeLayer$1 = CustomThreeLayer; var script$h = defineComponent({ name: "ElAmapLayerThree", mixins: [registerMixin], provide() { return { parentInstance: this }; }, props: { lights: { type: Array, default() { return []; } }, hdr: { type: Object }, zooms: { type: Array, default() { return [2, 20]; } }, opacity: { type: Number }, alpha: { type: Boolean, default: false }, antialias: { type: Boolean, default: false }, customCoordsCenter: { type: Array, default() { return null; } }, axesHelper: { type: Boolean, default: false } }, data() { return {}; }, methods: { __initComponent(options) { return new Promise((resolve) => { this.$amapComponent = new CustomThreeLayer$1(this.$parentComponent, options, () => { resolve(); }); }); }, destroyComponent() { this.$amapComponent.destroy(); this.$amapComponent = null; this.$parentComponent = null; }, convertLngLat(lnglat) { return this.$amapComponent.convertLngLat(lnglat); }, addObject(object) { this.$amapComponent.addObject(object); }, removeObject(object) { this.$amapComponent.removeObject(object); }, addEnvMap(obj) { this.$amapComponent.addEnvMap(obj); }, $$getScene() { return this.$amapComponent.getScene(); }, $$getRender() { return this.$amapComponent.getRender(); }, $$refresh() { this.$amapComponent.refreshMap(); } } }); function render$2(_ctx, _cache, $props, $setup, $data, $options) { return renderSlot(_ctx.$slots, "default"); } script$h.render = render$2; script$h.__file = "src/packages/three/ThreeLayer/ThreeLayer.vue"; const ElAmapLayerThree = withInstall(script$h); /** * The Ease class provides a collection of easing functions for use with tween.js. */ var Easing = { Linear: { None: function (amount) { return amount; }, }, Quadratic: { In: function (amount) { return amount * amount; }, Out: function (amount) { return amount * (2 - amount); }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount; } return -0.5 * (--amount * (amount - 2) - 1); }, }, Cubic: { In: function (amount) { return amount * amount * amount; }, Out: function (amount) { return --amount * amount * amount + 1; }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount * amount; } return 0.5 * ((amount -= 2) * amount * amount + 2); }, }, Quartic: { In: function (amount) { return amount * amount * amount * amount; }, Out: function (amount) { return 1 - --amount * amount * amount * amount; }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount * amount * amount; } return -0.5 * ((amount -= 2) * amount * amount * amount - 2); }, }, Quintic: { In: function (amount) { return amount * amount * amount * amount * amount; }, Out: function (amount) { return --amount * amount * amount * amount * amount + 1; }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount * amount * amount * amount; } return 0.5 * ((amount -= 2) * amount * amount * amount * amount + 2); }, }, Sinusoidal: { In: function (amount) { return 1 - Math.cos((amount * Math.PI) / 2); }, Out: function (amount) { return Math.sin((amount * Math.PI) / 2); }, InOut: function (amount) { return 0.5 * (1 - Math.cos(Math.PI * amount)); }, }, Exponential: { In: function (amount) { return amount === 0 ? 0 : Math.pow(1024, amount - 1); }, Out: function (amount) { return amount === 1 ? 1 : 1 - Math.pow(2, -10 * amount); }, InOut: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } if ((amount *= 2) < 1) { return 0.5 * Math.pow(1024, amount - 1); } return 0.5 * (-Math.pow(2, -10 * (amount - 1)) + 2); }, }, Circular: { In: function (amount) { return 1 - Math.sqrt(1 - amount * amount); }, Out: function (amount) { return Math.sqrt(1 - --amount * amount); }, InOut: function (amount) { if ((amount *= 2) < 1) { return -0.5 * (Math.sqrt(1 - amount * amount) - 1); } return 0.5 * (Math.sqrt(1 - (amount -= 2) * amount) + 1); }, }, Elastic: { In: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } return -Math.pow(2, 10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI); }, Out: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } return Math.pow(2, -10 * amount) * Math.sin((amount - 0.1) * 5 * Math.PI) + 1; }, InOut: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } amount *= 2; if (amount < 1) { return -0.5 * Math.pow(2, 10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI); } return 0.5 * Math.pow(2, -10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI) + 1; }, }, Back: { In: function (amount) { var s = 1.70158; return amount * amount * ((s + 1) * amount - s); }, Out: function (amount) { var s = 1.70158; return --amount * amount * ((s + 1) * amount + s) + 1; }, InOut: function (amount) { var s = 1.70158 * 1.525; if ((amount *= 2) < 1) { return 0.5 * (amount * amount * ((s + 1) * amount - s)); } return 0.5 * ((amount -= 2) * amount * ((s + 1) * amount + s) + 2); }, }, Bounce: { In: function (amount) { return 1 - Easing.Bounce.Out(1 - amount); }, Out: function (amount) { if (amount < 1 / 2.75) { return 7.5625 * amount * amount; } else if (amount < 2 / 2.75) { return 7.5625 * (amount -= 1.5 / 2.75) * amount + 0.75; } else if (amount < 2.5 / 2.75) { return 7.5625 * (amount -= 2.25 / 2.75) * amount + 0.9375; } else { return 7.5625 * (amount -= 2.625 / 2.75) * amount + 0.984375; } }, InOut: function (amount) { if (amount < 0.5) { return Easing.Bounce.In(amount * 2) * 0.5; } return Easing.Bounce.Out(amount * 2 - 1) * 0.5 + 0.5; }, }, }; var now; // Include a performance.now polyfill. // In node.js, use process.hrtime. // eslint-disable-next-line // @ts-ignore if (typeof self === 'undefined' && typeof process !== 'undefined' && process.hrtime) { now = function () { // eslint-disable-next-line // @ts-ignore var time = process.hrtime(); // Convert [seconds, nanoseconds] to milliseconds. return time[0] * 1000 + time[1] / 1000000; }; } // In a browser, use self.performance.now if it is available. else if (typeof self !== 'undefined' && self.performance !== undefined && self.performance.now !== undefined) { // This must be bound, because directly assigning this function // leads to an invocation exception in Chrome. now = self.performance.now.bind(self.performance); } // Use Date.now if it is available. else if (Date.now !== undefined) { now = Date.now; } // Otherwise, use 'new Date().getTime()'. else { now = function () { return new Date().getTime(); }; } var now$1 = now; /** * Controlling groups of tweens * * Using the TWEEN singleton to manage your tweens can cause issues in large apps with many components. * In these cases, you may want to create your own smaller groups of tween */ var Group = /** @class */ (function () { function Group() { this._tweens = {}; this._tweensAddedDuringUpdate = {}; } Group.prototype.getAll = function () { var _this = this; return Object.keys(this._tweens).map(function (tweenId) { return _this._tweens[tweenId]; }); }; Group.prototype.removeAll = function () { this._tweens = {}; }; Group.prototype.add = function (tween) { this._tweens[tween.getId()] = tween; this._tweensAddedDuringUpdate[tween.getId()] = tween; }; Group.prototype.remove = function (tween) { delete this._tweens[tween.getId()]; delete this._tweensAddedDuringUpdate[tween.getId()]; }; Group.prototype.update = function (time, preserve) { if (time === void 0) { time = now$1(); } if (preserve === void 0) { preserve = false; } var tweenIds = Object.keys(this._tweens); if (tweenIds.length === 0) { return false; } // Tweens are updated in "batches". If you add a new tween during an // update, then the new tween will be updated in the next batch. // If you remove a tween during an update, it may or may not be updated. // However, if the removed tween was added during the current batch, // then it will not be updated. while (tweenIds.length > 0) { this._tweensAddedDuringUpdate = {}; for (var i = 0; i < tweenIds.length; i++) { var tween = this._tweens[tweenIds[i]]; var autoStart = !preserve; if (tween && tween.update(time, autoStart) === false && !preserve) { delete this._tweens[tweenIds[i]]; } } tweenIds = Object.keys(this._tweensAddedDuringUpdate); } return true; }; return Group; }()); /** * */ var Interpolation = { Linear: function (v, k) { var m = v.length - 1; var f = m * k; var i = Math.floor(f); var fn = Interpolation.Utils.Linear; if (k < 0) { return fn(v[0], v[1], f); } if (k > 1) { return fn(v[m], v[m - 1], m - f); } return fn(v[i], v[i + 1 > m ? m : i + 1], f - i); }, Bezier: function (v, k) { var b = 0; var n = v.length - 1; var pw = Math.pow; var bn = Interpolation.Utils.Bernstein; for (var i = 0; i <= n; i++) { b += pw(1 - k, n - i) * pw(k, i) * v[i] * bn(n, i); } return b; }, CatmullRom: function (v, k) { var m = v.length - 1; var f = m * k; var i = Math.floor(f); var fn = Interpolation.Utils.CatmullRom; if (v[0] === v[m]) { if (k < 0) { i = Math.floor((f = m * (1 + k))); } return fn(v[(i - 1 + m) % m], v[i], v[(i + 1) % m], v[(i + 2) % m], f - i); } else { if (k < 0) { return v[0] - (fn(v[0], v[0], v[1], v[1], -f) - v[0]); } if (k > 1) { return v[m] - (fn(v[m], v[m], v[m - 1], v[m - 1], f - m) - v[m]); } return fn(v[i ? i - 1 : 0], v[i], v[m < i + 1 ? m : i + 1], v[m < i + 2 ? m : i + 2], f - i); } }, Utils: { Linear: function (p0, p1, t) { return (p1 - p0) * t + p0; }, Bernstein: function (n, i) { var fc = Interpolation.Utils.Factorial; return fc(n) / fc(i) / fc(n - i); }, Factorial: (function () { var a = [1]; return function (n) { var s = 1; if (a[n]) { return a[n]; } for (var i = n; i > 1; i--) { s *= i; } a[n] = s; return s; }; })(), CatmullRom: function (p0, p1, p2, p3, t) { var v0 = (p2 - p0) * 0.5; var v1 = (p3 - p1) * 0.5; var t2 = t * t; var t3 = t * t2; return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1; }, }, }; /** * Utils */ var Sequence = /** @class */ (function () { function Sequence() { } Sequence.nextId = function () { return Sequence._nextId++; }; Sequence._nextId = 0; return Sequence; }()); var mainGroup = new Group(); /** * Tween.js - Licensed under the MIT license * https://github.com/tweenjs/tween.js * ---------------------------------------------- * * See https://github.com/tweenjs/tween.js/graphs/contributors for the full list of contributors. * Thank you all, you're awesome! */ var Tween = /** @class */ (function () { function Tween(_object, _group) { if (_group === void 0) { _group = mainGroup; } this._object = _object; this._group = _group; this._isPaused = false; this._pauseStart = 0; this._valuesStart = {}; this._valuesEnd = {}; this._valuesStartRepeat = {}; this._duration = 1000; this._initialRepeat = 0; this._repeat = 0; this._yoyo = false; this._isPlaying = false; this._reversed = false; this._delayTime = 0; this._startTime = 0; this._easingFunction = Easing.Linear.None; this._interpolationFunction = Interpolation.Linear; this._chainedTweens = []; this._onStartCallbackFired = false; this._id = Sequence.nextId(); this._isChainStopped = false; this._goToEnd = false; } Tween.prototype.getId = function () { return this._id; }; Tween.prototype.isPlaying = function () { return this._isPlaying; }; Tween.prototype.isPaused = function () { return this._isPaused; }; Tween.prototype.to = function (properties, duration) { // TODO? restore this, then update the 07_dynamic_to example to set fox // tween's to on each update. That way the behavior is opt-in (there's // currently no opt-out). // for (const prop in properties) this._valuesEnd[prop] = properties[prop] this._valuesEnd = Object.create(properties); if (duration !== undefined) { this._duration = duration; } return this; }; Tween.prototype.duration = function (d) { this._duration = d; return this; }; Tween.prototype.start = function (time) { if (this._isPlaying) { return this; } // eslint-disable-next-line this._group && this._group.add(this); this._repeat = this._initialRepeat; if (this._reversed) { // If we were reversed (f.e. using the yoyo feature) then we need to // flip the tween direction back to forward. this._reversed = false; for (var property in this._valuesStartRepeat) { this._swapEndStartRepeatValues(property); this._valuesStart[property] = this._valuesStartRepeat[property]; } } this._isPlaying = true; this._isPaused = false; this._onStartCallbackFired = false; this._isChainStopped = false; this._startTime = time !== undefined ? (typeof time === 'string' ? now$1() + parseFloat(time) : time) : now$1(); this._startTime += this._delayTime; this._setupProperties(this._object, this._valuesStart, this._valuesEnd, this._valuesStartRepeat); return this; }; Tween.prototype._setupProperties = function (_object, _valuesStart, _valuesEnd, _valuesStartRepeat) { for (var property in _valuesEnd) { var startValue = _object[property]; var startValueIsArray = Array.isArray(startValue); var propType = startValueIsArray ? 'array' : typeof startValue; var isInterpolationList = !startValueIsArray && Array.isArray(_valuesEnd[property]); // If `to()` specifies a property that doesn't exist in the source object, // we should not set that property in the object if (propType === 'undefined' || propType === 'function') { continue; } // Check if an Array was provided as property value if (isInterpolationList) { var endValues = _valuesEnd[property]; if (endValues.length === 0) { continue; } // handle an array of relative values endValues = endValues.map(this._handleRelativeValue.bind(this, startValue)); // Create a local copy of the Array with the start value at the front _valuesEnd[property] = [startValue].concat(endValues); } // handle the deepness of the values if ((propType === 'object' || startValueIsArray) && startValue && !isInterpolationList) { _valuesStart[property] = startValueIsArray ? [] : {}; // eslint-disable-next-line for (var prop in startValue) { // eslint-disable-next-line // @ts-ignore FIXME? _valuesStart[property][prop] = startValue[prop]; } _valuesStartRepeat[property] = startValueIsArray ? [] : {}; // TODO? repeat nested values? And yoyo? And array values? // eslint-disable-next-line // @ts-ignore FIXME? this._setupProperties(startValue, _valuesStart[property], _valuesEnd[property], _valuesStartRepeat[property]); } else { // Save the starting value, but only once. if (typeof _valuesStart[property] === 'undefined') { _valuesStart[property] = startValue; } if (!startValueIsArray) { // eslint-disable-next-line // @ts-ignore FIXME? _valuesStart[property] *= 1.0; // Ensures we're using numbers, not strings } if (isInterpolationList) { // eslint-disable-next-line // @ts-ignore FIXME? _valuesStartRepeat[property] = _valuesEnd[property].slice().reverse(); } else { _valuesStartRepeat[property] = _valuesStart[property] || 0; } } } }; Tween.prototype.stop = function () { if (!this._isChainStopped) { this._isChainStopped = true; this.stopChainedTweens(); } if (!this._isPlaying) { return this; } // eslint-disable-next-line this._group && this._group.remove(this); this._isPlaying = false; this._isPaused = false; if (this._onStopCallback) { this._onStopCallback(this._object); } return this; }; Tween.prototype.end = function () { this._goToEnd = true; this.update(Infinity); return this; }; Tween.prototype.pause = function (time) { if (time === void 0) { time = now$1(); } if (this._isPaused || !this._isPlaying) { return this; } this._isPaused = true; this._pauseStart = time; // eslint-disable-next-line this._group && this._group.remove(this); return this; }; Tween.prototype.resume = function (time) { if (time === void 0) { time = now$1(); } if (!this._isPaused || !this._isPlaying) { return this; } this._isPaused = false; this._startTime += time - this._pauseStart; this._pauseStart = 0; // eslint-disable-next-line this._group && this._group.add(this); return this; }; Tween.prototype.stopChainedTweens = function () { for (var i = 0, numChainedTweens = this._chainedTweens.length; i < numChainedTweens; i++) { this._chainedTweens[i].stop(); } return this; }; Tween.prototype.group = function (group) { this._group = group; return this; }; Tween.prototype.delay = function (amount) { this._delayTime = amount; return this; }; Tween.prototype.repeat = function (times) { this._initialRepeat = times; this._repeat = times; return this; }; Tween.prototype.repeatDelay = function (amount) { this._repeatDelayTime = amount; return this; }; Tween.prototype.yoyo = function (yoyo) { this._yoyo = yoyo; return this; }; Tween.prototype.easing = function (easingFunction) { this._easingFunction = easingFunction; return this; }; Tween.prototype.interpolation = function (interpolationFunction) { this._interpolationFunction = interpolationFunction; return this; }; Tween.prototype.chain = function () { var tweens = []; for (var _i = 0; _i < arguments.length; _i++) { tweens[_i] = arguments[_i]; } this._chainedTweens = tweens; return this; }; Tween.prototype.onStart = function (callback) { this._onStartCallback = callback; return this; }; Tween.prototype.onUpdate = function (callback) { this._onUpdateCallback = callback; return this; }; Tween.prototype.onRepeat = function (callback) { this._onRepeatCallback = callback; return this; }; Tween.prototype.onComplete = function (callback) { this._onCompleteCallback = callback; return this; }; Tween.prototype.onStop = function (callback) { this._onStopCallback = callback; return this; }; /** * @returns true if the tween is still playing after the update, false * otherwise (calling update on a paused tween still returns true because * it is still playing, just paused). */ Tween.prototype.update = function (time, autoStart) { if (time === void 0) { time = now$1(); } if (autoStart === void 0) { autoStart = true; } if (this._isPaused) return true; var property; var elapsed; var endTime = this._startTime + this._duration; if (!this._goToEnd && !this._isPlaying) { if (time > endTime) return false; if (autoStart) this.start(time); } this._goToEnd = false; if (time < this._startTime) { return true; } if (this._onStartCallbackFired === false) { if (this._onStartCallback) { this._onStartCallback(this._object); } this._onStartCallbackFired = true; } elapsed = (time - this._startTime) / this._duration; elapsed = this._duration === 0 || elapsed > 1 ? 1 : elapsed; var value = this._easingFunction(elapsed); // properties transformations this._updateProperties(this._object, this._valuesStart, this._valuesEnd, value); if (this._onUpdateCallback) { this._onUpdateCallback(this._object, elapsed); } if (elapsed === 1) { if (this._repeat > 0) { if (isFinite(this._repeat)) { this._repeat--; } // Reassign starting values, restart by making startTime = now for (property in this._valuesStartRepeat) { if (!this._yoyo && typeof this._valuesEnd[property] === 'string') { this._valuesStartRepeat[property] = // eslint-disable-next-line // @ts-ignore FIXME? this._valuesStartRepeat[property] + parseFloat(this._valuesEnd[property]); } if (this._yoyo) { this._swapEndStartRepeatValues(property); } this._valuesStart[property] = this._valuesStartRepeat[property]; } if (this._yoyo) { this._reversed = !this._reversed; } if (this._repeatDelayTime !== undefined) { this._startTime = time + this._repeatDelayTime; } else { this._startTime = time + this._delayTime; } if (this._onRepeatCallback) { this._onRepeatCallback(this._object); } return true; } else { if (this._onCompleteCallback) { this._onCompleteCallback(this._object); } for (var i = 0, numChainedTweens = this._chainedTweens.length; i < numChainedTweens; i++) { // Make the chained tweens start exactly at the time they should, // even if the `update()` method was called way past the duration of the tween this._chainedTweens[i].start(this._startTime + this._duration); } this._isPlaying = false; return false; } } return true; }; Tween.prototype._updateProperties = function (_object, _valuesStart, _valuesEnd, value) { for (var property in _valuesEnd) { // Don't update properties that do not exist in the source object if (_valuesStart[property] === undefined) { continue; } var start = _valuesStart[property] || 0; var end = _valuesEnd[property]; var startIsArray = Array.isArray(_object[property]); var endIsArray = Array.isArray(end); var isInterpolationList = !startIsArray && endIsArray; if (isInterpolationList) { _object[property] = this._interpolationFunction(end, value); } else if (typeof end === 'object' && end) { // eslint-disable-next-line // @ts-ignore FIXME? this._updateProperties(_object[property], start, end, value); } else { // Parses relative end values with start as base (e.g.: +10, -3) end = this._handleRelativeValue(start, end); // Protect against non numeric properties. if (typeof end === 'number') { // eslint-disable-next-line // @ts-ignore FIXME? _object[property] = start + (end - start) * value; } } } }; Tween.prototype._handleRelativeValue = function (start, end) { if (typeof end !== 'string') { return end; } if (end.charAt(0) === '+' || end.charAt(0) === '-') { return start + parseFloat(end); } else { return parseFloat(end); } }; Tween.prototype._swapEndStartRepeatValues = function (property) { var tmp = this._valuesStartRepeat[property]; var endValue = this._valuesEnd[property]; if (typeof endValue === 'string') { this._valuesStartRepeat[property] = this._valuesStartRepeat[property] + parseFloat(endValue); } else { this._valuesStartRepeat[property] = this._valuesEnd[property]; } this._valuesEnd[property] = tmp; }; return Tween; }()); /** * Controlling groups of tweens * * Using the TWEEN singleton to manage your tweens can cause issues in large apps with many components. * In these cases, you may want to create your own smaller groups of tweens. */ var TWEEN = mainGroup; // This is the best way to export things in a way that's compatible with both ES // Modules and CommonJS, without build hacks, and so as not to break the // existing API. // https://github.com/rollup/rollup/issues/1961#issuecomment-423037881 TWEEN.getAll.bind(TWEEN); TWEEN.removeAll.bind(TWEEN); TWEEN.add.bind(TWEEN); TWEEN.remove.bind(TWEEN); TWEEN.update.bind(TWEEN); class CustomThreeGltf extends w { constructor(layer, options, $vue, callback) { options.onLoaded = (gltf) => { gltf.isCustomGroup = true; gltf.$vue = $vue; this.moveAnimation = options.moveAnimation; if (callback) { callback(); } }; super(layer, options); this.moveFrame = -1; this.angleFrame = -1; } setScale(scale) { let scaleArray; if (typeof scale === "number") { scaleArray = [scale, scale, scale]; } else { scaleArray = scale; } this.object.scale.set(...scaleArray); } setPosition(position) { const positionConvert = this.layer.convertLngLat(position); if (!this.moveAnimation || !this.moveAnimation.smooth) { this._updatePosition(positionConvert); this.prePosition = positionConvert; } else { if (!this.prePosition) { this._updatePosition(positionConvert); this.prePosition = positionConvert; } else { this._updatePositionTween(positionConvert); } } } _updatePositionTween(newPosition) { var _a; if (!this.prePosition) { return; } if (this.prePositionTween) { this.prePositionTween.end(); } const preObj = { x: this.prePosition[0], y: this.prePosition[1] }; this._stopMoveAnimation(); const duration = ((_a = this.moveAnimation) == null ? void 0 : _a.duration) || 1e3; this.prePositionTween = new Tween(preObj).to({ x: newPosition[0], y: newPosition[1] }).duration(duration).easing(Easing.Linear.None).onUpdate(() => { this._updatePosition([preObj.x, preObj.y]); }).start(); this._moveAnimate(); this.prePosition = newPosition; } _moveAnimate() { var _a; (_a = this.prePositionTween) == null ? void 0 : _a.update(); this.moveFrame = requestAnimationFrame(() => { this._moveAnimate(); }); } _stopMoveAnimation() { cancelAnimationFrame(this.moveFrame); } _updatePosition(position) { this.object.position.setX(position[0]); this.object.position.setY(position[1]); this.refresh(); } setAngle(angle) { if (!this.moveAnimation || !this.moveAnimation.smooth) { this._updateAngle(angle); this.preAngle = angle; } else { if (this.preAngle === void 0) { this._updateAngle(angle); this.preAngle = angle; } else { this._updateAngleTween(angle); } } } _updateAngle(angle) { const x = this.object.rotation.x; const z = this.object.rotation.z; const y = Math.PI / 180 * angle; this.object.rotation.set(x, y, z); this.refresh(); } _updateAngleTween(angle) { var _a; if (this.preAngle === void 0) { return; } if (this.preAngleTween) { this.preAngleTween.end(); } const preObj = { angle: this.preAngle }; this._stopAngleAnimation(); const duration = ((_a = this.moveAnimation) == null ? void 0 : _a.duration) || 1e3; this.preAngleTween = new Tween(preObj).to({ angle }).duration(duration).easing(Easing.Linear.None).onUpdate(() => { this._updateAngle(preObj.angle); }).onComplete(() => { this._stopAngleAnimation(); }).start(); this._angleAnimate(); this.preAngle = angle; } _angleAnimate() { var _a; (_a = this.preAngleTween) == null ? void 0 : _a.update(); this.angleFrame = requestAnimationFrame(() => { this._angleAnimate(); }); } _stopAngleAnimation() { cancelAnimationFrame(this.angleFrame); } setMoveAnimation(move) { this.moveAnimation = move; } remove() { if (this.object) { this.layer.removeObject(this.object); } } destroy() { this._stopAngleAnimation(); this._stopMoveAnimation(); this.prePosition = void 0; this.preAngle = void 0; this.prePositionTween = void 0; this.preAngleTween = void 0; if (this.object) { this.object.$vue = null; } super.destroy(); } } var CustomThreeGltf$1 = CustomThreeGltf; var script$g = defineComponent({ name: "ElAmapThreeGltf", mixins: [registerMixin], props: { url: { type: String }, position: { type: Array }, height: { type: Number, default: 0 }, rotation: { type: Object }, scale: { type: [Number, Array], default: 1 }, angle: { type: Number, default: 0 }, moveAnimation: { type: Object } }, emits: ["click", "mousemove", "mouseover", "mouseout"], data() { return {}; }, methods: { __initComponent(options) { return new Promise((resolve) => { this.$amapComponent = new CustomThreeGltf$1(this.$parentComponent, options, this, () => { resolve(); }); }); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$amapComponent.remove(); } this.$amapComponent.destroy(); }, $$startAnimations() { this.$amapComponent.startAnimations(); }, $$stopAnimations() { this.$amapComponent.stopAnimations(); } }, render() { return null; } }); script$g.__file = "src/packages/three/ThreeGltf/ThreeGltf.vue"; const ElAmapThreeGltf = withInstall(script$g); var script$f = defineComponent({ name: "ElAmapControlGeolocation", mixins: [registerMixin], props: { position: { type: String }, offset: { type: Array }, borderColor: { type: String }, borderRadius: { type: String }, buttonSize: { type: String }, convert: { type: Boolean, default: true }, enableHighAccuracy: { type: Boolean, default: false }, timeout: { type: Number }, maximumAge: { type: Number }, showButton: { type: Boolean, default: true }, showCircle: { type: Boolean, default: true }, showMarker: { type: Boolean, default: true }, markerOptions: { type: Object }, circleOptions: { type: Object }, panToLocation: { type: Boolean, default: true }, zoomToAccuracy: { type: Boolean, default: true }, GeoLocationFirst: { type: Boolean, default: true }, noIpLocate: { type: Number }, noGeoLocation: { type: Number }, useNative: { type: Boolean, default: false }, getCityWhenFail: { type: Boolean, default: false }, needAddress: { type: Boolean, default: false }, extensions: { type: String, validator(value) { return ["base", "all"].indexOf(value) !== -1; } } }, emits: ["complete"], data() { return {}; }, methods: { __initComponent(options) { return new Promise((resolve) => { this.$parentComponent.plugin(["AMap.Geolocation"], () => { this.$amapComponent = new AMap.Geolocation(options); this.$parentComponent.addControl(this.$amapComponent); this.$amapComponent.on("complete", (e) => { this.$emit("complete", e); }); resolve(); }); }); }, destroyComponent() { if (this.$amapComponent && this.$parentComponent) { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeControl(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } } }, render() { return null; } }); script$f.__file = "src/packages/control/Geolocation/Geolocation.vue"; const ElAmapControlGeolocation = withInstall(script$f); var script$e = defineComponent({ name: "ElAmapCircleMarker", mixins: [registerMixin], props: { zIndex: { type: Number }, center: { type: Array, required: true }, bubble: { type: Boolean, default: false }, cursor: { type: String }, radius: { type: Number }, strokeColor: { type: String }, strokeOpacity: { type: Number }, strokeWeight: { type: Number }, fillColor: { type: String }, fillOpacity: { type: Number }, draggable: { type: Boolean, default: false }, extData: { type: Object } }, emits: ["update:center"], data() { return { converters: {}, handlers: {} }; }, methods: { __initComponent(options) { this.$parentComponent = this.parentInstance.$amapComponent; this.$amapComponent = new AMap.CircleMarker(options); this.$parentComponent.add(this.$amapComponent); this.bindModelEvents(); }, bindModelEvents() { this.$amapComponent.on("dragend", () => { this.emitPosition(); }); this.$amapComponent.on("touchend", () => { this.emitPosition(); }); }, emitPosition() { const center = this.$amapComponent.getCenter(); this.$emit("update:center", center.toArray()); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.remove(this.$amapComponent); } this.$amapComponent = null; }, __strokeColor(value) { this.$amapComponent.setOptions({ strokeColor: value }); }, __strokeOpacity(value) { this.$amapComponent.setOptions({ strokeOpacity: value }); }, __strokeWeight(value) { this.$amapComponent.setOptions({ strokeWeight: value }); }, __fillColor(value) { this.$amapComponent.setOptions({ fillColor: value }); }, __fillOpacity(value) { this.$amapComponent.setOptions({ fillOpacity: value }); } }, render() { return null; } }); script$e.__file = "src/packages/marker/CircleMarker/CircleMarker.vue"; const ElAmapCircleMarker = withInstall(script$e); var script$d = defineComponent({ name: "ElAmapLocaAmbientLight", mixins: [registerMixin], props: { color: { type: String }, intensity: { type: Number } }, data() { return { converters: {}, handlers: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.AmbientLight(options); this.$parentComponent.addLight(this.$amapComponent); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeLight(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$d.__file = "src/packages/loca/AmbientLight/AmbientLight.vue"; const ElAmapLocaAmbientLight = withInstall(script$d); var script$c = defineComponent({ name: "ElAmapLocaDirectionalLight", mixins: [registerMixin], props: { color: { type: String }, intensity: { type: Number }, position: { type: Array, required: true }, target: { type: Array } }, data() { return { converters: {}, handlers: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.DirectionalLight(options); this.$parentComponent.addLight(this.$amapComponent); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeLight(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$c.__file = "src/packages/loca/DirectionalLight/DirectionalLight.vue"; const ElAmapLocaDirectionalLight = withInstall(script$c); var script$b = defineComponent({ name: "ElAmapLocaPointLight", mixins: [registerMixin], props: { color: { type: String }, intensity: { type: Number }, position: { type: Array, required: true }, distance: { type: Number } }, data() { return { converters: {}, handlers: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.PointLight(options); this.$parentComponent.addLight(this.$amapComponent); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$parentComponent.removeLight(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$b.__file = "src/packages/loca/PointLight/PointLight.vue"; const ElAmapLocaPointLight = withInstall(script$b); class VideoLayer { constructor(options, video) { this.canPlay = false; this.frame = -1; const canvas = document.createElement("canvas"); this.video = video; video.src = options.url; video.autoplay = true; video.loop = options.loop; const layerOptions = { ...options, canvas }; this.canvas = canvas; this.context = canvas.getContext("2d"); this.layer = new AMap.CanvasLayer(layerOptions); this.initVideoEvents(); this.load(); } getLayer() { return this.layer; } initVideoEvents() { var _a; (_a = this.video) == null ? void 0 : _a.addEventListener("canplaythrough", () => { var _a2, _b; if (this.canvas) { this.canvas.width = (_a2 = this.video) == null ? void 0 : _a2.videoWidth; this.canvas.height = (_b = this.video) == null ? void 0 : _b.videoHeight; } this.canPlay = true; this.play(); }); } load() { var _a; (_a = this.video) == null ? void 0 : _a.load(); } play() { var _a; if (this.canPlay) { (_a = this.video) == null ? void 0 : _a.play(); this.stopRender(); this.render(); } } pause() { var _a; this.stopRender(); (_a = this.video) == null ? void 0 : _a.pause(); } stopRender() { if (this.frame) { cancelAnimationFrame(this.frame); } } render() { var _a, _b, _c, _d, _e, _f, _g, _h; this.frame = window.requestAnimationFrame(() => { this.render(); }); if ((_a = this.video) == null ? void 0 : _a.paused) { (_b = this.video) == null ? void 0 : _b.play(); } else { (_e = this.context) == null ? void 0 : _e.clearRect(0, 0, (_c = this.canvas) == null ? void 0 : _c.width, (_d = this.canvas) == null ? void 0 : _d.height); (_h = this.context) == null ? void 0 : _h.drawImage(this.video, 0, 0, (_f = this.canvas) == null ? void 0 : _f.width, (_g = this.canvas) == null ? void 0 : _g.height); this.layer.reFresh(); } } destroy() { this.stopRender(); if (this.video) { this.video.pause(); } this.video = null; } setUrl(url) { this.stopRender(); this.canPlay = false; if (this.video) { this.video.src = url; this.load(); } } setZooms(zooms) { this.getLayer().setZoom(zooms); } setOpacity(opacity) { this.getLayer().setOpacity(opacity); } setBounds(bounds) { this.getLayer().setBounds(bounds); } setzIndex(zIndex) { this.getLayer().setzIndex(zIndex); } show() { this.getLayer().show(); } hide() { this.getLayer().hide(); } } var VideoLayer$1 = VideoLayer; var script$a = defineComponent({ name: "ElAmapLayerVideo", mixins: [registerMixin], props: { url: { required: true, type: String }, zooms: { type: Array }, bounds: { type: [Array, Object] }, opacity: { type: Number } }, data() { return { handlers: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new VideoLayer$1(options, this.$refs.video); this.$parentComponent.addLayer(this.$amapComponent.getLayer()); }, destroyComponent() { this.$amapComponent.destroy(); if (!this.parentInstance.isDestroy) { this.$parentComponent.removeLayer(this.$amapComponent); } this.$amapComponent = null; this.$parentComponent = null; }, $$play() { this.$amapComponent.play(); }, $$pause() { this.$amapComponent.pause(); } }, render() { return null; } }); const _hoisted_1$1 = { ref: "video", style: { "display": "none" }, muted: "" }; function render$1(_ctx, _cache, $props, $setup, $data, $options) { return openBlock(), createElementBlock("video", _hoisted_1$1, null, 512); } script$a.render = render$1; script$a.__file = "src/packages/layer/data/Video/Video.vue"; const ElAmapLayerVideo = withInstall(script$a); var script$9 = defineComponent({ name: "ElAmapLocaLaser", mixins: [registerMixin, locaMixin], props: { depth: { type: Boolean, default: true } }, data() { return { converters: {} }; }, methods: { __initComponent(options) { this.$amapComponent = new Loca.LaserLayer(options); this.setSource(); this.setStyle(); this.$parentComponent.add(this.$amapComponent); this.initComplete(); }, setStyle() { const defaultStyleValue = { unit: "px", height: 200, color: "rgba(255,255,0,0.5)", angle: 0, lineWidth: 2, trailLength: 30, duration: 2e3, interval: 0, delay: 0, repeat: void 0 }; const style = Object.assign({}, defaultStyleValue, this["defaultStyleValue"]); const defaultLayerStyle = { unit: style.unit, height: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.height === void 0 ? style.height : feature.properties.height; }, color: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.color === void 0 ? style.color : feature.properties.color; }, angle: style.angle, lineWidth: style.lineWidth, trailLength: style.trailLength, duration: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.duration === void 0 ? style.duration : feature.properties.duration; }, interval: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.interval === void 0 ? style.interval : feature.properties.interval; }, delay: (index, feature) => { feature.properties = feature.properties || {}; return feature.properties.delay === void 0 ? style.delay : feature.properties.delay; }, repeat: style.repeat }; const layerStyle = Object.assign({}, defaultLayerStyle, this["layerStyle"]); this.$amapComponent.setStyle(layerStyle); } }, render() { return null; } }); script$9.__file = "src/packages/loca/LaserLayer/LaserLayer.vue"; const ElAmapLocaLaser = withInstall(script$9); function clearGroup(group) { const clearCache = (mesh) => { if (mesh.geometry) { mesh.geometry.dispose(); } if (mesh.material && mesh.material.dispose) { mesh.material.dispose(); } if (mesh.material.texture && mesh.material.texture.dispose) { mesh.material.texture.dispose(); } }; const removeObj = (item) => { let array = item.children.filter((x) => x); array.forEach((v) => { if (v.children.length) { removeObj(v); } else { if (v.isMesh) { clearCache(v); } } }); array = null; }; removeObj(group); } class ThreeVideo { constructor(layer) { this.videoFrame = -1; this.layer = layer; } init(options, $vue) { this.video = options.video; this.object = new Group$1(); this.object.isCustomGroup = true; this.object.$vue = $vue; return new Promise((resolve) => { var _a, _b, _c, _d, _e; (_a = this.video) == null ? void 0 : _a.load(); (_b = this.video) == null ? void 0 : _b.play(); const texture = new VideoTexture(this.video); const geometry = new PlaneGeometry(options.videoWidth || ((_c = this.video) == null ? void 0 : _c.videoWidth), options.videoHeight || ((_d = this.video) == null ? void 0 : _d.videoHeight)); const material = new MeshPhongMaterial({ map: texture, side: DoubleSide, transparent: true, depthTest: false }); const mesh = new Mesh(geometry, material); mesh.renderOrder = 3; mesh.rotation.y = Math.PI; mesh.name = "video"; this.videoMesh = mesh; this.object.add(mesh); this.setVideoTranslate(options.videoTranslate); this.setPosition(options.position); this.setRotation(options.rotation); this.setScale(options.scale); this.setAltitude(options.altitude); (_e = this.layer) == null ? void 0 : _e.add(this.object); this.videoAnimate(); this.addBgCanvas(options.canvas); this.setAngle(options.angle); this.setOpacity(options.opacity); this.setzIndex(options.zIndex || 0); this.bindAlwaysFront(options.alwaysFront); resolve(); }); } bindAlwaysFront(alwaysFront) { var _a; if (alwaysFront) { const map = (_a = this.layer) == null ? void 0 : _a.getMap(); this.rotateFun = v(this._changeMapRotate, this); map.on("rotatechange", this.rotateFun); } } unBindAlwaysFront() { var _a; if (this.rotateFun) { const map = (_a = this.layer) == null ? void 0 : _a.getMap(); if (map) { map.off("rotatechange", this.rotateFun); } } } _changeMapRotate() { var _a; const map = (_a = this.layer) == null ? void 0 : _a.getMap(); const rotate = map.getRotation(); this.setAngle(rotate); } addBgCanvas(canvas) { if (!canvas) { return; } const texture = new CanvasTexture(canvas); const geometry = new PlaneGeometry(canvas.width, canvas.height); const material = new MeshPhongMaterial({ map: texture, side: DoubleSide, transparent: true, depthTest: false }); const mesh = new Mesh(geometry, material); mesh.name = "bg"; mesh.renderOrder = 1; this.object.add(mesh); this.canvasTexture = texture; this.bgMesh = mesh; } videoAnimate() { this.videoFrame = requestAnimationFrame(() => { this.videoAnimate(); }); if (this.canvasTexture) { this.canvasTexture.needsUpdate = true; } this.refresh(); } cancelCanvasTextureAnimate() { if (this.videoFrame > 0) { cancelAnimationFrame(this.videoFrame); } } setScale(scale) { let scaleArray; if (typeof scale === "number") { scaleArray = [scale, scale, scale]; } else { scaleArray = scale; } this.object.scale.set(...scaleArray); } setPosition(position) { var _a; const positionConvert = (_a = this.layer) == null ? void 0 : _a.convertLngLat(position); this.object.position.setX(positionConvert[0]); this.object.position.setY(positionConvert[1]); this.refresh(); } setRotation(rotation) { if (rotation) { const x = Math.PI / 180 * (rotation.x || 0); const y = Math.PI / 180 * (rotation.y || 0); const z = Math.PI / 180 * (rotation.z || 0); this.object.rotation.set(x, y, z); this.refresh(); } } setVideoTranslate(translate) { if (translate) { this.videoMesh.translateX(translate.x); this.videoMesh.translateY(translate.y); this.videoMesh.translateZ(translate.z); this.refresh(); } } setAltitude(altitude) { if (altitude !== void 0) { this.object.position.setZ(altitude); this.refresh(); } } setAngle(angle) { if (angle !== void 0) { const x = this.object.rotation.x; const z = this.object.rotation.z; const y = Math.PI / 180 * angle; this.object.rotation.set(x, y, z); this.refresh(); } } setOpacity(opacity) { this.videoMesh.material.opacity = opacity; if (this.bgMesh) { this.bgMesh.material.opacity = opacity; } this.refresh(); } setzIndex(zIndex) { this.object.renderOrder = zIndex; } refresh() { var _a; (_a = this.layer) == null ? void 0 : _a.update(); } show() { this.object.visible = true; this.refresh(); } hide() { this.object.visible = false; this.refresh(); } start() { var _a; (_a = this.video) == null ? void 0 : _a.play(); } pause() { var _a; (_a = this.video) == null ? void 0 : _a.pause(); } remove() { var _a; if (this.object) { (_a = this.layer) == null ? void 0 : _a.remove(this.object); this.unBindAlwaysFront(); } } destroy() { this.cancelCanvasTextureAnimate(); this.unBindAlwaysFront(); if (this.object) { this.object.$vue = null; clearGroup(this.object); this.video = void 0; this.videoMesh = void 0; this.bgMesh = void 0; this.canvasTexture = void 0; this.rotateFun = void 0; this.object = null; this.layer = void 0; } } } var ThreeVideo$1 = ThreeVideo; var script$8 = defineComponent({ name: "ElAmapThreeVideo", mixins: [registerMixin], props: { video: { type: [String, Array, HTMLVideoElement], required: true }, videoTranslate: { type: Object, default() { return { x: 0, y: 0, z: 0 }; } }, videoWidth: { type: Number }, videoHeight: { type: Number }, canvas: { type: Object }, position: { type: Array, required: true }, altitude: { type: Number, default: 0 }, rotation: { type: Object }, scale: { type: [Number, Array], default: 1 }, angle: { type: Number, default: 0 }, opacity: { type: Number, default: 1 }, alwaysFront: { type: Boolean, default: false } }, emits: ["click", "mousemove", "mouseover", "mouseout"], data() { return { videoUrlList: [] }; }, methods: { __initComponent(options) { const urlType = Object.prototype.toString.call(options.video); if (urlType === "[object String]") { this.videoUrlList = [options.video]; } else if (urlType === "[object Array]") { this.videoUrlList = options.video; } if (this.videoUrlList.length > 0) { options.video = this.$refs.video; } this.$amapComponent = new ThreeVideo$1(this.$parentComponent); return new Promise((resolve) => { this.$nextTick(() => { this.$amapComponent.init(options, this).then(() => { resolve(); }); }); }); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$amapComponent.remove(); } this.$amapComponent.destroy(); }, $$start() { this.$amapComponent.start(); }, $$pause() { this.$amapComponent.pause(); } } }); const _hoisted_1 = { ref: "video", style: { "display": "none" }, muted: "", loop: "", autoplay: "", crossOrigin: "anonymous" }; const _hoisted_2 = ["src"]; function render(_ctx, _cache, $props, $setup, $data, $options) { return openBlock(), createElementBlock("video", _hoisted_1, [ (openBlock(true), createElementBlock(Fragment, null, renderList(_ctx.videoUrlList, (item) => { return openBlock(), createElementBlock("source", { key: item, src: item, type: "video/mp4" }, null, 8, _hoisted_2); }), 128)) ], 512); } script$8.render = render; script$8.__file = "src/packages/three/ThreeVideo/ThreeVideo.vue"; const ElAmapThreeVideo = withInstall(script$8); class ThreeLightAmbient { constructor(layer, options) { this.layer = layer; const light = new AmbientLight(this.getColorHex(options.color), options.intensity); this.object = light; layer.add(light); } setColor(color) { this.object.color = new Color$2(color); this.refresh(); } getColorHex(color) { return new Color$2(color).getHex(); } setIntensity(intensity) { this.object.intensity = intensity; this.refresh(); } refresh() { var _a; (_a = this.layer) == null ? void 0 : _a.update(); } remove() { var _a; if (this.object) { (_a = this.layer) == null ? void 0 : _a.remove(this.object); } } destroy() { if (this.object) { this.object = null; this.layer = null; } } } var ThreeLightAmbient$1 = ThreeLightAmbient; var script$7 = defineComponent({ name: "ElAmapThreeLightAmbient", mixins: [registerMixin], props: { color: { type: String, default: "#ffffff" }, intensity: { type: Number, default: 1 } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new ThreeLightAmbient$1(this.$parentComponent, options); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$amapComponent.remove(); } this.$amapComponent.destroy(); } }, render() { return null; } }); script$7.__file = "src/packages/three/ThreeLightAmbient/ThreeLightAmbient.vue"; const ElAmapThreeLightAmbient = withInstall(script$7); class ThreeLightDirectional { constructor(layer, options) { this.layer = layer; const light = new DirectionalLight(this.getColorHex(options.color), options.intensity); this.object = light; this.setPosition(options.position); layer.add(light); } setColor(color) { this.object.color = new Color$2(color); this.refresh(); } getColorHex(color) { return new Color$2(color).getHex(); } setIntensity(intensity) { this.object.intensity = intensity; this.refresh(); } setPosition(position) { this.object.position.set(position.x, position.y, position.z); this.refresh(); } setTarget(target) { if (target) { this.object.target = target; this.refresh(); } } refresh() { var _a; (_a = this.layer) == null ? void 0 : _a.update(); } remove() { var _a; if (this.object) { (_a = this.layer) == null ? void 0 : _a.remove(this.object); } } destroy() { if (this.object) { this.object = null; this.layer = null; } } } var ThreeLightDirectional$1 = ThreeLightDirectional; var script$6 = defineComponent({ name: "ElAmapThreeLightDirectional", mixins: [registerMixin], props: { color: { type: String, default: "#ffffff" }, intensity: { type: Number, default: 1 }, position: { type: Object, default: () => ({ x: 0, y: 0, z: 1 }) }, target: { type: Object } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new ThreeLightDirectional$1(this.$parentComponent, options); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$amapComponent.remove(); } this.$amapComponent.destroy(); } }, render() { return null; } }); script$6.__file = "src/packages/three/ThreeLightDirectional/ThreeLightDirectional.vue"; const ElAmapThreeLightDirectional = withInstall(script$6); class ThreeLightHemisphere { constructor(layer, options) { this.layer = layer; const light = new HemisphereLight(this.getColorHex(options.color), this.getColorHex(options.groundColor), options.intensity); this.object = light; this.setPosition(options.position); layer.add(light); } setColor(color) { this.object.color = new Color$2(color); this.refresh(); } setGroundColor(color) { this.object.groundColor = new Color$2(color); this.refresh(); } getColorHex(color) { return new Color$2(color).getHex(); } setIntensity(intensity) { this.object.intensity = intensity; this.refresh(); } setPosition(position) { this.object.position.set(position.x, position.y, position.z); this.refresh(); } refresh() { var _a; (_a = this.layer) == null ? void 0 : _a.update(); } remove() { var _a; if (this.object) { (_a = this.layer) == null ? void 0 : _a.remove(this.object); } } destroy() { if (this.object) { this.object = null; this.layer = null; } } } var ThreeLightHemisphere$1 = ThreeLightHemisphere; var script$5 = defineComponent({ name: "ElAmapThreeLightHemisphere", mixins: [registerMixin], props: { color: { type: String, default: "#ffffff" }, groundColor: { type: String, default: "#ffffff" }, intensity: { type: Number, default: 1 }, position: { type: Object, required: true } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new ThreeLightHemisphere$1(this.$parentComponent, options); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$amapComponent.remove(); } this.$amapComponent.destroy(); } }, render() { return null; } }); script$5.__file = "src/packages/three/ThreeLightHemisphere/ThreeLightHemisphere.vue"; const ElAmapThreeLightHemisphere = withInstall(script$5); class ThreeLightPoint { constructor(layer, options) { this.layer = layer; const light = new PointLight(this.getColorHex(options.color), options.intensity, options.distance, options.decay); this.object = light; this.setPosition(options.position); layer.add(light); } setColor(color) { this.object.color = new Color$2(color); this.refresh(); } getColorHex(color) { return new Color$2(color).getHex(); } setIntensity(intensity) { this.object.intensity = intensity; this.refresh(); } setPosition(position) { var _a; const positionConvert = (_a = this.layer) == null ? void 0 : _a.convertLngLat([position.x, position.y]); this.object.position.set(positionConvert[0], positionConvert[1], position.z); this.refresh(); } refresh() { var _a; (_a = this.layer) == null ? void 0 : _a.update(); } remove() { var _a; if (this.object) { (_a = this.layer) == null ? void 0 : _a.remove(this.object); } } destroy() { if (this.object) { this.object = null; this.layer = null; } } } var ThreeLightPoint$1 = ThreeLightPoint; var script$4 = defineComponent({ name: "ElAmapThreeLightPoint", mixins: [registerMixin], props: { color: { type: String, default: "#ffffff" }, intensity: { type: Number, default: 1 }, distance: { type: Number, default: 0 }, decay: { type: Number, default: 1 }, position: { type: Object, required: true } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new ThreeLightPoint$1(this.$parentComponent, options); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$amapComponent.remove(); } this.$amapComponent.destroy(); } }, render() { return null; } }); script$4.__file = "src/packages/three/ThreeLightPoint/ThreeLightPoint.vue"; const ElAmapThreeLightPoint = withInstall(script$4); class ThreeLightSpot { constructor(layer, options) { this.layer = layer; const light = new SpotLight(this.getColorHex(options.color), options.intensity, options.distance, options.angle, options.penumbra, options.decay); this.object = light; this.setPosition(options.position); this.setTarget(options.target); layer.add(light); } setColor(color) { this.object.color = new Color$2(color); this.refresh(); } getColorHex(color) { return new Color$2(color).getHex(); } setIntensity(intensity) { this.object.intensity = intensity; this.refresh(); } setPosition(position) { var _a; const positionConvert = (_a = this.layer) == null ? void 0 : _a.convertLngLat([position.x, position.y]); this.object.position.set(positionConvert[0], positionConvert[1], position.z); this.refresh(); } setTarget(target) { if (target) { this.object.target = target; this.refresh(); } } refresh() { var _a; (_a = this.layer) == null ? void 0 : _a.update(); } remove() { var _a; if (this.object) { (_a = this.layer) == null ? void 0 : _a.remove(this.object); } } destroy() { if (this.object) { this.object = null; this.layer = null; } } } var ThreeLightSpot$1 = ThreeLightSpot; var script$3 = defineComponent({ name: "ElAmapThreeLightSpot", mixins: [registerMixin], props: { color: { type: String, default: "#ffffff" }, intensity: { type: Number, default: 1 }, distance: { type: Number, default: 0 }, angle: { type: Number, default: 0 }, penumbra: { type: Number, default: 0 }, decay: { type: Number, default: 1 }, position: { type: Object, required: true }, target: { type: Object } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new ThreeLightSpot$1(this.$parentComponent, options); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$amapComponent.remove(); } this.$amapComponent.destroy(); } }, render() { return null; } }); script$3.__file = "src/packages/three/ThreeLightSpot/ThreeLightSpot.vue"; const ElAmapThreeLightSpot = withInstall(script$3); var colorString$1 = {exports: {}}; var colorName = { "aliceblue": [240, 248, 255], "antiquewhite": [250, 235, 215], "aqua": [0, 255, 255], "aquamarine": [127, 255, 212], "azure": [240, 255, 255], "beige": [245, 245, 220], "bisque": [255, 228, 196], "black": [0, 0, 0], "blanchedalmond": [255, 235, 205], "blue": [0, 0, 255], "blueviolet": [138, 43, 226], "brown": [165, 42, 42], "burlywood": [222, 184, 135], "cadetblue": [95, 158, 160], "chartreuse": [127, 255, 0], "chocolate": [210, 105, 30], "coral": [255, 127, 80], "cornflowerblue": [100, 149, 237], "cornsilk": [255, 248, 220], "crimson": [220, 20, 60], "cyan": [0, 255, 255], "darkblue": [0, 0, 139], "darkcyan": [0, 139, 139], "darkgoldenrod": [184, 134, 11], "darkgray": [169, 169, 169], "darkgreen": [0, 100, 0], "darkgrey": [169, 169, 169], "darkkhaki": [189, 183, 107], "darkmagenta": [139, 0, 139], "darkolivegreen": [85, 107, 47], "darkorange": [255, 140, 0], "darkorchid": [153, 50, 204], "darkred": [139, 0, 0], "darksalmon": [233, 150, 122], "darkseagreen": [143, 188, 143], "darkslateblue": [72, 61, 139], "darkslategray": [47, 79, 79], "darkslategrey": [47, 79, 79], "darkturquoise": [0, 206, 209], "darkviolet": [148, 0, 211], "deeppink": [255, 20, 147], "deepskyblue": [0, 191, 255], "dimgray": [105, 105, 105], "dimgrey": [105, 105, 105], "dodgerblue": [30, 144, 255], "firebrick": [178, 34, 34], "floralwhite": [255, 250, 240], "forestgreen": [34, 139, 34], "fuchsia": [255, 0, 255], "gainsboro": [220, 220, 220], "ghostwhite": [248, 248, 255], "gold": [255, 215, 0], "goldenrod": [218, 165, 32], "gray": [128, 128, 128], "green": [0, 128, 0], "greenyellow": [173, 255, 47], "grey": [128, 128, 128], "honeydew": [240, 255, 240], "hotpink": [255, 105, 180], "indianred": [205, 92, 92], "indigo": [75, 0, 130], "ivory": [255, 255, 240], "khaki": [240, 230, 140], "lavender": [230, 230, 250], "lavenderblush": [255, 240, 245], "lawngreen": [124, 252, 0], "lemonchiffon": [255, 250, 205], "lightblue": [173, 216, 230], "lightcoral": [240, 128, 128], "lightcyan": [224, 255, 255], "lightgoldenrodyellow": [250, 250, 210], "lightgray": [211, 211, 211], "lightgreen": [144, 238, 144], "lightgrey": [211, 211, 211], "lightpink": [255, 182, 193], "lightsalmon": [255, 160, 122], "lightseagreen": [32, 178, 170], "lightskyblue": [135, 206, 250], "lightslategray": [119, 136, 153], "lightslategrey": [119, 136, 153], "lightsteelblue": [176, 196, 222], "lightyellow": [255, 255, 224], "lime": [0, 255, 0], "limegreen": [50, 205, 50], "linen": [250, 240, 230], "magenta": [255, 0, 255], "maroon": [128, 0, 0], "mediumaquamarine": [102, 205, 170], "mediumblue": [0, 0, 205], "mediumorchid": [186, 85, 211], "mediumpurple": [147, 112, 219], "mediumseagreen": [60, 179, 113], "mediumslateblue": [123, 104, 238], "mediumspringgreen": [0, 250, 154], "mediumturquoise": [72, 209, 204], "mediumvioletred": [199, 21, 133], "midnightblue": [25, 25, 112], "mintcream": [245, 255, 250], "mistyrose": [255, 228, 225], "moccasin": [255, 228, 181], "navajowhite": [255, 222, 173], "navy": [0, 0, 128], "oldlace": [253, 245, 230], "olive": [128, 128, 0], "olivedrab": [107, 142, 35], "orange": [255, 165, 0], "orangered": [255, 69, 0], "orchid": [218, 112, 214], "palegoldenrod": [238, 232, 170], "palegreen": [152, 251, 152], "paleturquoise": [175, 238, 238], "palevioletred": [219, 112, 147], "papayawhip": [255, 239, 213], "peachpuff": [255, 218, 185], "peru": [205, 133, 63], "pink": [255, 192, 203], "plum": [221, 160, 221], "powderblue": [176, 224, 230], "purple": [128, 0, 128], "rebeccapurple": [102, 51, 153], "red": [255, 0, 0], "rosybrown": [188, 143, 143], "royalblue": [65, 105, 225], "saddlebrown": [139, 69, 19], "salmon": [250, 128, 114], "sandybrown": [244, 164, 96], "seagreen": [46, 139, 87], "seashell": [255, 245, 238], "sienna": [160, 82, 45], "silver": [192, 192, 192], "skyblue": [135, 206, 235], "slateblue": [106, 90, 205], "slategray": [112, 128, 144], "slategrey": [112, 128, 144], "snow": [255, 250, 250], "springgreen": [0, 255, 127], "steelblue": [70, 130, 180], "tan": [210, 180, 140], "teal": [0, 128, 128], "thistle": [216, 191, 216], "tomato": [255, 99, 71], "turquoise": [64, 224, 208], "violet": [238, 130, 238], "wheat": [245, 222, 179], "white": [255, 255, 255], "whitesmoke": [245, 245, 245], "yellow": [255, 255, 0], "yellowgreen": [154, 205, 50] }; var simpleSwizzle = {exports: {}}; var isArrayish$1 = function isArrayish(obj) { if (!obj || typeof obj === 'string') { return false; } return obj instanceof Array || Array.isArray(obj) || (obj.length >= 0 && (obj.splice instanceof Function || (Object.getOwnPropertyDescriptor(obj, (obj.length - 1)) && obj.constructor.name !== 'String'))); }; var isArrayish = isArrayish$1; var concat = Array.prototype.concat; var slice = Array.prototype.slice; var swizzle$1 = simpleSwizzle.exports = function swizzle(args) { var results = []; for (var i = 0, len = args.length; i < len; i++) { var arg = args[i]; if (isArrayish(arg)) { // http://jsperf.com/javascript-array-concat-vs-push/98 results = concat.call(results, slice.call(arg)); } else { results.push(arg); } } return results; }; swizzle$1.wrap = function (fn) { return function () { return fn(swizzle$1(arguments)); }; }; /* MIT license */ var colorNames = colorName; var swizzle = simpleSwizzle.exports; var hasOwnProperty = Object.hasOwnProperty; var reverseNames = Object.create(null); // create a list of reverse color names for (var name in colorNames) { if (hasOwnProperty.call(colorNames, name)) { reverseNames[colorNames[name]] = name; } } var cs = colorString$1.exports = { to: {}, get: {} }; cs.get = function (string) { var prefix = string.substring(0, 3).toLowerCase(); var val; var model; switch (prefix) { case 'hsl': val = cs.get.hsl(string); model = 'hsl'; break; case 'hwb': val = cs.get.hwb(string); model = 'hwb'; break; default: val = cs.get.rgb(string); model = 'rgb'; break; } if (!val) { return null; } return {model: model, value: val}; }; cs.get.rgb = function (string) { if (!string) { return null; } var abbr = /^#([a-f0-9]{3,4})$/i; var hex = /^#([a-f0-9]{6})([a-f0-9]{2})?$/i; var rgba = /^rgba?\(\s*([+-]?\d+)(?=[\s,])\s*(?:,\s*)?([+-]?\d+)(?=[\s,])\s*(?:,\s*)?([+-]?\d+)\s*(?:[,|\/]\s*([+-]?[\d\.]+)(%?)\s*)?\)$/; var per = /^rgba?\(\s*([+-]?[\d\.]+)\%\s*,?\s*([+-]?[\d\.]+)\%\s*,?\s*([+-]?[\d\.]+)\%\s*(?:[,|\/]\s*([+-]?[\d\.]+)(%?)\s*)?\)$/; var keyword = /^(\w+)$/; var rgb = [0, 0, 0, 1]; var match; var i; var hexAlpha; if (match = string.match(hex)) { hexAlpha = match[2]; match = match[1]; for (i = 0; i < 3; i++) { // https://jsperf.com/slice-vs-substr-vs-substring-methods-long-string/19 var i2 = i * 2; rgb[i] = parseInt(match.slice(i2, i2 + 2), 16); } if (hexAlpha) { rgb[3] = parseInt(hexAlpha, 16) / 255; } } else if (match = string.match(abbr)) { match = match[1]; hexAlpha = match[3]; for (i = 0; i < 3; i++) { rgb[i] = parseInt(match[i] + match[i], 16); } if (hexAlpha) { rgb[3] = parseInt(hexAlpha + hexAlpha, 16) / 255; } } else if (match = string.match(rgba)) { for (i = 0; i < 3; i++) { rgb[i] = parseInt(match[i + 1], 0); } if (match[4]) { if (match[5]) { rgb[3] = parseFloat(match[4]) * 0.01; } else { rgb[3] = parseFloat(match[4]); } } } else if (match = string.match(per)) { for (i = 0; i < 3; i++) { rgb[i] = Math.round(parseFloat(match[i + 1]) * 2.55); } if (match[4]) { if (match[5]) { rgb[3] = parseFloat(match[4]) * 0.01; } else { rgb[3] = parseFloat(match[4]); } } } else if (match = string.match(keyword)) { if (match[1] === 'transparent') { return [0, 0, 0, 0]; } if (!hasOwnProperty.call(colorNames, match[1])) { return null; } rgb = colorNames[match[1]]; rgb[3] = 1; return rgb; } else { return null; } for (i = 0; i < 3; i++) { rgb[i] = clamp(rgb[i], 0, 255); } rgb[3] = clamp(rgb[3], 0, 1); return rgb; }; cs.get.hsl = function (string) { if (!string) { return null; } var hsl = /^hsla?\(\s*([+-]?(?:\d{0,3}\.)?\d+)(?:deg)?\s*,?\s*([+-]?[\d\.]+)%\s*,?\s*([+-]?[\d\.]+)%\s*(?:[,|\/]\s*([+-]?(?=\.\d|\d)(?:0|[1-9]\d*)?(?:\.\d*)?(?:[eE][+-]?\d+)?)\s*)?\)$/; var match = string.match(hsl); if (match) { var alpha = parseFloat(match[4]); var h = ((parseFloat(match[1]) % 360) + 360) % 360; var s = clamp(parseFloat(match[2]), 0, 100); var l = clamp(parseFloat(match[3]), 0, 100); var a = clamp(isNaN(alpha) ? 1 : alpha, 0, 1); return [h, s, l, a]; } return null; }; cs.get.hwb = function (string) { if (!string) { return null; } var hwb = /^hwb\(\s*([+-]?\d{0,3}(?:\.\d+)?)(?:deg)?\s*,\s*([+-]?[\d\.]+)%\s*,\s*([+-]?[\d\.]+)%\s*(?:,\s*([+-]?(?=\.\d|\d)(?:0|[1-9]\d*)?(?:\.\d*)?(?:[eE][+-]?\d+)?)\s*)?\)$/; var match = string.match(hwb); if (match) { var alpha = parseFloat(match[4]); var h = ((parseFloat(match[1]) % 360) + 360) % 360; var w = clamp(parseFloat(match[2]), 0, 100); var b = clamp(parseFloat(match[3]), 0, 100); var a = clamp(isNaN(alpha) ? 1 : alpha, 0, 1); return [h, w, b, a]; } return null; }; cs.to.hex = function () { var rgba = swizzle(arguments); return ( '#' + hexDouble(rgba[0]) + hexDouble(rgba[1]) + hexDouble(rgba[2]) + (rgba[3] < 1 ? (hexDouble(Math.round(rgba[3] * 255))) : '') ); }; cs.to.rgb = function () { var rgba = swizzle(arguments); return rgba.length < 4 || rgba[3] === 1 ? 'rgb(' + Math.round(rgba[0]) + ', ' + Math.round(rgba[1]) + ', ' + Math.round(rgba[2]) + ')' : 'rgba(' + Math.round(rgba[0]) + ', ' + Math.round(rgba[1]) + ', ' + Math.round(rgba[2]) + ', ' + rgba[3] + ')'; }; cs.to.rgb.percent = function () { var rgba = swizzle(arguments); var r = Math.round(rgba[0] / 255 * 100); var g = Math.round(rgba[1] / 255 * 100); var b = Math.round(rgba[2] / 255 * 100); return rgba.length < 4 || rgba[3] === 1 ? 'rgb(' + r + '%, ' + g + '%, ' + b + '%)' : 'rgba(' + r + '%, ' + g + '%, ' + b + '%, ' + rgba[3] + ')'; }; cs.to.hsl = function () { var hsla = swizzle(arguments); return hsla.length < 4 || hsla[3] === 1 ? 'hsl(' + hsla[0] + ', ' + hsla[1] + '%, ' + hsla[2] + '%)' : 'hsla(' + hsla[0] + ', ' + hsla[1] + '%, ' + hsla[2] + '%, ' + hsla[3] + ')'; }; // hwb is a bit different than rgb(a) & hsl(a) since there is no alpha specific syntax // (hwb have alpha optional & 1 is default value) cs.to.hwb = function () { var hwba = swizzle(arguments); var a = ''; if (hwba.length >= 4 && hwba[3] !== 1) { a = ', ' + hwba[3]; } return 'hwb(' + hwba[0] + ', ' + hwba[1] + '%, ' + hwba[2] + '%' + a + ')'; }; cs.to.keyword = function (rgb) { return reverseNames[rgb.slice(0, 3)]; }; // helpers function clamp(num, min, max) { return Math.min(Math.max(min, num), max); } function hexDouble(num) { var str = Math.round(num).toString(16).toUpperCase(); return (str.length < 2) ? '0' + str : str; } /* MIT license */ /* eslint-disable no-mixed-operators */ const cssKeywords = colorName; // NOTE: conversions should only return primitive values (i.e. arrays, or // values that give correct `typeof` results). // do not use box values types (i.e. Number(), String(), etc.) const reverseKeywords = {}; for (const key of Object.keys(cssKeywords)) { reverseKeywords[cssKeywords[key]] = key; } const convert$2 = { rgb: {channels: 3, labels: 'rgb'}, hsl: {channels: 3, labels: 'hsl'}, hsv: {channels: 3, labels: 'hsv'}, hwb: {channels: 3, labels: 'hwb'}, cmyk: {channels: 4, labels: 'cmyk'}, xyz: {channels: 3, labels: 'xyz'}, lab: {channels: 3, labels: 'lab'}, lch: {channels: 3, labels: 'lch'}, hex: {channels: 1, labels: ['hex']}, keyword: {channels: 1, labels: ['keyword']}, ansi16: {channels: 1, labels: ['ansi16']}, ansi256: {channels: 1, labels: ['ansi256']}, hcg: {channels: 3, labels: ['h', 'c', 'g']}, apple: {channels: 3, labels: ['r16', 'g16', 'b16']}, gray: {channels: 1, labels: ['gray']} }; var conversions$2 = convert$2; // Hide .channels and .labels properties for (const model of Object.keys(convert$2)) { if (!('channels' in convert$2[model])) { throw new Error('missing channels property: ' + model); } if (!('labels' in convert$2[model])) { throw new Error('missing channel labels property: ' + model); } if (convert$2[model].labels.length !== convert$2[model].channels) { throw new Error('channel and label counts mismatch: ' + model); } const {channels, labels} = convert$2[model]; delete convert$2[model].channels; delete convert$2[model].labels; Object.defineProperty(convert$2[model], 'channels', {value: channels}); Object.defineProperty(convert$2[model], 'labels', {value: labels}); } convert$2.rgb.hsl = function (rgb) { const r = rgb[0] / 255; const g = rgb[1] / 255; const b = rgb[2] / 255; const min = Math.min(r, g, b); const max = Math.max(r, g, b); const delta = max - min; let h; let s; if (max === min) { h = 0; } else if (r === max) { h = (g - b) / delta; } else if (g === max) { h = 2 + (b - r) / delta; } else if (b === max) { h = 4 + (r - g) / delta; } h = Math.min(h * 60, 360); if (h < 0) { h += 360; } const l = (min + max) / 2; if (max === min) { s = 0; } else if (l <= 0.5) { s = delta / (max + min); } else { s = delta / (2 - max - min); } return [h, s * 100, l * 100]; }; convert$2.rgb.hsv = function (rgb) { let rdif; let gdif; let bdif; let h; let s; const r = rgb[0] / 255; const g = rgb[1] / 255; const b = rgb[2] / 255; const v = Math.max(r, g, b); const diff = v - Math.min(r, g, b); const diffc = function (c) { return (v - c) / 6 / diff + 1 / 2; }; if (diff === 0) { h = 0; s = 0; } else { s = diff / v; rdif = diffc(r); gdif = diffc(g); bdif = diffc(b); if (r === v) { h = bdif - gdif; } else if (g === v) { h = (1 / 3) + rdif - bdif; } else if (b === v) { h = (2 / 3) + gdif - rdif; } if (h < 0) { h += 1; } else if (h > 1) { h -= 1; } } return [ h * 360, s * 100, v * 100 ]; }; convert$2.rgb.hwb = function (rgb) { const r = rgb[0]; const g = rgb[1]; let b = rgb[2]; const h = convert$2.rgb.hsl(rgb)[0]; const w = 1 / 255 * Math.min(r, Math.min(g, b)); b = 1 - 1 / 255 * Math.max(r, Math.max(g, b)); return [h, w * 100, b * 100]; }; convert$2.rgb.cmyk = function (rgb) { const r = rgb[0] / 255; const g = rgb[1] / 255; const b = rgb[2] / 255; const k = Math.min(1 - r, 1 - g, 1 - b); const c = (1 - r - k) / (1 - k) || 0; const m = (1 - g - k) / (1 - k) || 0; const y = (1 - b - k) / (1 - k) || 0; return [c * 100, m * 100, y * 100, k * 100]; }; function comparativeDistance(x, y) { /* See https://en.m.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance */ return ( ((x[0] - y[0]) ** 2) + ((x[1] - y[1]) ** 2) + ((x[2] - y[2]) ** 2) ); } convert$2.rgb.keyword = function (rgb) { const reversed = reverseKeywords[rgb]; if (reversed) { return reversed; } let currentClosestDistance = Infinity; let currentClosestKeyword; for (const keyword of Object.keys(cssKeywords)) { const value = cssKeywords[keyword]; // Compute comparative distance const distance = comparativeDistance(rgb, value); // Check if its less, if so set as closest if (distance < currentClosestDistance) { currentClosestDistance = distance; currentClosestKeyword = keyword; } } return currentClosestKeyword; }; convert$2.keyword.rgb = function (keyword) { return cssKeywords[keyword]; }; convert$2.rgb.xyz = function (rgb) { let r = rgb[0] / 255; let g = rgb[1] / 255; let b = rgb[2] / 255; // Assume sRGB r = r > 0.04045 ? (((r + 0.055) / 1.055) ** 2.4) : (r / 12.92); g = g > 0.04045 ? (((g + 0.055) / 1.055) ** 2.4) : (g / 12.92); b = b > 0.04045 ? (((b + 0.055) / 1.055) ** 2.4) : (b / 12.92); const x = (r * 0.4124) + (g * 0.3576) + (b * 0.1805); const y = (r * 0.2126) + (g * 0.7152) + (b * 0.0722); const z = (r * 0.0193) + (g * 0.1192) + (b * 0.9505); return [x * 100, y * 100, z * 100]; }; convert$2.rgb.lab = function (rgb) { const xyz = convert$2.rgb.xyz(rgb); let x = xyz[0]; let y = xyz[1]; let z = xyz[2]; x /= 95.047; y /= 100; z /= 108.883; x = x > 0.008856 ? (x ** (1 / 3)) : (7.787 * x) + (16 / 116); y = y > 0.008856 ? (y ** (1 / 3)) : (7.787 * y) + (16 / 116); z = z > 0.008856 ? (z ** (1 / 3)) : (7.787 * z) + (16 / 116); const l = (116 * y) - 16; const a = 500 * (x - y); const b = 200 * (y - z); return [l, a, b]; }; convert$2.hsl.rgb = function (hsl) { const h = hsl[0] / 360; const s = hsl[1] / 100; const l = hsl[2] / 100; let t2; let t3; let val; if (s === 0) { val = l * 255; return [val, val, val]; } if (l < 0.5) { t2 = l * (1 + s); } else { t2 = l + s - l * s; } const t1 = 2 * l - t2; const rgb = [0, 0, 0]; for (let i = 0; i < 3; i++) { t3 = h + 1 / 3 * -(i - 1); if (t3 < 0) { t3++; } if (t3 > 1) { t3--; } if (6 * t3 < 1) { val = t1 + (t2 - t1) * 6 * t3; } else if (2 * t3 < 1) { val = t2; } else if (3 * t3 < 2) { val = t1 + (t2 - t1) * (2 / 3 - t3) * 6; } else { val = t1; } rgb[i] = val * 255; } return rgb; }; convert$2.hsl.hsv = function (hsl) { const h = hsl[0]; let s = hsl[1] / 100; let l = hsl[2] / 100; let smin = s; const lmin = Math.max(l, 0.01); l *= 2; s *= (l <= 1) ? l : 2 - l; smin *= lmin <= 1 ? lmin : 2 - lmin; const v = (l + s) / 2; const sv = l === 0 ? (2 * smin) / (lmin + smin) : (2 * s) / (l + s); return [h, sv * 100, v * 100]; }; convert$2.hsv.rgb = function (hsv) { const h = hsv[0] / 60; const s = hsv[1] / 100; let v = hsv[2] / 100; const hi = Math.floor(h) % 6; const f = h - Math.floor(h); const p = 255 * v * (1 - s); const q = 255 * v * (1 - (s * f)); const t = 255 * v * (1 - (s * (1 - f))); v *= 255; switch (hi) { case 0: return [v, t, p]; case 1: return [q, v, p]; case 2: return [p, v, t]; case 3: return [p, q, v]; case 4: return [t, p, v]; case 5: return [v, p, q]; } }; convert$2.hsv.hsl = function (hsv) { const h = hsv[0]; const s = hsv[1] / 100; const v = hsv[2] / 100; const vmin = Math.max(v, 0.01); let sl; let l; l = (2 - s) * v; const lmin = (2 - s) * vmin; sl = s * vmin; sl /= (lmin <= 1) ? lmin : 2 - lmin; sl = sl || 0; l /= 2; return [h, sl * 100, l * 100]; }; // http://dev.w3.org/csswg/css-color/#hwb-to-rgb convert$2.hwb.rgb = function (hwb) { const h = hwb[0] / 360; let wh = hwb[1] / 100; let bl = hwb[2] / 100; const ratio = wh + bl; let f; // Wh + bl cant be > 1 if (ratio > 1) { wh /= ratio; bl /= ratio; } const i = Math.floor(6 * h); const v = 1 - bl; f = 6 * h - i; if ((i & 0x01) !== 0) { f = 1 - f; } const n = wh + f * (v - wh); // Linear interpolation let r; let g; let b; /* eslint-disable max-statements-per-line,no-multi-spaces */ switch (i) { default: case 6: case 0: r = v; g = n; b = wh; break; case 1: r = n; g = v; b = wh; break; case 2: r = wh; g = v; b = n; break; case 3: r = wh; g = n; b = v; break; case 4: r = n; g = wh; b = v; break; case 5: r = v; g = wh; b = n; break; } /* eslint-enable max-statements-per-line,no-multi-spaces */ return [r * 255, g * 255, b * 255]; }; convert$2.cmyk.rgb = function (cmyk) { const c = cmyk[0] / 100; const m = cmyk[1] / 100; const y = cmyk[2] / 100; const k = cmyk[3] / 100; const r = 1 - Math.min(1, c * (1 - k) + k); const g = 1 - Math.min(1, m * (1 - k) + k); const b = 1 - Math.min(1, y * (1 - k) + k); return [r * 255, g * 255, b * 255]; }; convert$2.xyz.rgb = function (xyz) { const x = xyz[0] / 100; const y = xyz[1] / 100; const z = xyz[2] / 100; let r; let g; let b; r = (x * 3.2406) + (y * -1.5372) + (z * -0.4986); g = (x * -0.9689) + (y * 1.8758) + (z * 0.0415); b = (x * 0.0557) + (y * -0.2040) + (z * 1.0570); // Assume sRGB r = r > 0.0031308 ? ((1.055 * (r ** (1.0 / 2.4))) - 0.055) : r * 12.92; g = g > 0.0031308 ? ((1.055 * (g ** (1.0 / 2.4))) - 0.055) : g * 12.92; b = b > 0.0031308 ? ((1.055 * (b ** (1.0 / 2.4))) - 0.055) : b * 12.92; r = Math.min(Math.max(0, r), 1); g = Math.min(Math.max(0, g), 1); b = Math.min(Math.max(0, b), 1); return [r * 255, g * 255, b * 255]; }; convert$2.xyz.lab = function (xyz) { let x = xyz[0]; let y = xyz[1]; let z = xyz[2]; x /= 95.047; y /= 100; z /= 108.883; x = x > 0.008856 ? (x ** (1 / 3)) : (7.787 * x) + (16 / 116); y = y > 0.008856 ? (y ** (1 / 3)) : (7.787 * y) + (16 / 116); z = z > 0.008856 ? (z ** (1 / 3)) : (7.787 * z) + (16 / 116); const l = (116 * y) - 16; const a = 500 * (x - y); const b = 200 * (y - z); return [l, a, b]; }; convert$2.lab.xyz = function (lab) { const l = lab[0]; const a = lab[1]; const b = lab[2]; let x; let y; let z; y = (l + 16) / 116; x = a / 500 + y; z = y - b / 200; const y2 = y ** 3; const x2 = x ** 3; const z2 = z ** 3; y = y2 > 0.008856 ? y2 : (y - 16 / 116) / 7.787; x = x2 > 0.008856 ? x2 : (x - 16 / 116) / 7.787; z = z2 > 0.008856 ? z2 : (z - 16 / 116) / 7.787; x *= 95.047; y *= 100; z *= 108.883; return [x, y, z]; }; convert$2.lab.lch = function (lab) { const l = lab[0]; const a = lab[1]; const b = lab[2]; let h; const hr = Math.atan2(b, a); h = hr * 360 / 2 / Math.PI; if (h < 0) { h += 360; } const c = Math.sqrt(a * a + b * b); return [l, c, h]; }; convert$2.lch.lab = function (lch) { const l = lch[0]; const c = lch[1]; const h = lch[2]; const hr = h / 360 * 2 * Math.PI; const a = c * Math.cos(hr); const b = c * Math.sin(hr); return [l, a, b]; }; convert$2.rgb.ansi16 = function (args, saturation = null) { const [r, g, b] = args; let value = saturation === null ? convert$2.rgb.hsv(args)[2] : saturation; // Hsv -> ansi16 optimization value = Math.round(value / 50); if (value === 0) { return 30; } let ansi = 30 + ((Math.round(b / 255) << 2) | (Math.round(g / 255) << 1) | Math.round(r / 255)); if (value === 2) { ansi += 60; } return ansi; }; convert$2.hsv.ansi16 = function (args) { // Optimization here; we already know the value and don't need to get // it converted for us. return convert$2.rgb.ansi16(convert$2.hsv.rgb(args), args[2]); }; convert$2.rgb.ansi256 = function (args) { const r = args[0]; const g = args[1]; const b = args[2]; // We use the extended greyscale palette here, with the exception of // black and white. normal palette only has 4 greyscale shades. if (r === g && g === b) { if (r < 8) { return 16; } if (r > 248) { return 231; } return Math.round(((r - 8) / 247) * 24) + 232; } const ansi = 16 + (36 * Math.round(r / 255 * 5)) + (6 * Math.round(g / 255 * 5)) + Math.round(b / 255 * 5); return ansi; }; convert$2.ansi16.rgb = function (args) { let color = args % 10; // Handle greyscale if (color === 0 || color === 7) { if (args > 50) { color += 3.5; } color = color / 10.5 * 255; return [color, color, color]; } const mult = (~~(args > 50) + 1) * 0.5; const r = ((color & 1) * mult) * 255; const g = (((color >> 1) & 1) * mult) * 255; const b = (((color >> 2) & 1) * mult) * 255; return [r, g, b]; }; convert$2.ansi256.rgb = function (args) { // Handle greyscale if (args >= 232) { const c = (args - 232) * 10 + 8; return [c, c, c]; } args -= 16; let rem; const r = Math.floor(args / 36) / 5 * 255; const g = Math.floor((rem = args % 36) / 6) / 5 * 255; const b = (rem % 6) / 5 * 255; return [r, g, b]; }; convert$2.rgb.hex = function (args) { const integer = ((Math.round(args[0]) & 0xFF) << 16) + ((Math.round(args[1]) & 0xFF) << 8) + (Math.round(args[2]) & 0xFF); const string = integer.toString(16).toUpperCase(); return '000000'.substring(string.length) + string; }; convert$2.hex.rgb = function (args) { const match = args.toString(16).match(/[a-f0-9]{6}|[a-f0-9]{3}/i); if (!match) { return [0, 0, 0]; } let colorString = match[0]; if (match[0].length === 3) { colorString = colorString.split('').map(char => { return char + char; }).join(''); } const integer = parseInt(colorString, 16); const r = (integer >> 16) & 0xFF; const g = (integer >> 8) & 0xFF; const b = integer & 0xFF; return [r, g, b]; }; convert$2.rgb.hcg = function (rgb) { const r = rgb[0] / 255; const g = rgb[1] / 255; const b = rgb[2] / 255; const max = Math.max(Math.max(r, g), b); const min = Math.min(Math.min(r, g), b); const chroma = (max - min); let grayscale; let hue; if (chroma < 1) { grayscale = min / (1 - chroma); } else { grayscale = 0; } if (chroma <= 0) { hue = 0; } else if (max === r) { hue = ((g - b) / chroma) % 6; } else if (max === g) { hue = 2 + (b - r) / chroma; } else { hue = 4 + (r - g) / chroma; } hue /= 6; hue %= 1; return [hue * 360, chroma * 100, grayscale * 100]; }; convert$2.hsl.hcg = function (hsl) { const s = hsl[1] / 100; const l = hsl[2] / 100; const c = l < 0.5 ? (2.0 * s * l) : (2.0 * s * (1.0 - l)); let f = 0; if (c < 1.0) { f = (l - 0.5 * c) / (1.0 - c); } return [hsl[0], c * 100, f * 100]; }; convert$2.hsv.hcg = function (hsv) { const s = hsv[1] / 100; const v = hsv[2] / 100; const c = s * v; let f = 0; if (c < 1.0) { f = (v - c) / (1 - c); } return [hsv[0], c * 100, f * 100]; }; convert$2.hcg.rgb = function (hcg) { const h = hcg[0] / 360; const c = hcg[1] / 100; const g = hcg[2] / 100; if (c === 0.0) { return [g * 255, g * 255, g * 255]; } const pure = [0, 0, 0]; const hi = (h % 1) * 6; const v = hi % 1; const w = 1 - v; let mg = 0; /* eslint-disable max-statements-per-line */ switch (Math.floor(hi)) { case 0: pure[0] = 1; pure[1] = v; pure[2] = 0; break; case 1: pure[0] = w; pure[1] = 1; pure[2] = 0; break; case 2: pure[0] = 0; pure[1] = 1; pure[2] = v; break; case 3: pure[0] = 0; pure[1] = w; pure[2] = 1; break; case 4: pure[0] = v; pure[1] = 0; pure[2] = 1; break; default: pure[0] = 1; pure[1] = 0; pure[2] = w; } /* eslint-enable max-statements-per-line */ mg = (1.0 - c) * g; return [ (c * pure[0] + mg) * 255, (c * pure[1] + mg) * 255, (c * pure[2] + mg) * 255 ]; }; convert$2.hcg.hsv = function (hcg) { const c = hcg[1] / 100; const g = hcg[2] / 100; const v = c + g * (1.0 - c); let f = 0; if (v > 0.0) { f = c / v; } return [hcg[0], f * 100, v * 100]; }; convert$2.hcg.hsl = function (hcg) { const c = hcg[1] / 100; const g = hcg[2] / 100; const l = g * (1.0 - c) + 0.5 * c; let s = 0; if (l > 0.0 && l < 0.5) { s = c / (2 * l); } else if (l >= 0.5 && l < 1.0) { s = c / (2 * (1 - l)); } return [hcg[0], s * 100, l * 100]; }; convert$2.hcg.hwb = function (hcg) { const c = hcg[1] / 100; const g = hcg[2] / 100; const v = c + g * (1.0 - c); return [hcg[0], (v - c) * 100, (1 - v) * 100]; }; convert$2.hwb.hcg = function (hwb) { const w = hwb[1] / 100; const b = hwb[2] / 100; const v = 1 - b; const c = v - w; let g = 0; if (c < 1) { g = (v - c) / (1 - c); } return [hwb[0], c * 100, g * 100]; }; convert$2.apple.rgb = function (apple) { return [(apple[0] / 65535) * 255, (apple[1] / 65535) * 255, (apple[2] / 65535) * 255]; }; convert$2.rgb.apple = function (rgb) { return [(rgb[0] / 255) * 65535, (rgb[1] / 255) * 65535, (rgb[2] / 255) * 65535]; }; convert$2.gray.rgb = function (args) { return [args[0] / 100 * 255, args[0] / 100 * 255, args[0] / 100 * 255]; }; convert$2.gray.hsl = function (args) { return [0, 0, args[0]]; }; convert$2.gray.hsv = convert$2.gray.hsl; convert$2.gray.hwb = function (gray) { return [0, 100, gray[0]]; }; convert$2.gray.cmyk = function (gray) { return [0, 0, 0, gray[0]]; }; convert$2.gray.lab = function (gray) { return [gray[0], 0, 0]; }; convert$2.gray.hex = function (gray) { const val = Math.round(gray[0] / 100 * 255) & 0xFF; const integer = (val << 16) + (val << 8) + val; const string = integer.toString(16).toUpperCase(); return '000000'.substring(string.length) + string; }; convert$2.rgb.gray = function (rgb) { const val = (rgb[0] + rgb[1] + rgb[2]) / 3; return [val / 255 * 100]; }; const conversions$1 = conversions$2; /* This function routes a model to all other models. all functions that are routed have a property `.conversion` attached to the returned synthetic function. This property is an array of strings, each with the steps in between the 'from' and 'to' color models (inclusive). conversions that are not possible simply are not included. */ function buildGraph() { const graph = {}; // https://jsperf.com/object-keys-vs-for-in-with-closure/3 const models = Object.keys(conversions$1); for (let len = models.length, i = 0; i < len; i++) { graph[models[i]] = { // http://jsperf.com/1-vs-infinity // micro-opt, but this is simple. distance: -1, parent: null }; } return graph; } // https://en.wikipedia.org/wiki/Breadth-first_search function deriveBFS(fromModel) { const graph = buildGraph(); const queue = [fromModel]; // Unshift -> queue -> pop graph[fromModel].distance = 0; while (queue.length) { const current = queue.pop(); const adjacents = Object.keys(conversions$1[current]); for (let len = adjacents.length, i = 0; i < len; i++) { const adjacent = adjacents[i]; const node = graph[adjacent]; if (node.distance === -1) { node.distance = graph[current].distance + 1; node.parent = current; queue.unshift(adjacent); } } } return graph; } function link(from, to) { return function (args) { return to(from(args)); }; } function wrapConversion(toModel, graph) { const path = [graph[toModel].parent, toModel]; let fn = conversions$1[graph[toModel].parent][toModel]; let cur = graph[toModel].parent; while (graph[cur].parent) { path.unshift(graph[cur].parent); fn = link(conversions$1[graph[cur].parent][cur], fn); cur = graph[cur].parent; } fn.conversion = path; return fn; } var route$1 = function (fromModel) { const graph = deriveBFS(fromModel); const conversion = {}; const models = Object.keys(graph); for (let len = models.length, i = 0; i < len; i++) { const toModel = models[i]; const node = graph[toModel]; if (node.parent === null) { // No possible conversion, or this node is the source model. continue; } conversion[toModel] = wrapConversion(toModel, graph); } return conversion; }; const conversions = conversions$2; const route = route$1; const convert$1 = {}; const models = Object.keys(conversions); function wrapRaw(fn) { const wrappedFn = function (...args) { const arg0 = args[0]; if (arg0 === undefined || arg0 === null) { return arg0; } if (arg0.length > 1) { args = arg0; } return fn(args); }; // Preserve .conversion property if there is one if ('conversion' in fn) { wrappedFn.conversion = fn.conversion; } return wrappedFn; } function wrapRounded(fn) { const wrappedFn = function (...args) { const arg0 = args[0]; if (arg0 === undefined || arg0 === null) { return arg0; } if (arg0.length > 1) { args = arg0; } const result = fn(args); // We're assuming the result is an array here. // see notice in conversions.js; don't use box types // in conversion functions. if (typeof result === 'object') { for (let len = result.length, i = 0; i < len; i++) { result[i] = Math.round(result[i]); } } return result; }; // Preserve .conversion property if there is one if ('conversion' in fn) { wrappedFn.conversion = fn.conversion; } return wrappedFn; } models.forEach(fromModel => { convert$1[fromModel] = {}; Object.defineProperty(convert$1[fromModel], 'channels', {value: conversions[fromModel].channels}); Object.defineProperty(convert$1[fromModel], 'labels', {value: conversions[fromModel].labels}); const routes = route(fromModel); const routeModels = Object.keys(routes); routeModels.forEach(toModel => { const fn = routes[toModel]; convert$1[fromModel][toModel] = wrapRounded(fn); convert$1[fromModel][toModel].raw = wrapRaw(fn); }); }); var colorConvert = convert$1; const colorString = colorString$1.exports; const convert = colorConvert; const skippedModels = [ // To be honest, I don't really feel like keyword belongs in color convert, but eh. 'keyword', // Gray conflicts with some method names, and has its own method defined. 'gray', // Shouldn't really be in color-convert either... 'hex', ]; const hashedModelKeys = {}; for (const model of Object.keys(convert)) { hashedModelKeys[[...convert[model].labels].sort().join('')] = model; } const limiters = {}; function Color(object, model) { if (!(this instanceof Color)) { return new Color(object, model); } if (model && model in skippedModels) { model = null; } if (model && !(model in convert)) { throw new Error('Unknown model: ' + model); } let i; let channels; if (object == null) { // eslint-disable-line no-eq-null,eqeqeq this.model = 'rgb'; this.color = [0, 0, 0]; this.valpha = 1; } else if (object instanceof Color) { this.model = object.model; this.color = [...object.color]; this.valpha = object.valpha; } else if (typeof object === 'string') { const result = colorString.get(object); if (result === null) { throw new Error('Unable to parse color from string: ' + object); } this.model = result.model; channels = convert[this.model].channels; this.color = result.value.slice(0, channels); this.valpha = typeof result.value[channels] === 'number' ? result.value[channels] : 1; } else if (object.length > 0) { this.model = model || 'rgb'; channels = convert[this.model].channels; const newArray = Array.prototype.slice.call(object, 0, channels); this.color = zeroArray(newArray, channels); this.valpha = typeof object[channels] === 'number' ? object[channels] : 1; } else if (typeof object === 'number') { // This is always RGB - can be converted later on. this.model = 'rgb'; this.color = [ (object >> 16) & 0xFF, (object >> 8) & 0xFF, object & 0xFF, ]; this.valpha = 1; } else { this.valpha = 1; const keys = Object.keys(object); if ('alpha' in object) { keys.splice(keys.indexOf('alpha'), 1); this.valpha = typeof object.alpha === 'number' ? object.alpha : 0; } const hashedKeys = keys.sort().join(''); if (!(hashedKeys in hashedModelKeys)) { throw new Error('Unable to parse color from object: ' + JSON.stringify(object)); } this.model = hashedModelKeys[hashedKeys]; const {labels} = convert[this.model]; const color = []; for (i = 0; i < labels.length; i++) { color.push(object[labels[i]]); } this.color = zeroArray(color); } // Perform limitations (clamping, etc.) if (limiters[this.model]) { channels = convert[this.model].channels; for (i = 0; i < channels; i++) { const limit = limiters[this.model][i]; if (limit) { this.color[i] = limit(this.color[i]); } } } this.valpha = Math.max(0, Math.min(1, this.valpha)); if (Object.freeze) { Object.freeze(this); } } Color.prototype = { toString() { return this.string(); }, toJSON() { return this[this.model](); }, string(places) { let self = this.model in colorString.to ? this : this.rgb(); self = self.round(typeof places === 'number' ? places : 1); const args = self.valpha === 1 ? self.color : [...self.color, this.valpha]; return colorString.to[self.model](args); }, percentString(places) { const self = this.rgb().round(typeof places === 'number' ? places : 1); const args = self.valpha === 1 ? self.color : [...self.color, this.valpha]; return colorString.to.rgb.percent(args); }, array() { return this.valpha === 1 ? [...this.color] : [...this.color, this.valpha]; }, object() { const result = {}; const {channels} = convert[this.model]; const {labels} = convert[this.model]; for (let i = 0; i < channels; i++) { result[labels[i]] = this.color[i]; } if (this.valpha !== 1) { result.alpha = this.valpha; } return result; }, unitArray() { const rgb = this.rgb().color; rgb[0] /= 255; rgb[1] /= 255; rgb[2] /= 255; if (this.valpha !== 1) { rgb.push(this.valpha); } return rgb; }, unitObject() { const rgb = this.rgb().object(); rgb.r /= 255; rgb.g /= 255; rgb.b /= 255; if (this.valpha !== 1) { rgb.alpha = this.valpha; } return rgb; }, round(places) { places = Math.max(places || 0, 0); return new Color([...this.color.map(roundToPlace(places)), this.valpha], this.model); }, alpha(value) { if (value !== undefined) { return new Color([...this.color, Math.max(0, Math.min(1, value))], this.model); } return this.valpha; }, // Rgb red: getset('rgb', 0, maxfn(255)), green: getset('rgb', 1, maxfn(255)), blue: getset('rgb', 2, maxfn(255)), hue: getset(['hsl', 'hsv', 'hsl', 'hwb', 'hcg'], 0, value => ((value % 360) + 360) % 360), saturationl: getset('hsl', 1, maxfn(100)), lightness: getset('hsl', 2, maxfn(100)), saturationv: getset('hsv', 1, maxfn(100)), value: getset('hsv', 2, maxfn(100)), chroma: getset('hcg', 1, maxfn(100)), gray: getset('hcg', 2, maxfn(100)), white: getset('hwb', 1, maxfn(100)), wblack: getset('hwb', 2, maxfn(100)), cyan: getset('cmyk', 0, maxfn(100)), magenta: getset('cmyk', 1, maxfn(100)), yellow: getset('cmyk', 2, maxfn(100)), black: getset('cmyk', 3, maxfn(100)), x: getset('xyz', 0, maxfn(95.047)), y: getset('xyz', 1, maxfn(100)), z: getset('xyz', 2, maxfn(108.833)), l: getset('lab', 0, maxfn(100)), a: getset('lab', 1), b: getset('lab', 2), keyword(value) { if (value !== undefined) { return new Color(value); } return convert[this.model].keyword(this.color); }, hex(value) { if (value !== undefined) { return new Color(value); } return colorString.to.hex(this.rgb().round().color); }, hexa(value) { if (value !== undefined) { return new Color(value); } const rgbArray = this.rgb().round().color; let alphaHex = Math.round(this.valpha * 255).toString(16).toUpperCase(); if (alphaHex.length === 1) { alphaHex = '0' + alphaHex; } return colorString.to.hex(rgbArray) + alphaHex; }, rgbNumber() { const rgb = this.rgb().color; return ((rgb[0] & 0xFF) << 16) | ((rgb[1] & 0xFF) << 8) | (rgb[2] & 0xFF); }, luminosity() { // http://www.w3.org/TR/WCAG20/#relativeluminancedef const rgb = this.rgb().color; const lum = []; for (const [i, element] of rgb.entries()) { const chan = element / 255; lum[i] = (chan <= 0.04045) ? chan / 12.92 : ((chan + 0.055) / 1.055) ** 2.4; } return 0.2126 * lum[0] + 0.7152 * lum[1] + 0.0722 * lum[2]; }, contrast(color2) { // http://www.w3.org/TR/WCAG20/#contrast-ratiodef const lum1 = this.luminosity(); const lum2 = color2.luminosity(); if (lum1 > lum2) { return (lum1 + 0.05) / (lum2 + 0.05); } return (lum2 + 0.05) / (lum1 + 0.05); }, level(color2) { // https://www.w3.org/TR/WCAG/#contrast-enhanced const contrastRatio = this.contrast(color2); if (contrastRatio >= 7) { return 'AAA'; } return (contrastRatio >= 4.5) ? 'AA' : ''; }, isDark() { // YIQ equation from http://24ways.org/2010/calculating-color-contrast const rgb = this.rgb().color; const yiq = (rgb[0] * 2126 + rgb[1] * 7152 + rgb[2] * 722) / 10000; return yiq < 128; }, isLight() { return !this.isDark(); }, negate() { const rgb = this.rgb(); for (let i = 0; i < 3; i++) { rgb.color[i] = 255 - rgb.color[i]; } return rgb; }, lighten(ratio) { const hsl = this.hsl(); hsl.color[2] += hsl.color[2] * ratio; return hsl; }, darken(ratio) { const hsl = this.hsl(); hsl.color[2] -= hsl.color[2] * ratio; return hsl; }, saturate(ratio) { const hsl = this.hsl(); hsl.color[1] += hsl.color[1] * ratio; return hsl; }, desaturate(ratio) { const hsl = this.hsl(); hsl.color[1] -= hsl.color[1] * ratio; return hsl; }, whiten(ratio) { const hwb = this.hwb(); hwb.color[1] += hwb.color[1] * ratio; return hwb; }, blacken(ratio) { const hwb = this.hwb(); hwb.color[2] += hwb.color[2] * ratio; return hwb; }, grayscale() { // http://en.wikipedia.org/wiki/Grayscale#Converting_color_to_grayscale const rgb = this.rgb().color; const value = rgb[0] * 0.3 + rgb[1] * 0.59 + rgb[2] * 0.11; return Color.rgb(value, value, value); }, fade(ratio) { return this.alpha(this.valpha - (this.valpha * ratio)); }, opaquer(ratio) { return this.alpha(this.valpha + (this.valpha * ratio)); }, rotate(degrees) { const hsl = this.hsl(); let hue = hsl.color[0]; hue = (hue + degrees) % 360; hue = hue < 0 ? 360 + hue : hue; hsl.color[0] = hue; return hsl; }, mix(mixinColor, weight) { // Ported from sass implementation in C // https://github.com/sass/libsass/blob/0e6b4a2850092356aa3ece07c6b249f0221caced/functions.cpp#L209 if (!mixinColor || !mixinColor.rgb) { throw new Error('Argument to "mix" was not a Color instance, but rather an instance of ' + typeof mixinColor); } const color1 = mixinColor.rgb(); const color2 = this.rgb(); const p = weight === undefined ? 0.5 : weight; const w = 2 * p - 1; const a = color1.alpha() - color2.alpha(); const w1 = (((w * a === -1) ? w : (w + a) / (1 + w * a)) + 1) / 2; const w2 = 1 - w1; return Color.rgb( w1 * color1.red() + w2 * color2.red(), w1 * color1.green() + w2 * color2.green(), w1 * color1.blue() + w2 * color2.blue(), color1.alpha() * p + color2.alpha() * (1 - p)); }, }; // Model conversion methods and static constructors for (const model of Object.keys(convert)) { if (skippedModels.includes(model)) { continue; } const {channels} = convert[model]; // Conversion methods Color.prototype[model] = function (...args) { if (this.model === model) { return new Color(this); } if (args.length > 0) { return new Color(args, model); } return new Color([...assertArray(convert[this.model][model].raw(this.color)), this.valpha], model); }; // 'static' construction methods Color[model] = function (...args) { let color = args[0]; if (typeof color === 'number') { color = zeroArray(args, channels); } return new Color(color, model); }; } function roundTo(number, places) { return Number(number.toFixed(places)); } function roundToPlace(places) { return function (number) { return roundTo(number, places); }; } function getset(model, channel, modifier) { model = Array.isArray(model) ? model : [model]; for (const m of model) { (limiters[m] || (limiters[m] = []))[channel] = modifier; } model = model[0]; return function (value) { let result; if (value !== undefined) { if (modifier) { value = modifier(value); } result = this[model](); result.color[channel] = value; return result; } result = this[model]().color[channel]; if (modifier) { result = modifier(result); } return result; }; } function maxfn(max) { return function (v) { return Math.max(0, Math.min(max, v)); }; } function assertArray(value) { return Array.isArray(value) ? value : [value]; } function zeroArray(array, length) { for (let i = 0; i < length; i++) { if (typeof array[i] !== 'number') { array[i] = 0; } } return array; } var color = Color; var Color$1 = color; function getRgbNumber(color) { return Color$1(color).rgbNumber(); } function getAlpha(color) { return Color$1(color).alpha(); } const vertex = ` #define Polygon varying vec3 vLightFront; varying vec3 vIndirectFront; varying vec3 v_position; #ifdef DOUBLE_SIDED varying vec3 vLightBack; varying vec3 vIndirectBack; #endif #include #include #include #include #include #include #include #include #include #include #include #include #include void main() { v_position = position; #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include } `; const fragment = ` uniform vec3 emissive; uniform float height; uniform vec4 topColorVector4; uniform vec4 bottomColorVector4; varying vec3 v_position; varying vec3 vLightFront; varying vec3 vIndirectFront; #ifdef DOUBLE_SIDED varying vec3 vLightBack; varying vec3 vIndirectBack; #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void main() { #include vec4 diff = bottomColorVector4 - topColorVector4; vec4 percent = diff/height; float x = topColorVector4.x + percent.x*v_position.z; float y = topColorVector4.y + percent.y*v_position.z; float z = topColorVector4.z + percent.z*v_position.z; float r = topColorVector4.w + percent.w*v_position.z; vec4 diffuseColor = vec4(x,y,z,r); ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) ); vec3 totalEmissiveRadiance = emissive; #include #include #include #include #include #include #include // accumulation #ifdef DOUBLE_SIDED reflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack; #else reflectedLight.indirectDiffuse += vIndirectFront; #endif #include reflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb ); #ifdef DOUBLE_SIDED reflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack; #else reflectedLight.directDiffuse = vLightFront; #endif reflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask(); // modulation #include vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance; #include #include #include #include #include #include #include } `; class ThreePolygon { constructor(layer, options) { this.layer = layer; this.object = new Group$1(); this.createGlobalMaterial(options); this.layer.add(this.object); this.init(options); } createGlobalMaterial(options) { if (options.sideTexture) { const sideTexture = new TextureLoader().load(options.sideTexture); sideTexture.wrapS = sideTexture.wrapT = RepeatWrapping; sideTexture.offset.set(0, 0.5); sideTexture.repeat.set(0.1, 0.1); this.sideImgMaterial = new MeshLambertMaterial({ depthTest: options.depthTest, map: sideTexture, side: DoubleSide }); } this.bottomMaterial = new MeshLambertMaterial({ depthTest: options.depthTest, transparent: true, color: getRgbNumber(options.bottomColor), opacity: getAlpha(options.bottomColor) }); this.topMaterial = new MeshLambertMaterial({ depthTest: options.depthTest, transparent: true, color: getRgbNumber(options.topColor), opacity: getAlpha(options.topColor) }); } init(options) { options.source.features.forEach((feature) => { if (feature.geometry.type === "Polygon") { this.createMesh(feature.geometry.coordinates, feature.properties, options); } else if (feature.geometry.type === "MultiPolygon") { feature.geometry.coordinates.forEach((cood) => { this.createMesh(cood, feature.properties, options); }); } }); this.refresh(); } createMesh(paths, properties, options) { if (paths.length === 0) { return; } properties = properties || {}; const height = properties.height !== void 0 ? properties.height : options.height; const path = paths[0]; const outPolygonArray = []; const holesArray = []; for (let i = 0; i < path.length; i++) { const point = this.convertLngLat(path[i]); outPolygonArray.push(new Vector2(point[0], point[1])); } for (let i = 1; i < paths.length; i++) { const inPolygonPath = paths[i]; const array = []; for (let j = 0; j < inPolygonPath.length; j++) { const inPoint = this.convertLngLat(inPolygonPath[j]); array.push(new Vector2(inPoint[0], inPoint[1])); } holesArray.push(new Path(array)); } const shape = new Shape(outPolygonArray); shape.holes = holesArray; if (height > 0) { const sideExtrudeGeometry = new ExtrudeGeometry(shape, { depth: height, bevelEnabled: false, steps: 1 }); const hideMaterial = new MeshLambertMaterial({ visible: false }); const materialList = [hideMaterial]; let sideMaterial; if (options.sideTexture) { sideMaterial = this.sideImgMaterial; } else { const topColor = new Color$2(); topColor.setHex(getRgbNumber(options.sideTopColor)); const topColorVector4 = new Vector4(topColor.r, topColor.g, topColor.b, getAlpha(options.sideTopColor)); const bottomColor = new Color$2(); bottomColor.setHex(getRgbNumber(options.sideBottomColor)); const bottomColorVector4 = new Vector4(bottomColor.r, bottomColor.g, bottomColor.b, getAlpha(options.sideBottomColor)); const uniforms = UniformsUtils.merge([ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color$2("#000") }, "topColorVector4": { value: bottomColorVector4 }, "bottomColorVector4": { value: topColorVector4 }, "height": { value: height } } ]); sideMaterial = new ShaderMaterial({ depthTest: options.depthTest, side: DoubleSide, transparent: true, lights: true, uniforms, vertexShader: vertex, fragmentShader: fragment }); } materialList.push(sideMaterial); const bottomExtrudeGeometry = new ExtrudeGeometry(shape, { depth: 0 }); const bottomMesh = new Mesh(bottomExtrudeGeometry, this.bottomMaterial); this.object.add(bottomMesh); const sideMesh = new Mesh(sideExtrudeGeometry, materialList); this.object.add(sideMesh); } const topExtrudeGeometry = new ExtrudeGeometry(shape, { depth: 0 }); const topMesh = new Mesh(topExtrudeGeometry, this.topMaterial); topMesh.translateZ(height); this.object.add(topMesh); } convertLngLat(lnglat) { var _a; return (_a = this.layer) == null ? void 0 : _a.convertLngLat(lnglat); } refresh() { var _a; (_a = this.layer) == null ? void 0 : _a.update(); } show() { this.object.visible = true; this.refresh(); } hide() { this.object.visible = false; this.refresh(); } remove() { var _a; if (this.object) { (_a = this.layer) == null ? void 0 : _a.remove(this.object); } } destroy() { if (this.object) { clearGroup(this.object); if (this.bottomMaterial) { this.bottomMaterial.dispose(); this.bottomMaterial = void 0; } if (this.topMaterial) { this.topMaterial.dispose(); this.topMaterial = void 0; } if (this.sideImgMaterial) { this.sideImgMaterial.dispose(); this.sideImgMaterial = void 0; } this.object = null; this.layer = void 0; } } } var ThreePolygon$1 = ThreePolygon; var script$2 = defineComponent({ name: "ElAmapThreePolygon", mixins: [registerMixin], props: { sideTopColor: { type: String, default: "#ffffff" }, sideBottomColor: { type: String, default: "#ffffff" }, sideTexture: { type: String }, topColor: { type: String, default: "#ffffff" }, bottomColor: { type: String, default: "#ffffff" }, height: { type: Number, default: 30 }, depthTest: { type: Boolean, default: true }, source: { type: Object, required: true } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new ThreePolygon$1(this.$parentComponent, options); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$amapComponent.remove(); } this.$amapComponent.destroy(); } }, render() { return null; } }); script$2.__file = "src/packages/three/ThreePolygon/ThreePolygon.vue"; const ElAmapThreePolygon = withInstall(script$2); var script$1 = defineComponent({ name: "ElAmapMouseTool", mixins: [registerMixin], props: { type: { type: String, required: true, default: "marker", validator(value) { return ["marker", "circle", "rectangle", "polyline", "polygon", "measureArea", "rule", "rectZoomIn", "rectZoomOut"].includes(value); } }, drawOptions: { type: Object, default: () => null }, autoClear: { type: Boolean, default: true }, showTooltip: { type: Boolean, default: true }, tooltipTextMap: { type: Object, default: () => null }, textOptions: { type: Object, default: () => null } }, emits: ["draw"], data() { return { preMapCursor: "", tipTexts: { marker: "\u5355\u51FB\u5730\u56FE\u9009\u62E9\u70B9\u4F4D", circle: "\u6309\u4F4F\u9F20\u6807\u5DE6\u952E\u62D6\u62FD\u7ED8\u5236\u5706", rectangle: "\u6309\u4F4F\u9F20\u6807\u5DE6\u952E\u62D6\u62FD\u7ED8\u5236\u77E9\u5F62", polyline: "\u5355\u51FB\u5730\u56FE\u9009\u62E9\u62D0\u70B9\uFF0C\u53CC\u51FB\u5730\u56FE\u5B8C\u6210\u6298\u7EBF\u7ED8\u5236", polygon: "\u5355\u51FB\u5730\u56FE\u9009\u62E9\u62D0\u70B9\uFF0C\u53CC\u51FB\u5730\u56FE\u5B8C\u6210\u591A\u8FB9\u5F62\u7ED8\u5236", measureArea: "\u5355\u51FB\u5730\u56FE\u9009\u62E9\u62D0\u70B9\uFF0C\u53CC\u51FB\u5730\u56FE\u5B8C\u6210\u7ED8\u5236\u5E76\u8BA1\u7B97\u9762\u79EF", rule: "\u5355\u51FB\u5730\u56FE\u9009\u62E9\u62D0\u70B9\uFF0C\u53F3\u51FB\u5730\u56FE\u5B8C\u6210\u7ED8\u5236\u5E76\u8BA1\u7B97\u8DDD\u79BB", rectZoomIn: "\u6309\u4F4F\u9F20\u6807\u5DE6\u952E\u62D6\u62FD\u7ED8\u5236\u77E9\u5F62\uFF0C\u677E\u5F00\u5DE6\u952E\u653E\u5927\u5730\u56FE", rectZoomOut: "\u6309\u4F4F\u9F20\u6807\u5DE6\u952E\u62D6\u62FD\u7ED8\u5236\u77E9\u5F62\uFF0C\u677E\u5F00\u5DE6\u952E\u653E\u5927\u5730\u56FE" } }; }, methods: { __initComponent() { return new Promise((resolve) => { AMap.plugin(["AMap.MouseTool"], () => { if (this.tooltipTextMap) { Object.assign(this.tipTexts, this.tooltipTextMap); } this.$amapComponent = new AMap.MouseTool(this.$parentComponent); this.createTooltip(); this.__type(); this.bindEvent(); this.preMapCursor = this.$parentComponent.getDefaultCursor(); this.$parentComponent.setDefaultCursor("crosshair"); resolve(); }); }); }, __type() { const type = this.type; if (this.$amapComponent[type]) { const options = this.drawOptions || {}; this.$amapComponent[type](options); this.setText(this.tipTexts[type]); } }, createTooltip() { if (this.showTooltip) { const textOptions = this.textOptions || {}; textOptions.anchor = "top-left"; textOptions.clickable = false; textOptions.bubble = true; textOptions.offset = [10, 10]; this.$text = new AMap.Text(textOptions); this.$parentComponent.add(this.$text); this.$parentComponent.on("mousemove", this.getMousePosition); } }, getMousePosition(e) { const lnglat = e.lnglat; this.$text.setPosition([lnglat.lng, lnglat.lat]); }, setText(content) { if (this.$text) { this.$text.setText(content); } }, bindEvent() { this.$amapComponent.on("draw", (e) => { const type = this.type; let emitData; if (type === "marker") { emitData = e.obj.getPosition().toArray(); } else if (type === "circle") { emitData = { center: e.obj.getCenter().toArray(), radius: e.obj.getRadius() }; } else if (type === "rectangle") { const bounds = e.obj.getBounds(); const southWest = bounds.getSouthWest(); const northEast = bounds.getNorthEast(); emitData = [southWest.toArray(), northEast.toArray()]; } else if (type === "polyline") { const path = e.obj.getPath(); emitData = path.map((v) => v.toArray()); } else if (type === "polygon") { const path = e.obj.getPath(); emitData = path.map((v) => v.toArray()); } else if (type === "measureArea") { const path = e.obj.getPath().map((v) => v.toArray()); emitData = AMap.GeometryUtil.ringArea(path); } else if (type === "rule") { const path = e.obj.getPath().map((v) => v.toArray()); emitData = AMap.GeometryUtil.distanceOfLine(path); } else if (type === "rectZoomIn") { emitData = true; } else if (type === "rectZoomOut") { emitData = true; } this.$emit("draw", emitData, e.obj); if (this.autoClear) { this.$$clear(); this.__type(); } }); }, $$close(ifClear = true) { if (this.$amapComponent) { this.$amapComponent.close(ifClear); } }, $$open() { this.__type(); }, $$clear() { this.$$close(true); }, destroyComponent() { if (!this.parentInstance.isDestroy) { this.$amapComponent.close(true); this.$parentComponent.setDefaultCursor(this.preMapCursor); if (this.$text) { this.$parentComponent.off("mousemove", this.getMousePosition); this.$parentComponent.remove(this.$text); this.$text = null; } } this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script$1.__file = "src/packages/util/MouseTool/MouseTool.vue"; const ElAmapMouseTool = withInstall(script$1); const _taskCache = new WeakMap(); class DRACOLoader extends Loader { constructor( manager ) { super( manager ); this.decoderPath = ''; this.decoderConfig = {}; this.decoderBinary = null; this.decoderPending = null; this.workerLimit = 4; this.workerPool = []; this.workerNextTaskID = 1; this.workerSourceURL = ''; this.defaultAttributeIDs = { position: 'POSITION', normal: 'NORMAL', color: 'COLOR', uv: 'TEX_COORD' }; this.defaultAttributeTypes = { position: 'Float32Array', normal: 'Float32Array', color: 'Float32Array', uv: 'Float32Array' }; } setDecoderPath( path ) { this.decoderPath = path; return this; } setDecoderConfig( config ) { this.decoderConfig = config; return this; } setWorkerLimit( workerLimit ) { this.workerLimit = workerLimit; return this; } load( url, onLoad, onProgress, onError ) { const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); loader.load( url, ( buffer ) => { const taskConfig = { attributeIDs: this.defaultAttributeIDs, attributeTypes: this.defaultAttributeTypes, useUniqueIDs: false }; this.decodeGeometry( buffer, taskConfig ) .then( onLoad ) .catch( onError ); }, onProgress, onError ); } /** @deprecated Kept for backward-compatibility with previous DRACOLoader versions. */ decodeDracoFile( buffer, callback, attributeIDs, attributeTypes ) { const taskConfig = { attributeIDs: attributeIDs || this.defaultAttributeIDs, attributeTypes: attributeTypes || this.defaultAttributeTypes, useUniqueIDs: !! attributeIDs }; this.decodeGeometry( buffer, taskConfig ).then( callback ); } decodeGeometry( buffer, taskConfig ) { // TODO: For backward-compatibility, support 'attributeTypes' objects containing // references (rather than names) to typed array constructors. These must be // serialized before sending them to the worker. for ( const attribute in taskConfig.attributeTypes ) { const type = taskConfig.attributeTypes[ attribute ]; if ( type.BYTES_PER_ELEMENT !== undefined ) { taskConfig.attributeTypes[ attribute ] = type.name; } } // const taskKey = JSON.stringify( taskConfig ); // Check for an existing task using this buffer. A transferred buffer cannot be transferred // again from this thread. if ( _taskCache.has( buffer ) ) { const cachedTask = _taskCache.get( buffer ); if ( cachedTask.key === taskKey ) { return cachedTask.promise; } else if ( buffer.byteLength === 0 ) { // Technically, it would be possible to wait for the previous task to complete, // transfer the buffer back, and decode again with the second configuration. That // is complex, and I don't know of any reason to decode a Draco buffer twice in // different ways, so this is left unimplemented. throw new Error( 'THREE.DRACOLoader: Unable to re-decode a buffer with different ' + 'settings. Buffer has already been transferred.' ); } } // let worker; const taskID = this.workerNextTaskID ++; const taskCost = buffer.byteLength; // Obtain a worker and assign a task, and construct a geometry instance // when the task completes. const geometryPending = this._getWorker( taskID, taskCost ) .then( ( _worker ) => { worker = _worker; return new Promise( ( resolve, reject ) => { worker._callbacks[ taskID ] = { resolve, reject }; worker.postMessage( { type: 'decode', id: taskID, taskConfig, buffer }, [ buffer ] ); // this.debug(); } ); } ) .then( ( message ) => this._createGeometry( message.geometry ) ); // Remove task from the task list. // Note: replaced '.finally()' with '.catch().then()' block - iOS 11 support (#19416) geometryPending .catch( () => true ) .then( () => { if ( worker && taskID ) { this._releaseTask( worker, taskID ); // this.debug(); } } ); // Cache the task result. _taskCache.set( buffer, { key: taskKey, promise: geometryPending } ); return geometryPending; } _createGeometry( geometryData ) { const geometry = new BufferGeometry(); if ( geometryData.index ) { geometry.setIndex( new BufferAttribute( geometryData.index.array, 1 ) ); } for ( let i = 0; i < geometryData.attributes.length; i ++ ) { const attribute = geometryData.attributes[ i ]; const name = attribute.name; const array = attribute.array; const itemSize = attribute.itemSize; geometry.setAttribute( name, new BufferAttribute( array, itemSize ) ); } return geometry; } _loadLibrary( url, responseType ) { const loader = new FileLoader( this.manager ); loader.setPath( this.decoderPath ); loader.setResponseType( responseType ); loader.setWithCredentials( this.withCredentials ); return new Promise( ( resolve, reject ) => { loader.load( url, resolve, undefined, reject ); } ); } preload() { this._initDecoder(); return this; } _initDecoder() { if ( this.decoderPending ) return this.decoderPending; const useJS = typeof WebAssembly !== 'object' || this.decoderConfig.type === 'js'; const librariesPending = []; if ( useJS ) { librariesPending.push( this._loadLibrary( 'draco_decoder.js', 'text' ) ); } else { librariesPending.push( this._loadLibrary( 'draco_wasm_wrapper.js', 'text' ) ); librariesPending.push( this._loadLibrary( 'draco_decoder.wasm', 'arraybuffer' ) ); } this.decoderPending = Promise.all( librariesPending ) .then( ( libraries ) => { const jsContent = libraries[ 0 ]; if ( ! useJS ) { this.decoderConfig.wasmBinary = libraries[ 1 ]; } const fn = DRACOWorker.toString(); const body = [ '/* draco decoder */', jsContent, '', '/* worker */', fn.substring( fn.indexOf( '{' ) + 1, fn.lastIndexOf( '}' ) ) ].join( '\n' ); this.workerSourceURL = URL.createObjectURL( new Blob( [ body ] ) ); } ); return this.decoderPending; } _getWorker( taskID, taskCost ) { return this._initDecoder().then( () => { if ( this.workerPool.length < this.workerLimit ) { const worker = new Worker( this.workerSourceURL ); worker._callbacks = {}; worker._taskCosts = {}; worker._taskLoad = 0; worker.postMessage( { type: 'init', decoderConfig: this.decoderConfig } ); worker.onmessage = function ( e ) { const message = e.data; switch ( message.type ) { case 'decode': worker._callbacks[ message.id ].resolve( message ); break; case 'error': worker._callbacks[ message.id ].reject( message ); break; default: console.error( 'THREE.DRACOLoader: Unexpected message, "' + message.type + '"' ); } }; this.workerPool.push( worker ); } else { this.workerPool.sort( function ( a, b ) { return a._taskLoad > b._taskLoad ? - 1 : 1; } ); } const worker = this.workerPool[ this.workerPool.length - 1 ]; worker._taskCosts[ taskID ] = taskCost; worker._taskLoad += taskCost; return worker; } ); } _releaseTask( worker, taskID ) { worker._taskLoad -= worker._taskCosts[ taskID ]; delete worker._callbacks[ taskID ]; delete worker._taskCosts[ taskID ]; } debug() { console.log( 'Task load: ', this.workerPool.map( ( worker ) => worker._taskLoad ) ); } dispose() { for ( let i = 0; i < this.workerPool.length; ++ i ) { this.workerPool[ i ].terminate(); } this.workerPool.length = 0; return this; } } /* WEB WORKER */ function DRACOWorker() { let decoderConfig; let decoderPending; onmessage = function ( e ) { const message = e.data; switch ( message.type ) { case 'init': decoderConfig = message.decoderConfig; decoderPending = new Promise( function ( resolve/*, reject*/ ) { decoderConfig.onModuleLoaded = function ( draco ) { // Module is Promise-like. Wrap before resolving to avoid loop. resolve( { draco: draco } ); }; DracoDecoderModule( decoderConfig ); // eslint-disable-line no-undef } ); break; case 'decode': const buffer = message.buffer; const taskConfig = message.taskConfig; decoderPending.then( ( module ) => { const draco = module.draco; const decoder = new draco.Decoder(); const decoderBuffer = new draco.DecoderBuffer(); decoderBuffer.Init( new Int8Array( buffer ), buffer.byteLength ); try { const geometry = decodeGeometry( draco, decoder, decoderBuffer, taskConfig ); const buffers = geometry.attributes.map( ( attr ) => attr.array.buffer ); if ( geometry.index ) buffers.push( geometry.index.array.buffer ); self.postMessage( { type: 'decode', id: message.id, geometry }, buffers ); } catch ( error ) { console.error( error ); self.postMessage( { type: 'error', id: message.id, error: error.message } ); } finally { draco.destroy( decoderBuffer ); draco.destroy( decoder ); } } ); break; } }; function decodeGeometry( draco, decoder, decoderBuffer, taskConfig ) { const attributeIDs = taskConfig.attributeIDs; const attributeTypes = taskConfig.attributeTypes; let dracoGeometry; let decodingStatus; const geometryType = decoder.GetEncodedGeometryType( decoderBuffer ); if ( geometryType === draco.TRIANGULAR_MESH ) { dracoGeometry = new draco.Mesh(); decodingStatus = decoder.DecodeBufferToMesh( decoderBuffer, dracoGeometry ); } else if ( geometryType === draco.POINT_CLOUD ) { dracoGeometry = new draco.PointCloud(); decodingStatus = decoder.DecodeBufferToPointCloud( decoderBuffer, dracoGeometry ); } else { throw new Error( 'THREE.DRACOLoader: Unexpected geometry type.' ); } if ( ! decodingStatus.ok() || dracoGeometry.ptr === 0 ) { throw new Error( 'THREE.DRACOLoader: Decoding failed: ' + decodingStatus.error_msg() ); } const geometry = { index: null, attributes: [] }; // Gather all vertex attributes. for ( const attributeName in attributeIDs ) { const attributeType = self[ attributeTypes[ attributeName ] ]; let attribute; let attributeID; // A Draco file may be created with default vertex attributes, whose attribute IDs // are mapped 1:1 from their semantic name (POSITION, NORMAL, ...). Alternatively, // a Draco file may contain a custom set of attributes, identified by known unique // IDs. glTF files always do the latter, and `.drc` files typically do the former. if ( taskConfig.useUniqueIDs ) { attributeID = attributeIDs[ attributeName ]; attribute = decoder.GetAttributeByUniqueId( dracoGeometry, attributeID ); } else { attributeID = decoder.GetAttributeId( dracoGeometry, draco[ attributeIDs[ attributeName ] ] ); if ( attributeID === - 1 ) continue; attribute = decoder.GetAttribute( dracoGeometry, attributeID ); } geometry.attributes.push( decodeAttribute( draco, decoder, dracoGeometry, attributeName, attributeType, attribute ) ); } // Add index. if ( geometryType === draco.TRIANGULAR_MESH ) { geometry.index = decodeIndex( draco, decoder, dracoGeometry ); } draco.destroy( dracoGeometry ); return geometry; } function decodeIndex( draco, decoder, dracoGeometry ) { const numFaces = dracoGeometry.num_faces(); const numIndices = numFaces * 3; const byteLength = numIndices * 4; const ptr = draco._malloc( byteLength ); decoder.GetTrianglesUInt32Array( dracoGeometry, byteLength, ptr ); const index = new Uint32Array( draco.HEAPF32.buffer, ptr, numIndices ).slice(); draco._free( ptr ); return { array: index, itemSize: 1 }; } function decodeAttribute( draco, decoder, dracoGeometry, attributeName, attributeType, attribute ) { const numComponents = attribute.num_components(); const numPoints = dracoGeometry.num_points(); const numValues = numPoints * numComponents; const byteLength = numValues * attributeType.BYTES_PER_ELEMENT; const dataType = getDracoDataType( draco, attributeType ); const ptr = draco._malloc( byteLength ); decoder.GetAttributeDataArrayForAllPoints( dracoGeometry, attribute, dataType, byteLength, ptr ); const array = new attributeType( draco.HEAPF32.buffer, ptr, numValues ).slice(); draco._free( ptr ); return { name: attributeName, array: array, itemSize: numComponents }; } function getDracoDataType( draco, attributeType ) { switch ( attributeType ) { case Float32Array: return draco.DT_FLOAT32; case Int8Array: return draco.DT_INT8; case Int16Array: return draco.DT_INT16; case Int32Array: return draco.DT_INT32; case Uint8Array: return draco.DT_UINT8; case Uint16Array: return draco.DT_UINT16; case Uint32Array: return draco.DT_UINT32; } } } /** * Returns the file extension of the path component of a URL * @param {string} url * @returns {string} null if no extension found */ function getUrlExtension( url ) { let parsedUrl; try { parsedUrl = new URL( url, 'http://fakehost.com/' ); } catch ( _ ) { // Ignore invalid URLs return null; } const filename = parsedUrl.pathname.split( '/' ).pop(); const dotIndex = filename.lastIndexOf( '.' ); if ( dotIndex === - 1 || dotIndex === filename.length - 1 ) { // Has no extension or has trailing . character return null; } const extension = filename.substring( dotIndex + 1 ); return extension; } // Fires at the end of the frame and before the next one function enqueueMicrotask( callback ) { Promise.resolve().then( callback ); } class LRUCache { constructor() { // options this.maxSize = 800; this.minSize = 600; this.unloadPercent = 0.05; // "itemSet" doubles as both the list of the full set of items currently // stored in the cache (keys) as well as a map to the time the item was last // used so it can be sorted appropriately. this.itemSet = new Map(); this.itemList = []; this.usedSet = new Set(); this.callbacks = new Map(); this.unloadPriorityCallback = null; const itemSet = this.itemSet; this.defaultPriorityCallback = item => itemSet.get( item ); } // Returns whether or not the cache has reached the maximum size isFull() { return this.itemSet.size >= this.maxSize; } add( item, removeCb ) { const itemSet = this.itemSet; if ( itemSet.has( item ) ) { return false; } if ( this.isFull() ) { return false; } const usedSet = this.usedSet; const itemList = this.itemList; const callbacks = this.callbacks; itemList.push( item ); usedSet.add( item ); itemSet.set( item, Date.now() ); callbacks.set( item, removeCb ); return true; } remove( item ) { const usedSet = this.usedSet; const itemSet = this.itemSet; const itemList = this.itemList; const callbacks = this.callbacks; if ( itemSet.has( item ) ) { callbacks.get( item )( item ); const index = itemList.indexOf( item ); itemList.splice( index, 1 ); usedSet.delete( item ); itemSet.delete( item ); callbacks.delete( item ); return true; } return false; } markUsed( item ) { const itemSet = this.itemSet; const usedSet = this.usedSet; if ( itemSet.has( item ) && ! usedSet.has( item ) ) { itemSet.set( item, Date.now() ); usedSet.add( item ); } } markAllUnused() { this.usedSet.clear(); } // TODO: this should be renamed because it's not necessarily unloading all unused content // Maybe call it "cleanup" or "unloadToMinSize" unloadUnusedContent() { const unloadPercent = this.unloadPercent; const targetSize = this.minSize; const itemList = this.itemList; const itemSet = this.itemSet; const usedSet = this.usedSet; const callbacks = this.callbacks; const unused = itemList.length - usedSet.size; const excess = itemList.length - targetSize; const unloadPriorityCallback = this.unloadPriorityCallback || this.defaultPriorityCallback; if ( excess > 0 && unused > 0 ) { // used items should be at the end of the array itemList.sort( ( a, b ) => { const usedA = usedSet.has( a ); const usedB = usedSet.has( b ); if ( usedA && usedB ) { // If they're both used then don't bother moving them return 0; } else if ( ! usedA && ! usedB ) { // Use the sort function otherwise // higher priority should be further to the left return unloadPriorityCallback( b ) - unloadPriorityCallback( a ); } else { // If one is used and the other is not move the used one towards the end of the array return usedA ? 1 : - 1; } } ); // address corner cases where the minSize might be zero or smaller than maxSize - minSize, // which would result in a very small or no items being unloaded. const unusedExcess = Math.min( excess, unused ); const maxUnload = Math.max( targetSize * unloadPercent, unusedExcess * unloadPercent ); let nodesToUnload = Math.min( maxUnload, unused ); nodesToUnload = Math.ceil( nodesToUnload ); const removedItems = itemList.splice( 0, nodesToUnload ); for ( let i = 0, l = removedItems.length; i < l; i ++ ) { const item = removedItems[ i ]; callbacks.get( item )( item ); itemSet.delete( item ); callbacks.delete( item ); } } } scheduleUnload( markAllUnused = true ) { if ( ! this.scheduled ) { this.scheduled = true; enqueueMicrotask( () => { this.scheduled = false; this.unloadUnusedContent(); if ( markAllUnused ) { this.markAllUnused(); } } ); } } } class PriorityQueue { constructor() { // options this.maxJobs = 6; this.items = []; this.callbacks = new Map(); this.currJobs = 0; this.scheduled = false; this.autoUpdate = true; this.priorityCallback = () => { throw new Error( 'PriorityQueue: PriorityCallback function not defined.' ); }; // Customizable scheduling callback. Default using requestAnimationFrame() this.schedulingCallback = func => { requestAnimationFrame( func ); }; this._runjobs = () => { this.tryRunJobs(); this.scheduled = false; }; } sort() { const priorityCallback = this.priorityCallback; const items = this.items; items.sort( priorityCallback ); } add( item, callback ) { return new Promise( ( resolve, reject ) => { const prCallback = ( ...args ) => callback( ...args ).then( resolve ).catch( reject ); const items = this.items; const callbacks = this.callbacks; items.push( item ); callbacks.set( item, prCallback ); if ( this.autoUpdate ) { this.scheduleJobRun(); } } ); } remove( item ) { const items = this.items; const callbacks = this.callbacks; const index = items.indexOf( item ); if ( index !== - 1 ) { items.splice( index, 1 ); callbacks.delete( item ); } } tryRunJobs() { this.sort(); const items = this.items; const callbacks = this.callbacks; const maxJobs = this.maxJobs; let currJobs = this.currJobs; while ( maxJobs > currJobs && items.length > 0 ) { currJobs ++; const item = items.pop(); const callback = callbacks.get( item ); callbacks.delete( item ); callback( item ) .then( () => { this.currJobs --; if ( this.autoUpdate ) { this.scheduleJobRun(); } } ) .catch( () => { this.currJobs --; if ( this.autoUpdate ) { this.scheduleJobRun(); } } ); } this.currJobs = currJobs; } scheduleJobRun() { if ( ! this.scheduled ) { this.schedulingCallback( this._runjobs ); this.scheduled = true; } } } const UNLOADED = 0; const LOADING = 1; const PARSING = 2; const LOADED = 3; const FAILED = 4; // https://en.wikipedia.org/wiki/World_Geodetic_System // https://en.wikipedia.org/wiki/Flattening const WGS84_RADIUS = 6378137; const WGS84_FLATTENING = 1 / 298.257223563; const WGS84_HEIGHT = - ( WGS84_FLATTENING * WGS84_RADIUS - WGS84_RADIUS ); function isDownloadFinished( value ) { return value === LOADED || value === FAILED; } // Checks whether this tile was last used on the given frame. function isUsedThisFrame( tile, frameCount ) { return tile.__lastFrameVisited === frameCount && tile.__used; } // Resets the frame frame information for the given tile function resetFrameState( tile, frameCount ) { if ( tile.__lastFrameVisited !== frameCount ) { tile.__lastFrameVisited = frameCount; tile.__used = false; tile.__inFrustum = false; tile.__isLeaf = false; tile.__visible = false; tile.__active = false; tile.__error = Infinity; tile.__distanceFromCamera = Infinity; tile.__childrenWereVisible = false; tile.__allChildrenLoaded = false; } } // Recursively mark tiles used down to the next tile with content function recursivelyMarkUsed( tile, frameCount, lruCache ) { resetFrameState( tile, frameCount ); tile.__used = true; lruCache.markUsed( tile ); if ( tile.__contentEmpty ) { const children = tile.children; for ( let i = 0, l = children.length; i < l; i ++ ) { recursivelyMarkUsed( children[ i ], frameCount, lruCache ); } } } function recursivelyLoadTiles( tile, depthFromRenderedParent, renderer ) { // Try to load any external tile set children if the external tile set has loaded. const doTraverse = tile.__contentEmpty && ( ! tile.__externalTileSet || isDownloadFinished( tile.__loadingState ) ); if ( doTraverse ) { const children = tile.children; for ( let i = 0, l = children.length; i < l; i ++ ) { // don't increment depth to rendered parent here because we should treat // the next layer of rendered children as just a single depth away for the // sake of sorting. const child = children[ i ]; child.__depthFromRenderedParent = depthFromRenderedParent; recursivelyLoadTiles( child, depthFromRenderedParent, renderer ); } } else { renderer.requestTileContents( tile ); } } // Helper function for recursively traversing a tile set. If `beforeCb` returns `true` then the // traversal will end early. function traverseSet( tile, beforeCb = null, afterCb = null, parent = null, depth = 0 ) { if ( beforeCb && beforeCb( tile, parent, depth ) ) { if ( afterCb ) { afterCb( tile, parent, depth ); } return; } const children = tile.children; for ( let i = 0, l = children.length; i < l; i ++ ) { traverseSet( children[ i ], beforeCb, afterCb, tile, depth + 1 ); } if ( afterCb ) { afterCb( tile, parent, depth ); } } // Determine which tiles are within the camera frustum. // TODO: this is marking items as used in the lrucache, which means some data is // being kept around that isn't being used -- is that okay? function determineFrustumSet( tile, renderer ) { const stats = renderer.stats; const frameCount = renderer.frameCount; const errorTarget = renderer.errorTarget; const maxDepth = renderer.maxDepth; const loadSiblings = renderer.loadSiblings; const lruCache = renderer.lruCache; const stopAtEmptyTiles = renderer.stopAtEmptyTiles; resetFrameState( tile, frameCount ); // Early out if this tile is not within view. const inFrustum = renderer.tileInView( tile ); if ( inFrustum === false ) { return false; } tile.__used = true; lruCache.markUsed( tile ); tile.__inFrustum = true; stats.inFrustum ++; // Early out if this tile has less error than we're targeting but don't stop // at an external tile set. if ( ( stopAtEmptyTiles || ! tile.__contentEmpty ) && ! tile.__externalTileSet ) { // compute the _error and __distanceFromCamera fields renderer.calculateError( tile ); const error = tile.__error; if ( error <= errorTarget ) { return true; } // Early out if we've reached the maximum allowed depth. if ( renderer.maxDepth > 0 && tile.__depth + 1 >= maxDepth ) { return true; } } // Traverse children and see if any children are in view. let anyChildrenUsed = false; const children = tile.children; for ( let i = 0, l = children.length; i < l; i ++ ) { const c = children[ i ]; const r = determineFrustumSet( c, renderer ); anyChildrenUsed = anyChildrenUsed || r; } // If there are children within view and we are loading siblings then mark // all sibling tiles as used, as well. if ( anyChildrenUsed && loadSiblings ) { for ( let i = 0, l = children.length; i < l; i ++ ) { const c = children[ i ]; recursivelyMarkUsed( c, frameCount, lruCache ); } } return true; } // Traverse and mark the tiles that are at the leaf nodes of the "used" tree. function markUsedSetLeaves( tile, renderer ) { const stats = renderer.stats; const frameCount = renderer.frameCount; if ( ! isUsedThisFrame( tile, frameCount ) ) { return; } stats.used ++; // This tile is a leaf if none of the children had been used. const children = tile.children; let anyChildrenUsed = false; for ( let i = 0, l = children.length; i < l; i ++ ) { const c = children[ i ]; anyChildrenUsed = anyChildrenUsed || isUsedThisFrame( c, frameCount ); } if ( ! anyChildrenUsed ) { // TODO: This isn't necessarily right because it's possible that a parent tile is considered in the // frustum while the child tiles are not, making them unused. If all children have loaded and were properly // considered to be in the used set then we shouldn't set ourselves to a leaf here. tile.__isLeaf = true; } else { let childrenWereVisible = false; let allChildrenLoaded = true; for ( let i = 0, l = children.length; i < l; i ++ ) { const c = children[ i ]; markUsedSetLeaves( c, renderer ); childrenWereVisible = childrenWereVisible || c.__wasSetVisible || c.__childrenWereVisible; if ( isUsedThisFrame( c, frameCount ) ) { const childLoaded = c.__allChildrenLoaded || ( ! c.__contentEmpty && isDownloadFinished( c.__loadingState ) ) || ( c.__externalTileSet && c.__loadingState === FAILED ); allChildrenLoaded = allChildrenLoaded && childLoaded; } } tile.__childrenWereVisible = childrenWereVisible; tile.__allChildrenLoaded = allChildrenLoaded; } } // Skip past tiles we consider unrenderable because they are outside the error threshold. function skipTraversal( tile, renderer ) { const stats = renderer.stats; const frameCount = renderer.frameCount; if ( ! isUsedThisFrame( tile, frameCount ) ) { return; } const parent = tile.parent; const parentDepthToParent = parent ? parent.__depthFromRenderedParent : - 1; tile.__depthFromRenderedParent = parentDepthToParent; // Request the tile contents or mark it as visible if we've found a leaf. const lruCache = renderer.lruCache; if ( tile.__isLeaf ) { tile.__depthFromRenderedParent ++; if ( tile.__loadingState === LOADED ) { if ( tile.__inFrustum ) { tile.__visible = true; stats.visible ++; } tile.__active = true; stats.active ++; } else if ( ! lruCache.isFull() && ( ! tile.__contentEmpty || tile.__externalTileSet ) ) { renderer.requestTileContents( tile ); } return; } const errorRequirement = ( renderer.errorTarget + 1 ) * renderer.errorThreshold; const meetsSSE = tile.__error <= errorRequirement; const includeTile = meetsSSE || tile.refine === 'ADD'; const hasModel = ! tile.__contentEmpty; const hasContent = hasModel || tile.__externalTileSet; const loadedContent = isDownloadFinished( tile.__loadingState ) && hasContent; const childrenWereVisible = tile.__childrenWereVisible; const children = tile.children; const allChildrenHaveContent = tile.__allChildrenLoaded; // Increment the relative depth of the node to the nearest rendered parent if it has content // and is being rendered. if ( includeTile && hasModel ) { tile.__depthFromRenderedParent ++; } // If we've met the SSE requirements and we can load content then fire a fetch. if ( includeTile && ! loadedContent && ! lruCache.isFull() && hasContent ) { renderer.requestTileContents( tile ); } // Only mark this tile as visible if it meets the screen space error requirements, has loaded content, not // all children have loaded yet, and if no children were visible last frame. We want to keep children visible // that _were_ visible to avoid a pop in level of detail as the camera moves around and parent / sibling tiles // load in. // Skip the tile entirely if there's no content to load if ( ( meetsSSE && ! allChildrenHaveContent && ! childrenWereVisible && loadedContent ) || ( tile.refine === 'ADD' && loadedContent ) ) { if ( tile.__inFrustum ) { tile.__visible = true; stats.visible ++; } tile.__active = true; stats.active ++; } // If we're additive then don't stop the traversal here because it doesn't matter whether the children load in // at the same rate. if ( tile.refine !== 'ADD' && meetsSSE && ! allChildrenHaveContent && loadedContent ) { // load the child content if we've found that we've been loaded so we can move down to the next tile // layer when the data has loaded. for ( let i = 0, l = children.length; i < l; i ++ ) { const c = children[ i ]; if ( isUsedThisFrame( c, frameCount ) && ! lruCache.isFull() ) { c.__depthFromRenderedParent = tile.__depthFromRenderedParent + 1; recursivelyLoadTiles( c, c.__depthFromRenderedParent, renderer ); } } } else { for ( let i = 0, l = children.length; i < l; i ++ ) { const c = children[ i ]; if ( isUsedThisFrame( c, frameCount ) ) { skipTraversal( c, renderer ); } } } } // Final traverse to toggle tile visibility. function toggleTiles( tile, renderer ) { const frameCount = renderer.frameCount; const isUsed = isUsedThisFrame( tile, frameCount ); if ( isUsed || tile.__usedLastFrame ) { let setActive = false; let setVisible = false; if ( isUsed ) { // enable visibility if active due to shadows setActive = tile.__active; if ( renderer.displayActiveTiles ) { setVisible = tile.__active || tile.__visible; } else { setVisible = tile.__visible; } } // If the active or visible state changed then call the functions. if ( ! tile.__contentEmpty && tile.__loadingState === LOADED ) { if ( tile.__wasSetActive !== setActive ) { renderer.setTileActive( tile, setActive ); } if ( tile.__wasSetVisible !== setVisible ) { renderer.setTileVisible( tile, setVisible ); } } tile.__wasSetActive = setActive; tile.__wasSetVisible = setVisible; tile.__usedLastFrame = isUsed; const children = tile.children; for ( let i = 0, l = children.length; i < l; i ++ ) { const c = children[ i ]; toggleTiles( c, renderer ); } } } /** * Function for provided to sort all tiles for prioritizing loading/unloading. * * @param {Tile} a * @param {Tile} b * @returns number */ const priorityCallback = ( a, b ) => { if ( a.__depth !== b.__depth ) { // load shallower tiles first return a.__depth > b.__depth ? - 1 : 1; } else if ( a.__inFrustum !== b.__inFrustum ) { // load tiles that are in the frustum at the current depth return a.__inFrustum ? 1 : - 1; } else if ( a.__used !== b.__used ) { // load tiles that have been used return a.__used ? 1 : - 1; } else if ( a.__error !== b.__error ) { // load the tile with the higher error return a.__error > b.__error ? 1 : - 1; } else if ( a.__distanceFromCamera !== b.__distanceFromCamera ) { // and finally visible tiles which have equal error (ex: if geometricError === 0) // should prioritize based on distance. return a.__distanceFromCamera > b.__distanceFromCamera ? - 1 : 1; } return 0; }; /** * Function for sorting the evicted LRU items. We should evict the shallowest depth first. * @param {Tile} tile * @returns number */ const lruPriorityCallback = ( tile ) => 1 / ( tile.__depthFromRenderedParent + 1 ); class TilesRendererBase { get rootTileSet() { const tileSet = this.tileSets[ this.rootURL ]; if ( ! tileSet || tileSet instanceof Promise ) { return null; } else { return tileSet; } } get root() { const tileSet = this.rootTileSet; return tileSet ? tileSet.root : null; } constructor( url ) { // state this.tileSets = {}; this.rootURL = url; this.fetchOptions = {}; this.preprocessURL = null; const lruCache = new LRUCache(); lruCache.unloadPriorityCallback = lruPriorityCallback; const downloadQueue = new PriorityQueue(); downloadQueue.maxJobs = 4; downloadQueue.priorityCallback = priorityCallback; const parseQueue = new PriorityQueue(); parseQueue.maxJobs = 1; parseQueue.priorityCallback = priorityCallback; this.lruCache = lruCache; this.downloadQueue = downloadQueue; this.parseQueue = parseQueue; this.stats = { parsing: 0, downloading: 0, failed: 0, inFrustum: 0, used: 0, active: 0, visible: 0, }; this.frameCount = 0; // options this.errorTarget = 6.0; this.errorThreshold = Infinity; this.loadSiblings = true; this.displayActiveTiles = false; this.maxDepth = Infinity; this.stopAtEmptyTiles = true; } traverse( beforecb, aftercb ) { const tileSets = this.tileSets; const rootTileSet = tileSets[ this.rootURL ]; if ( ! rootTileSet || ! rootTileSet.root ) return; traverseSet( rootTileSet.root, beforecb, aftercb ); } // Public API update() { const stats = this.stats; const lruCache = this.lruCache; const tileSets = this.tileSets; const rootTileSet = tileSets[ this.rootURL ]; if ( ! ( this.rootURL in tileSets ) ) { this.loadRootTileSet( this.rootURL ); return; } else if ( ! rootTileSet || ! rootTileSet.root ) { return; } const root = rootTileSet.root; stats.inFrustum = 0, stats.used = 0, stats.active = 0, stats.visible = 0, this.frameCount ++; determineFrustumSet( root, this ); markUsedSetLeaves( root, this ); skipTraversal( root, this ); toggleTiles( root, this ); lruCache.scheduleUnload(); } // Overrideable parseTile( buffer, tile, extension ) { return null; } disposeTile( tile ) { } preprocessNode( tile, parentTile, tileSetDir ) { if ( tile.content ) { // Fix old file formats if ( ! ( 'uri' in tile.content ) && 'url' in tile.content ) { tile.content.uri = tile.content.url; delete tile.content.url; } if ( tile.content.uri ) { // tile content uri has to be interpreted relative to the tileset.json tile.content.uri = new URL( tile.content.uri, tileSetDir + '/' ).toString(); } // NOTE: fix for some cases where tilesets provide the bounding volume // but volumes are not present. if ( tile.content.boundingVolume && ! ( 'box' in tile.content.boundingVolume || 'sphere' in tile.content.boundingVolume || 'region' in tile.content.boundingVolume ) ) { delete tile.content.boundingVolume; } } tile.parent = parentTile; tile.children = tile.children || []; const uri = tile.content && tile.content.uri; if ( uri ) { // "content" should only indicate loadable meshes, not external tile sets const extension = getUrlExtension( tile.content.uri ); const isExternalTileSet = Boolean( extension && extension.toLowerCase() === 'json' ); tile.__externalTileSet = isExternalTileSet; tile.__contentEmpty = isExternalTileSet; } else { tile.__externalTileSet = false; tile.__contentEmpty = true; } // Expected to be set during calculateError() tile.__distanceFromCamera = Infinity; tile.__error = Infinity; tile.__inFrustum = false; tile.__isLeaf = false; tile.__usedLastFrame = false; tile.__used = false; tile.__wasSetVisible = false; tile.__visible = false; tile.__childrenWereVisible = false; tile.__allChildrenLoaded = false; tile.__wasSetActive = false; tile.__active = false; tile.__loadingState = UNLOADED; tile.__loadIndex = 0; tile.__loadAbort = null; tile.__depthFromRenderedParent = - 1; if ( parentTile === null ) { tile.__depth = 0; tile.refine = tile.refine || 'REPLACE'; } else { tile.__depth = parentTile.__depth + 1; tile.refine = tile.refine || parentTile.refine; } } setTileActive( tile, state ) { } setTileVisible( tile, state ) { } calculateError( tile ) { return 0; } tileInView( tile ) { return true; } resetFailedTiles() { const stats = this.stats; if ( stats.failed === 0 ) { return; } this.traverse( tile => { if ( tile.__loadingState === FAILED ) { tile.__loadingState = UNLOADED; } } ); stats.failed = 0; } // Private Functions fetchTileSet( url, fetchOptions, parent = null ) { return fetch( url, fetchOptions ) .then( res => { if ( res.ok ) { return res.json(); } else { throw new Error( `TilesRenderer: Failed to load tileset "${ url }" with status ${ res.status } : ${ res.statusText }` ); } } ) .then( json => { const version = json.asset.version; console.assert( version === '1.0' || version === '0.0', 'asset.version is expected to be a string of "1.0" or "0.0"' ); // remove trailing slash and last path-segment from the URL let basePath = url.replace( /\/[^\/]*\/?$/, '' ); basePath = new URL( basePath, window.location.href ).toString(); traverseSet( json.root, ( node, parent ) => this.preprocessNode( node, parent, basePath ), null, parent, parent ? parent.__depth : 0, ); return json; } ); } loadRootTileSet( url ) { const tileSets = this.tileSets; if ( ! ( url in tileSets ) ) { const pr = this .fetchTileSet( this.preprocessURL ? this.preprocessURL( url ) : url, this.fetchOptions ) .then( json => { tileSets[ url ] = json; } ); pr.catch( err => { console.error( err ); tileSets[ url ] = err; } ); tileSets[ url ] = pr; return pr; } else if ( tileSets[ url ] instanceof Error ) { return Promise.reject( tileSets[ url ] ); } else { return Promise.resolve( tileSets[ url ] ); } } requestTileContents( tile ) { // If the tile is already being loaded then don't // start it again. if ( tile.__loadingState !== UNLOADED ) { return; } const stats = this.stats; const lruCache = this.lruCache; const downloadQueue = this.downloadQueue; const parseQueue = this.parseQueue; const isExternalTileSet = tile.__externalTileSet; lruCache.add( tile, t => { // Stop the load if it's started if ( t.__loadingState === LOADING ) { t.__loadAbort.abort(); t.__loadAbort = null; } else if ( isExternalTileSet ) { t.children.length = 0; } else { this.disposeTile( t ); } // Decrement stats if ( t.__loadingState === LOADING ) { stats.downloading --; } else if ( t.__loadingState === PARSING ) { stats.parsing --; } t.__loadingState = UNLOADED; t.__loadIndex ++; parseQueue.remove( t ); downloadQueue.remove( t ); } ); // Track a new load index so we avoid the condition where this load is stopped and // another begins soon after so we don't parse twice. tile.__loadIndex ++; const loadIndex = tile.__loadIndex; const controller = new AbortController(); const signal = controller.signal; stats.downloading ++; tile.__loadAbort = controller; tile.__loadingState = LOADING; const errorCallback = e => { // if it has been unloaded then the tile has been disposed if ( tile.__loadIndex !== loadIndex ) { return; } if ( e.name !== 'AbortError' ) { parseQueue.remove( tile ); downloadQueue.remove( tile ); if ( tile.__loadingState === PARSING ) { stats.parsing --; } else if ( tile.__loadingState === LOADING ) { stats.downloading --; } stats.failed ++; console.error( `TilesRenderer : Failed to load tile at url "${ tile.content.uri }".` ); console.error( e ); tile.__loadingState = FAILED; } else { lruCache.remove( tile ); } }; if ( isExternalTileSet ) { downloadQueue.add( tile, tileCb => { // if it has been unloaded then the tile has been disposed if ( tileCb.__loadIndex !== loadIndex ) { return Promise.resolve(); } const uri = this.preprocessURL ? this.preprocessURL( tileCb.content.uri ) : tileCb.content.uri; return this.fetchTileSet( uri, Object.assign( { signal }, this.fetchOptions ), tileCb ); } ) .then( json => { // if it has been unloaded then the tile has been disposed if ( tile.__loadIndex !== loadIndex ) { return; } stats.downloading --; tile.__loadAbort = null; tile.__loadingState = LOADED; tile.children.push( json.root ); } ) .catch( errorCallback ); } else { downloadQueue.add( tile, downloadTile => { if ( downloadTile.__loadIndex !== loadIndex ) { return Promise.resolve(); } const uri = this.preprocessURL ? this.preprocessURL( downloadTile.content.uri ) : downloadTile.content.uri; return fetch( uri, Object.assign( { signal }, this.fetchOptions ) ); } ) .then( res => { if ( tile.__loadIndex !== loadIndex ) { return; } if ( res.ok ) { return res.arrayBuffer(); } else { throw new Error( `Failed to load model with error code ${res.status}` ); } } ) .then( buffer => { // if it has been unloaded then the tile has been disposed if ( tile.__loadIndex !== loadIndex ) { return; } stats.downloading --; stats.parsing ++; tile.__loadAbort = null; tile.__loadingState = PARSING; return parseQueue.add( tile, parseTile => { // if it has been unloaded then the tile has been disposed if ( parseTile.__loadIndex !== loadIndex ) { return Promise.resolve(); } const uri = parseTile.content.uri; const extension = getUrlExtension( uri ); return this.parseTile( buffer, parseTile, extension ); } ); } ) .then( () => { // if it has been unloaded then the tile has been disposed if ( tile.__loadIndex !== loadIndex ) { return; } stats.parsing --; tile.__loadingState = LOADED; if ( tile.__wasSetVisible ) { this.setTileVisible( tile, true ); } if ( tile.__wasSetActive ) { this.setTileActive( tile, true ); } } ) .catch( errorCallback ); } } dispose() { const lruCache = this.lruCache; this.traverse( tile => { lruCache.remove( tile ); } ); this.stats = { parsing: 0, downloading: 0, failed: 0, inFrustum: 0, used: 0, active: 0, visible: 0, }; this.frameCount = 0; } } function arrayToString( array ) { const utf8decoder = new TextDecoder(); return utf8decoder.decode( array ); } class FeatureTable { constructor( buffer, start, headerLength, binLength ) { this.buffer = buffer; this.binOffset = start + headerLength; this.binLength = binLength; let header = null; if ( headerLength !== 0 ) { const headerData = new Uint8Array( buffer, start, headerLength ); header = JSON.parse( arrayToString( headerData ) ); } else { header = {}; } this.header = header; } getKeys() { return Object.keys( this.header ); } getData( key, count, defaultComponentType = null, defaultType = null ) { const header = this.header; if ( ! ( key in header ) ) { return null; } const feature = header[ key ]; if ( ! ( feature instanceof Object ) ) { return feature; } else if ( Array.isArray( feature ) ) { return feature; } else { const { buffer, binOffset, binLength } = this; const byteOffset = feature.byteOffset || 0; const featureType = feature.type || defaultType; const featureComponentType = feature.componentType || defaultComponentType; if ( 'type' in feature && defaultType && feature.type !== defaultType ) { throw new Error( 'FeatureTable: Specified type does not match expected type.' ); } let stride; switch ( featureType ) { case 'SCALAR': stride = 1; break; case 'VEC2': stride = 2; break; case 'VEC3': stride = 3; break; case 'VEC4': stride = 4; break; default: throw new Error( `FeatureTable : Feature type not provided for "${ key }".` ); } let data; const arrayStart = binOffset + byteOffset; const arrayLength = count * stride; switch ( featureComponentType ) { case 'BYTE': data = new Int8Array( buffer, arrayStart, arrayLength ); break; case 'UNSIGNED_BYTE': data = new Uint8Array( buffer, arrayStart, arrayLength ); break; case 'SHORT': data = new Int16Array( buffer, arrayStart, arrayLength ); break; case 'UNSIGNED_SHORT': data = new Uint16Array( buffer, arrayStart, arrayLength ); break; case 'INT': data = new Int32Array( buffer, arrayStart, arrayLength ); break; case 'UNSIGNED_INT': data = new Uint32Array( buffer, arrayStart, arrayLength ); break; case 'FLOAT': data = new Float32Array( buffer, arrayStart, arrayLength ); break; case 'DOUBLE': data = new Float64Array( buffer, arrayStart, arrayLength ); break; default: throw new Error( `FeatureTable : Feature component type not provided for "${ key }".` ); } const dataEnd = arrayStart + arrayLength * data.BYTES_PER_ELEMENT; if ( dataEnd > binOffset + binLength ) { throw new Error( 'FeatureTable: Feature data read outside binary body length.' ); } return data; } } } class BatchTable extends FeatureTable { constructor( buffer, batchSize, start, headerLength, binLength ) { super( buffer, start, headerLength, binLength ); this.batchSize = batchSize; } getData( key, componentType = null, type = null ) { return super.getData( key, this.batchSize, componentType, type ); } } class LoaderBase { constructor() { this.fetchOptions = {}; this.workingPath = ''; } load( url ) { return fetch( url, this.fetchOptions ) .then( res => { if ( ! res.ok ) { throw new Error( `Failed to load file "${ url }" with status ${ res.status } : ${ res.statusText }` ); } return res.arrayBuffer(); } ) .then( buffer => { if ( this.workingPath === '' ) { this.workingPath = this.workingPathForURL( url ); } return this.parse( buffer ); } ); } resolveExternalURL( url ) { if ( /^[^\\/]/.test( url ) ) { return this.workingPath + '/' + url; } else { return url; } } workingPathForURL( url ) { const splits = url.split( /[\\/]/g ); splits.pop(); const workingPath = splits.join( '/' ); return workingPath + '/'; } parse( buffer ) { throw new Error( 'LoaderBase: Parse not implemented.' ); } } function readMagicBytes( bufferOrDataView ) { let view; if ( bufferOrDataView instanceof DataView ) { view = bufferOrDataView; } else { view = new DataView( bufferOrDataView ); } if ( String.fromCharCode( view.getUint8( 0 ) ) === '{' ) { return null; } let magicBytes = ''; for ( let i = 0; i < 4; i ++ ) { magicBytes += String.fromCharCode( view.getUint8( i ) ); } return magicBytes; } // B3DM File Format class B3DMLoaderBase extends LoaderBase { parse( buffer ) { // TODO: this should be able to take a uint8array with an offset and length const dataView = new DataView( buffer ); // 28-byte header // 4 bytes const magic = readMagicBytes( dataView ); console.assert( magic === 'b3dm' ); // 4 bytes const version = dataView.getUint32( 4, true ); console.assert( version === 1 ); // 4 bytes const byteLength = dataView.getUint32( 8, true ); console.assert( byteLength === buffer.byteLength ); // 4 bytes const featureTableJSONByteLength = dataView.getUint32( 12, true ); // 4 bytes const featureTableBinaryByteLength = dataView.getUint32( 16, true ); // 4 bytes const batchTableJSONByteLength = dataView.getUint32( 20, true ); // 4 bytes const batchTableBinaryByteLength = dataView.getUint32( 24, true ); // Feature Table const featureTableStart = 28; const featureTableBuffer = buffer.slice( featureTableStart, featureTableStart + featureTableJSONByteLength + featureTableBinaryByteLength, ); const featureTable = new FeatureTable( featureTableBuffer, 0, featureTableJSONByteLength, featureTableBinaryByteLength, ); // Batch Table const batchTableStart = featureTableStart + featureTableJSONByteLength + featureTableBinaryByteLength; const batchTableBuffer = buffer.slice( batchTableStart, batchTableStart + batchTableJSONByteLength + batchTableBinaryByteLength, ); const batchTable = new BatchTable( batchTableBuffer, featureTable.getData( 'BATCH_LENGTH' ), 0, batchTableJSONByteLength, batchTableBinaryByteLength, ); const glbStart = batchTableStart + batchTableJSONByteLength + batchTableBinaryByteLength; const glbBytes = new Uint8Array( buffer, glbStart, byteLength - glbStart ); return { version, featureTable, batchTable, glbBytes, }; } } class B3DMLoader extends B3DMLoaderBase { constructor( manager = DefaultLoadingManager ) { super(); this.manager = manager; this.adjustmentTransform = new Matrix4(); } parse( buffer ) { const b3dm = super.parse( buffer ); const gltfBuffer = b3dm.glbBytes.slice().buffer; return new Promise( ( resolve, reject ) => { const manager = this.manager; const fetchOptions = this.fetchOptions; const loader = manager.getHandler( 'path.gltf' ) || new GLTFLoader( manager ); if ( fetchOptions.credentials === 'include' && fetchOptions.mode === 'cors' ) { loader.setCrossOrigin( 'use-credentials' ); } if ( 'credentials' in fetchOptions ) { loader.setWithCredentials( fetchOptions.credentials === 'include' ); } if ( fetchOptions.headers ) { loader.setRequestHeader( fetchOptions.headers ); } // GLTFLoader assumes the working path ends in a slash let workingPath = this.workingPath; if ( ! /[\\/]$/.test( workingPath ) && workingPath.length ) { workingPath += '/'; } const adjustmentTransform = this.adjustmentTransform; loader.parse( gltfBuffer, workingPath, model => { const { batchTable, featureTable } = b3dm; const { scene } = model; const rtcCenter = featureTable.getData( 'RTC_CENTER' ); if ( rtcCenter ) { scene.position.x += rtcCenter[ 0 ]; scene.position.y += rtcCenter[ 1 ]; scene.position.z += rtcCenter[ 2 ]; } model.scene.updateMatrix(); model.scene.matrix.multiply( adjustmentTransform ); model.scene.matrix.decompose( model.scene.position, model.scene.quaternion, model.scene.scale ); model.batchTable = batchTable; model.featureTable = featureTable; scene.batchTable = batchTable; scene.featureTable = featureTable; resolve( model ); }, reject ); } ); } } // PNTS File Format class PNTSLoaderBase extends LoaderBase { parse( buffer ) { const dataView = new DataView( buffer ); // 28-byte header // 4 bytes const magic = readMagicBytes( dataView ); console.assert( magic === 'pnts' ); // 4 bytes const version = dataView.getUint32( 4, true ); console.assert( version === 1 ); // 4 bytes const byteLength = dataView.getUint32( 8, true ); console.assert( byteLength === buffer.byteLength ); // 4 bytes const featureTableJSONByteLength = dataView.getUint32( 12, true ); // 4 bytes const featureTableBinaryByteLength = dataView.getUint32( 16, true ); // 4 bytes const batchTableJSONByteLength = dataView.getUint32( 20, true ); // 4 bytes const batchTableBinaryByteLength = dataView.getUint32( 24, true ); // Feature Table const featureTableStart = 28; const featureTableBuffer = buffer.slice( featureTableStart, featureTableStart + featureTableJSONByteLength + featureTableBinaryByteLength, ); const featureTable = new FeatureTable( featureTableBuffer, 0, featureTableJSONByteLength, featureTableBinaryByteLength, ); // Batch Table const batchTableStart = featureTableStart + featureTableJSONByteLength + featureTableBinaryByteLength; const batchTableBuffer = buffer.slice( batchTableStart, batchTableStart + batchTableJSONByteLength + batchTableBinaryByteLength, ); const batchTable = new BatchTable( batchTableBuffer, featureTable.getData( 'BATCH_LENGTH' ) || featureTable.getData( 'POINTS_LENGTH' ), 0, batchTableJSONByteLength, batchTableBinaryByteLength, ); return Promise.resolve( { version, featureTable, batchTable, } ); } } class PNTSLoader extends PNTSLoaderBase { constructor( manager = DefaultLoadingManager ) { super(); this.manager = manager; } parse( buffer ) { return super .parse( buffer ) .then( result => { const { featureTable } = result; const POINTS_LENGTH = featureTable.getData( 'POINTS_LENGTH' ); const POSITION = featureTable.getData( 'POSITION', POINTS_LENGTH, 'FLOAT', 'VEC3' ); const RGB = featureTable.getData( 'RGB', POINTS_LENGTH, 'UNSIGNED_BYTE', 'VEC3' ); [ 'QUANTIZED_VOLUME_OFFSET', 'QUANTIZED_VOLUME_SCALE', 'CONSTANT_RGBA', 'BATCH_LENGTH', 'POSITION_QUANTIZED', 'RGBA', 'RGB565', 'NORMAL', 'NORMAL_OCT16P', ].forEach( feature => { if ( feature in featureTable.header ) { console.warn( `PNTSLoader: Unsupported FeatureTable feature "${ feature }" detected.` ); } } ); const geometry = new BufferGeometry(); geometry.setAttribute( 'position', new BufferAttribute( POSITION, 3, false ) ); const material = new PointsMaterial(); material.size = 2; material.sizeAttenuation = false; if ( RGB !== null ) { geometry.setAttribute( 'color', new BufferAttribute( RGB, 3, true ) ); material.vertexColors = true; } const object = new Points( geometry, material ); result.scene = object; result.scene.featureTable = featureTable; const rtcCenter = featureTable.getData( 'RTC_CENTER' ); if ( rtcCenter ) { result.scene.position.x += rtcCenter[ 0 ]; result.scene.position.y += rtcCenter[ 1 ]; result.scene.position.z += rtcCenter[ 2 ]; } return result; } ); } } // I3DM File Format class I3DMLoaderBase extends LoaderBase { parse( buffer ) { const dataView = new DataView( buffer ); // 32-byte header // 4 bytes const magic = readMagicBytes( dataView ); console.assert( magic === 'i3dm' ); // 4 bytes const version = dataView.getUint32( 4, true ); console.assert( version === 1 ); // 4 bytes const byteLength = dataView.getUint32( 8, true ); console.assert( byteLength === buffer.byteLength ); // 4 bytes const featureTableJSONByteLength = dataView.getUint32( 12, true ); // 4 bytes const featureTableBinaryByteLength = dataView.getUint32( 16, true ); // 4 bytes const batchTableJSONByteLength = dataView.getUint32( 20, true ); // 4 bytes const batchTableBinaryByteLength = dataView.getUint32( 24, true ); // 4 bytes const gltfFormat = dataView.getUint32( 28, true ); // Feature Table const featureTableStart = 32; const featureTableBuffer = buffer.slice( featureTableStart, featureTableStart + featureTableJSONByteLength + featureTableBinaryByteLength, ); const featureTable = new FeatureTable( featureTableBuffer, 0, featureTableJSONByteLength, featureTableBinaryByteLength, ); // Batch Table const batchTableStart = featureTableStart + featureTableJSONByteLength + featureTableBinaryByteLength; const batchTableBuffer = buffer.slice( batchTableStart, batchTableStart + batchTableJSONByteLength + batchTableBinaryByteLength, ); const batchTable = new BatchTable( batchTableBuffer, featureTable.getData( 'INSTANCES_LENGTH' ), 0, batchTableJSONByteLength, batchTableBinaryByteLength, ); const glbStart = batchTableStart + batchTableJSONByteLength + batchTableBinaryByteLength; const bodyBytes = new Uint8Array( buffer, glbStart, byteLength - glbStart ); let glbBytes = null; let promise = null; if ( gltfFormat ) { glbBytes = bodyBytes; promise = Promise.resolve(); } else { const externalUri = this.resolveExternalURL( arrayToString( bodyBytes ) ); promise = fetch( externalUri, this.fetchOptions ) .then( res => { if ( ! res.ok ) { throw new Error( `I3DMLoaderBase : Failed to load file "${ externalUri }" with status ${ res.status } : ${ res.statusText }` ); } return res.arrayBuffer(); } ) .then( buffer => { glbBytes = new Uint8Array( buffer ); } ); } return promise.then( () => { return { version, featureTable, batchTable, glbBytes, }; } ); } } const tempFwd = new Vector3(); const tempUp = new Vector3(); const tempRight = new Vector3(); const tempPos = new Vector3(); const tempQuat = new Quaternion(); const tempSca = new Vector3(); const tempMat$2 = new Matrix4(); class I3DMLoader extends I3DMLoaderBase { constructor( manager = DefaultLoadingManager ) { super(); this.manager = manager; this.adjustmentTransform = new Matrix4(); } resolveExternalURL( url ) { return this.manager.resolveURL( super.resolveExternalURL( url ) ); } parse( buffer ) { return super .parse( buffer ) .then( i3dm => { const { featureTable, batchTable } = i3dm; const gltfBuffer = i3dm.glbBytes.slice().buffer; return new Promise( ( resolve, reject ) => { const fetchOptions = this.fetchOptions; const manager = this.manager; const loader = manager.getHandler( 'path.gltf' ) || new GLTFLoader( manager ); if ( fetchOptions.credentials === 'include' && fetchOptions.mode === 'cors' ) { loader.setCrossOrigin( 'use-credentials' ); } if ( 'credentials' in fetchOptions ) { loader.setWithCredentials( fetchOptions.credentials === 'include' ); } if ( fetchOptions.headers ) { loader.setRequestHeader( fetchOptions.headers ); } // GLTFLoader assumes the working path ends in a slash let workingPath = this.workingPath; if ( ! /[\\/]$/.test( workingPath ) ) { workingPath += '/'; } const adjustmentTransform = this.adjustmentTransform; loader.parse( gltfBuffer, workingPath, model => { const INSTANCES_LENGTH = featureTable.getData( 'INSTANCES_LENGTH' ); const POSITION = featureTable.getData( 'POSITION', INSTANCES_LENGTH, 'FLOAT', 'VEC3' ); const NORMAL_UP = featureTable.getData( 'NORMAL_UP', INSTANCES_LENGTH, 'FLOAT', 'VEC3' ); const NORMAL_RIGHT = featureTable.getData( 'NORMAL_RIGHT', INSTANCES_LENGTH, 'FLOAT', 'VEC3' ); const SCALE_NON_UNIFORM = featureTable.getData( 'SCALE_NON_UNIFORM', INSTANCES_LENGTH, 'FLOAT', 'VEC3' ); const SCALE = featureTable.getData( 'SCALE', INSTANCES_LENGTH, 'FLOAT', 'SCALAR' ); [ 'RTC_CENTER', 'QUANTIZED_VOLUME_OFFSET', 'QUANTIZED_VOLUME_SCALE', 'EAST_NORTH_UP', 'POSITION_QUANTIZED', 'NORMAL_UP_OCT32P', 'NORMAL_RIGHT_OCT32P', ].forEach( feature => { if ( feature in featureTable.header ) { console.warn( `I3DMLoader: Unsupported FeatureTable feature "${ feature }" detected.` ); } } ); const instanceMap = new Map(); const instances = []; model.scene.traverse( child => { if ( child.isMesh ) { const { geometry, material } = child; const instancedMesh = new InstancedMesh( geometry, material, INSTANCES_LENGTH ); instancedMesh.position.copy( child.position ); instancedMesh.rotation.copy( child.rotation ); instancedMesh.scale.copy( child.scale ); instances.push( instancedMesh ); instanceMap.set( child, instancedMesh ); } } ); const averageVector = new Vector3(); for ( let i = 0; i < INSTANCES_LENGTH; i ++ ) { averageVector.x += POSITION[ i * 3 + 0 ] / INSTANCES_LENGTH; averageVector.y += POSITION[ i * 3 + 1 ] / INSTANCES_LENGTH; averageVector.z += POSITION[ i * 3 + 2 ] / INSTANCES_LENGTH; } // replace the meshes with instanced meshes instanceMap.forEach( ( instancedMesh, mesh ) => { const parent = mesh.parent; if ( parent ) { // Mesh have no children parent.remove( mesh ); parent.add( instancedMesh ); // Center the instance around an average point to avoid jitter at large scales. // Transform the average vector by matrix world so we can account for any existing // transforms of the instanced mesh. instancedMesh.updateMatrixWorld(); instancedMesh .position .copy( averageVector ) .applyMatrix4( instancedMesh.matrixWorld ); } } ); for ( let i = 0; i < INSTANCES_LENGTH; i ++ ) { // position tempPos.set( POSITION[ i * 3 + 0 ] - averageVector.x, POSITION[ i * 3 + 1 ] - averageVector.y, POSITION[ i * 3 + 2 ] - averageVector.z, ); // rotation if ( NORMAL_UP ) { tempUp.set( NORMAL_UP[ i * 3 + 0 ], NORMAL_UP[ i * 3 + 1 ], NORMAL_UP[ i * 3 + 2 ], ); tempRight.set( NORMAL_RIGHT[ i * 3 + 0 ], NORMAL_RIGHT[ i * 3 + 1 ], NORMAL_RIGHT[ i * 3 + 2 ], ); tempFwd.crossVectors( tempRight, tempUp ) .normalize(); tempMat$2.makeBasis( tempRight, tempUp, tempFwd, ); tempQuat.setFromRotationMatrix( tempMat$2 ); } else { tempQuat.set( 0, 0, 0, 1 ); } // scale if ( SCALE ) { tempSca.setScalar( SCALE[ i ] ); } else if ( SCALE_NON_UNIFORM ) { tempSca.set( SCALE_NON_UNIFORM[ i * 3 + 0 ], SCALE_NON_UNIFORM[ i * 3 + 1 ], SCALE_NON_UNIFORM[ i * 3 + 2 ], ); } else { tempSca.set( 1, 1, 1 ); } tempMat$2.compose( tempPos, tempQuat, tempSca ).multiply( adjustmentTransform ); for ( let j = 0, l = instances.length; j < l; j ++ ) { const instance = instances[ j ]; instance.setMatrixAt( i, tempMat$2 ); } } model.batchTable = batchTable; model.featureTable = featureTable; model.scene.batchTable = batchTable; model.scene.featureTable = featureTable; resolve( model ); }, reject ); } ); } ); } } // CMPT File Format class CMPTLoaderBase extends LoaderBase { parse( buffer ) { const dataView = new DataView( buffer ); // 16-byte header // 4 bytes const magic = readMagicBytes( dataView ); console.assert( magic === 'cmpt', 'CMPTLoader: The magic bytes equal "cmpt".' ); // 4 bytes const version = dataView.getUint32( 4, true ); console.assert( version === 1, 'CMPTLoader: The version listed in the header is "1".' ); // 4 bytes const byteLength = dataView.getUint32( 8, true ); console.assert( byteLength === buffer.byteLength, 'CMPTLoader: The contents buffer length listed in the header matches the file.' ); // 4 bytes const tilesLength = dataView.getUint32( 12, true ); const tiles = []; let offset = 16; for ( let i = 0; i < tilesLength; i ++ ) { const tileView = new DataView( buffer, offset, 12 ); const tileMagic = readMagicBytes( tileView ); const tileVersion = tileView.getUint32( 4, true ); const byteLength = tileView.getUint32( 8, true ); const tileBuffer = new Uint8Array( buffer, offset, byteLength ); tiles.push( { type: tileMagic, buffer: tileBuffer, version: tileVersion, } ); offset += byteLength; } return { version, tiles, }; } } class CMPTLoader extends CMPTLoaderBase { constructor( manager = DefaultLoadingManager ) { super(); this.manager = manager; this.adjustmentTransform = new Matrix4(); } parse( buffer ) { const result = super.parse( buffer ); const manager = this.manager; const adjustmentTransform = this.adjustmentTransform; const promises = []; for ( const i in result.tiles ) { const { type, buffer } = result.tiles[ i ]; switch ( type ) { case 'b3dm': { const slicedBuffer = buffer.slice(); const loader = new B3DMLoader( manager ); loader.workingPath = this.workingPath; loader.fetchOptions = this.fetchOptions; loader.adjustmentTransform.copy( adjustmentTransform ); const promise = loader.parse( slicedBuffer.buffer ); promises.push( promise ); break; } case 'pnts': { const slicedBuffer = buffer.slice(); const loader = new PNTSLoader( manager ); loader.workingPath = this.workingPath; loader.fetchOptions = this.fetchOptions; const promise = loader.parse( slicedBuffer.buffer ); promises.push( promise ); break; } case 'i3dm': { const slicedBuffer = buffer.slice(); const loader = new I3DMLoader( manager ); loader.workingPath = this.workingPath; loader.fetchOptions = this.fetchOptions; loader.adjustmentTransform.copy( adjustmentTransform ); const promise = loader.parse( slicedBuffer.buffer ); promises.push( promise ); break; } } } return Promise.all( promises ).then( results => { const group = new Group$1(); results.forEach( result => { group.add( result.scene ); } ); return { tiles: results, scene: group, }; } ); } } class GLTFCesiumRTCExtension { constructor() { this.name = 'CESIUM_RTC'; } afterRoot( res ) { const { center } = res.parser.json.extensions.CESIUM_RTC; res.scene.position.x += center[ 0 ]; res.scene.position.y += center[ 1 ]; res.scene.position.z += center[ 2 ]; } } class GLTFExtensionLoader extends LoaderBase { constructor( manager = DefaultLoadingManager ) { super(); this.manager = manager; } parse( buffer ) { return new Promise( ( resolve, reject ) => { const manager = this.manager; const fetchOptions = this.fetchOptions; let loader = manager.getHandler( 'path.gltf' ) || manager.getHandler( 'path.glb' ); if ( ! loader ) { loader = new GLTFLoader( manager ); loader.register( () => new GLTFCesiumRTCExtension() ); if ( fetchOptions.credentials === 'include' && fetchOptions.mode === 'cors' ) { loader.setCrossOrigin( 'use-credentials' ); } if ( 'credentials' in fetchOptions ) { loader.setWithCredentials( fetchOptions.credentials === 'include' ); } if ( fetchOptions.headers ) { loader.setRequestHeader( fetchOptions.headers ); } } // assume any pre-registered loader has paths configured as the user desires, but if we're making // a new loader, use the working path during parse to support relative uris on other hosts let resourcePath = loader.resourcePath || loader.path || this.workingPath; if ( ! /[\\/]$/.test( resourcePath ) && resourcePath.length ) { resourcePath += '/'; } loader.parse( buffer, resourcePath, model => { resolve( model ); }, reject ); } ); } } // Specialization of "Group" that only updates world matrices of children if // the transform has changed since the last update and ignores the "force" // parameter under the assumption that the children tiles will not move. const tempMat$1 = new Matrix4(); class TilesGroup extends Group$1 { constructor( tilesRenderer ) { super(); this.name = 'TilesRenderer.TilesGroup'; this.tilesRenderer = tilesRenderer; } raycast( raycaster, intersects ) { if ( this.tilesRenderer.optimizeRaycast ) { this.tilesRenderer.raycast( raycaster, intersects ); } } updateMatrixWorld( force ) { if ( this.matrixAutoUpdate ) { this.updateMatrix(); } if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent === null ) { tempMat$1.copy( this.matrix ); } else { tempMat$1.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } this.matrixWorldNeedsUpdate = false; // check if the matrix changed relative to what it was. const elA = tempMat$1.elements; const elB = this.matrixWorld.elements; let isDifferent = false; for ( let i = 0; i < 16; i ++ ) { const itemA = elA[ i ]; const itemB = elB[ i ]; const diff = Math.abs( itemA - itemB ); if ( diff > Number.EPSILON ) { isDifferent = true; break; } } if ( isDifferent ) { this.matrixWorld.copy( tempMat$1 ); // update children // the children will not have to change unless the parent group has updated const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].updateMatrixWorld(); } } } } } // Cesium / 3D tiles Spheroid: // - Up is Z at 90 degrees latitude // - 0, 0 latitude, longitude is X axis // Z // | // | // .----- Y // / // X // Three.js Spherical Coordinates // - Up is Y at 90 degrees latitude // - 0, 0 latitude, longitude is Z // Y // | // | // .----- X // / // Z function swapFrame( target ) { const { x, y, z } = target; target.x = z; target.y = x; target.z = y; } function latitudeToSphericalPhi( latitude ) { return - latitude + Math.PI / 2; } const _spherical = new Spherical(); const _norm = new Vector3(); const _vec$1 = new Vector3(); class Ellipsoid { constructor( x = 1, y = 1, z = 1 ) { this.radius = new Vector3( x, y, z ); } getCartographicToPosition( lat, lon, height, target ) { // https://github.com/CesiumGS/cesium/blob/main/Source/Core/Ellipsoid.js#L396 const radius = this.radius; _spherical.set( 1, latitudeToSphericalPhi( lat ), lon ); _norm.setFromSpherical( _spherical ).normalize(); swapFrame( _norm ); _vec$1.copy( _norm ); _vec$1.x *= radius.x ** 2; _vec$1.y *= radius.y ** 2; _vec$1.z *= radius.z ** 2; const gamma = Math.sqrt( _norm.dot( _vec$1 ) ); _vec$1.divideScalar( gamma ); return target.copy( _vec$1 ).addScaledVector( _norm, height ); } getCartographicToNormal( lat, lon, target ) { _spherical.set( 1, ( - lat + Math.PI / 2 ), lon ); target.setFromSpherical( _spherical ).normalize(); swapFrame( target ); return target; } getPositionToNormal( pos, target ) { const radius = this.radius; target.copy( pos ); target.x /= radius.x ** 2; target.y /= radius.y ** 2; target.z /= radius.z ** 2; target.normalize(); return target; } } const PI = Math.PI; const HALF_PI = PI / 2; const _orthoX = new Vector3(); const _orthoY = new Vector3(); const _orthoZ = new Vector3(); const _invMatrix = new Matrix4(); let _poolIndex = 0; const _pointsPool = []; function getVector( usePool = false ) { if ( ! usePool ) { return new Vector3(); } if ( ! _pointsPool[ _poolIndex ] ) { _pointsPool[ _poolIndex ] = new Vector3(); } _poolIndex ++; return _pointsPool[ _poolIndex - 1 ]; } function resetPool() { _poolIndex = 0; } class EllipsoidRegion extends Ellipsoid { constructor( x, y, z, latStart = - HALF_PI, latEnd = HALF_PI, lonStart = 0, lonEnd = 2 * PI, heightStart = 0, heightEnd = 0 ) { super( x, y, z ); this.latStart = latStart; this.latEnd = latEnd; this.lonStart = lonStart; this.lonEnd = lonEnd; this.heightStart = heightStart; this.heightEnd = heightEnd; } _getPoints( usePool = false ) { const { latStart, latEnd, lonStart, lonEnd, heightStart, heightEnd, } = this; const midLat = MathUtils.mapLinear( 0.5, 0, 1, latStart, latEnd ); const midLon = MathUtils.mapLinear( 0.5, 0, 1, lonStart, lonEnd ); const lonOffset = Math.floor( lonStart / HALF_PI ) * HALF_PI; const latlon = [ [ - PI / 2, 0 ], [ PI / 2, 0 ], [ 0, lonOffset ], [ 0, lonOffset + PI / 2 ], [ 0, lonOffset + PI ], [ 0, lonOffset + 3 * PI / 2 ], [ latStart, lonEnd ], [ latEnd, lonEnd ], [ latStart, lonStart ], [ latEnd, lonStart ], [ 0, lonStart ], [ 0, lonEnd ], [ midLat, midLon ], [ latStart, midLon ], [ latEnd, midLon ], [ midLat, lonStart ], [ midLat, lonEnd ], ]; const target = []; const total = latlon.length; for ( let z = 0; z <= 1; z ++ ) { const height = MathUtils.mapLinear( z, 0, 1, heightStart, heightEnd ); for ( let i = 0, l = total; i < l; i ++ ) { const [ lat, lon ] = latlon[ i ]; if ( lat >= latStart && lat <= latEnd && lon >= lonStart && lon <= lonEnd ) { const v = getVector( usePool ); target.push( v ); this.getCartographicToPosition( lat, lon, height, v ); } } } return target; } getBoundingBox( box, matrix ) { resetPool(); const { latStart, latEnd, lonStart, lonEnd, } = this; const latRange = latEnd - latStart; if ( latRange < PI / 2 ) { // get the midway point for the region const midLat = MathUtils.mapLinear( 0.5, 0, 1, latStart, latEnd ); const midLon = MathUtils.mapLinear( 0.5, 0, 1, lonStart, lonEnd ); // get the frame matrix for the box - works well for smaller regions this.getCartographicToNormal( midLat, midLon, _orthoZ ); _orthoY.set( 0, 0, 1 ); _orthoX.crossVectors( _orthoY, _orthoZ ); _orthoY.crossVectors( _orthoX, _orthoZ ); matrix.makeBasis( _orthoX, _orthoY, _orthoZ ); } else { _orthoX.set( 1, 0, 0 ); _orthoY.set( 0, 1, 0 ); _orthoZ.set( 0, 0, 1 ); matrix.makeBasis( _orthoX, _orthoY, _orthoZ ); } // transform the points into the local frame _invMatrix.copy( matrix ).invert(); const points = this._getPoints( true ); for ( let i = 0, l = points.length; i < l; i ++ ) { points[ i ].applyMatrix4( _invMatrix ); } // init the box box.makeEmpty(); box.setFromPoints( points ); } getBoundingSphere( sphere, center ) { resetPool(); const points = this._getPoints( true ); sphere.makeEmpty(); sphere.setFromPoints( points, center ); } } const _sphere = new Sphere(); const _mat = new Matrix4(); const _vec = new Vector3(); const _vec2 = new Vector3(); const _ray = new Ray(); const _hitArray = []; function distanceSort( a, b ) { return a.distance - b.distance; } function intersectTileScene( scene, raycaster, intersects ) { // Don't intersect the box3 helpers because those are used for debugging scene.traverse( c => { // We set the default raycast function to empty so three.js doesn't automatically cast against it Object.getPrototypeOf( c ).raycast.call( c, raycaster, intersects ); } ); } // Returns the closest hit when traversing the tree function raycastTraverseFirstHit( root, group, activeTiles, raycaster ) { // If the root is active make sure we've checked it if ( activeTiles.has( root ) ) { intersectTileScene( root.cached.scene, raycaster, _hitArray ); if ( _hitArray.length > 0 ) { if ( _hitArray.length > 1 ) { _hitArray.sort( distanceSort ); } const res = _hitArray[ 0 ]; _hitArray.length = 0; return res; } else { return null; } } // TODO: can we avoid creating a new array here every time to save on memory? const array = []; const children = root.children; for ( let i = 0, l = children.length; i < l; i ++ ) { const tile = children[ i ]; const cached = tile.cached; const groupMatrixWorld = group.matrixWorld; _mat.copy( groupMatrixWorld ); // if we don't hit the sphere then early out const sphere = cached.sphere; if ( sphere ) { _sphere.copy( sphere ); _sphere.applyMatrix4( _mat ); if ( ! raycaster.ray.intersectsSphere( _sphere ) ) { continue; } } // TODO: check region? const boundingBox = cached.box; const obbMat = cached.boxTransform; if ( boundingBox ) { _mat.multiply( obbMat ).invert(); _ray.copy( raycaster.ray ); _ray.applyMatrix4( _mat ); if ( _ray.intersectBox( boundingBox, _vec ) ) { // account for tile scale _vec2.setFromMatrixScale( _mat ); const invScale = _vec2.x; if ( Math.abs( Math.max( _vec2.x - _vec2.y, _vec2.x - _vec2.z ) ) > 1e-6 ) { console.warn( 'ThreeTilesRenderer : Non uniform scale used for tile which may cause issues when raycasting.' ); } // if we intersect the box save the distance to the tile bounds const data = { distance: Infinity, tile: null }; array.push( data ); data.distance = _vec.distanceToSquared( _ray.origin ) * invScale * invScale; data.tile = tile; } else { continue; } } } // sort them by ascending distance array.sort( distanceSort ); // traverse until we find the best hit and early out if a tile bounds // couldn't possible include a best hit let bestDistanceSquared = Infinity; let bestHit = null; for ( let i = 0, l = array.length; i < l; i ++ ) { const data = array[ i ]; const distanceSquared = data.distance; if ( distanceSquared > bestDistanceSquared ) { break; } else { const tile = data.tile; const scene = tile.cached.scene; let hit = null; if ( activeTiles.has( tile ) ) { // save the hit if it's closer intersectTileScene( scene, raycaster, _hitArray ); if ( _hitArray.length > 0 ) { if ( _hitArray.length > 1 ) { _hitArray.sort( distanceSort ); } hit = _hitArray[ 0 ]; } } else { hit = raycastTraverseFirstHit( tile, group, activeTiles, raycaster ); } if ( hit ) { const hitDistanceSquared = hit.distance * hit.distance; if ( hitDistanceSquared < bestDistanceSquared ) { bestDistanceSquared = hitDistanceSquared; bestHit = hit; } _hitArray.length = 0; } } } return bestHit; } function raycastTraverse( tile, group, activeTiles, raycaster, intersects ) { const cached = tile.cached; const groupMatrixWorld = group.matrixWorld; _mat.copy( groupMatrixWorld ); // Early out if we don't hit this tile sphere const sphere = cached.sphere; if ( sphere ) { _sphere.copy( sphere ); _sphere.applyMatrix4( _mat ); if ( ! raycaster.ray.intersectsSphere( _sphere ) ) { return; } } // Early out if we don't this this tile box const boundingBox = cached.box; const obbMat = cached.boxTransform; if ( boundingBox ) { _mat.multiply( obbMat ).invert(); _ray.copy( raycaster.ray ).applyMatrix4( _mat ); if ( ! _ray.intersectsBox( boundingBox ) ) { return; } } // TODO: check region const scene = cached.scene; if ( activeTiles.has( tile ) ) { intersectTileScene( scene, raycaster, intersects ); return; } const children = tile.children; for ( let i = 0, l = children.length; i < l; i ++ ) { raycastTraverse( children[ i ], group, activeTiles, raycaster, intersects ); } } const INITIAL_FRUSTUM_CULLED = Symbol( 'INITIAL_FRUSTUM_CULLED' ); const tempMat = new Matrix4(); const tempMat2 = new Matrix4(); const tempVector = new Vector3(); const vecX = new Vector3(); const vecY = new Vector3(); const vecZ = new Vector3(); const X_AXIS = new Vector3( 1, 0, 0 ); const Y_AXIS = new Vector3( 0, 1, 0 ); function updateFrustumCulled( object, toInitialValue ) { object.traverse( c => { c.frustumCulled = c[ INITIAL_FRUSTUM_CULLED ] && toInitialValue; } ); } class TilesRenderer extends TilesRendererBase { get autoDisableRendererCulling() { return this._autoDisableRendererCulling; } set autoDisableRendererCulling( value ) { if ( this._autoDisableRendererCulling !== value ) { super._autoDisableRendererCulling = value; this.forEachLoadedModel( ( scene ) => { updateFrustumCulled( scene, ! value ); } ); } } constructor( ...args ) { super( ...args ); this.group = new TilesGroup( this ); this.cameras = []; this.cameraMap = new Map(); this.cameraInfo = []; this.activeTiles = new Set(); this.visibleTiles = new Set(); this._autoDisableRendererCulling = true; this.optimizeRaycast = true; this.onLoadTileSet = null; this.onLoadModel = null; this.onDisposeModel = null; this.onTileVisibilityChange = null; const manager = new LoadingManager(); manager.setURLModifier( url => { if ( this.preprocessURL ) { return this.preprocessURL( url ); } else { return url; } } ); this.manager = manager; // Setting up the override raycasting function to be used by // 3D objects created by this renderer const tilesRenderer = this; this._overridenRaycast = function ( raycaster, intersects ) { if ( ! tilesRenderer.optimizeRaycast ) { Object.getPrototypeOf( this ).raycast.call( this, raycaster, intersects ); } }; } /* Public API */ getBounds( box ) { if ( ! this.root ) { return false; } const cached = this.root.cached; const boundingBox = cached.box; const obbMat = cached.boxTransform; if ( boundingBox ) { box.copy( boundingBox ); box.applyMatrix4( obbMat ); return true; } else { return false; } } getOrientedBounds( box, matrix ) { if ( ! this.root ) { return false; } const cached = this.root.cached; const boundingBox = cached.box; const obbMat = cached.boxTransform; if ( boundingBox ) { box.copy( boundingBox ); matrix.copy( obbMat ); return true; } else { return false; } } getBoundingSphere( sphere ) { if ( ! this.root ) { return false; } const boundingSphere = this.root.cached.sphere; if ( boundingSphere ) { sphere.copy( boundingSphere ); return true; } else { return false; } } forEachLoadedModel( callback ) { this.traverse( tile => { const scene = tile.cached.scene; if ( scene ) { callback( scene, tile ); } } ); } raycast( raycaster, intersects ) { if ( ! this.root ) { return; } if ( raycaster.firstHitOnly ) { const hit = raycastTraverseFirstHit( this.root, this.group, this.activeTiles, raycaster ); if ( hit ) { intersects.push( hit ); } } else { raycastTraverse( this.root, this.group, this.activeTiles, raycaster, intersects ); } } hasCamera( camera ) { return this.cameraMap.has( camera ); } setCamera( camera ) { const cameras = this.cameras; const cameraMap = this.cameraMap; if ( ! cameraMap.has( camera ) ) { cameraMap.set( camera, new Vector2() ); cameras.push( camera ); return true; } return false; } setResolution( camera, xOrVec, y ) { const cameraMap = this.cameraMap; if ( ! cameraMap.has( camera ) ) { return false; } if ( xOrVec instanceof Vector2 ) { cameraMap.get( camera ).copy( xOrVec ); } else { cameraMap.get( camera ).set( xOrVec, y ); } return true; } setResolutionFromRenderer( camera, renderer ) { const cameraMap = this.cameraMap; if ( ! cameraMap.has( camera ) ) { return false; } const resolution = cameraMap.get( camera ); renderer.getSize( resolution ); resolution.multiplyScalar( renderer.getPixelRatio() ); return true; } deleteCamera( camera ) { const cameras = this.cameras; const cameraMap = this.cameraMap; if ( cameraMap.has( camera ) ) { const index = cameras.indexOf( camera ); cameras.splice( index, 1 ); cameraMap.delete( camera ); return true; } return false; } /* Overriden */ fetchTileSet( url, ...rest ) { const pr = super.fetchTileSet( url, ...rest ); pr.then( json => { if ( this.onLoadTileSet ) { // Push this onto the end of the event stack to ensure this runs // after the base renderer has placed the provided json where it // needs to be placed and is ready for an update. Promise.resolve().then( () => { this.onLoadTileSet( json, url ); } ); } } ); return pr; } update() { const group = this.group; const cameras = this.cameras; const cameraMap = this.cameraMap; const cameraInfo = this.cameraInfo; if ( cameras.length === 0 ) { console.warn( 'TilesRenderer: no cameras defined. Cannot update 3d tiles.' ); return; } // automatically scale the array of cameraInfo to match the cameras while ( cameraInfo.length > cameras.length ) { cameraInfo.pop(); } while ( cameraInfo.length < cameras.length ) { cameraInfo.push( { frustum: new Frustum(), isOrthographic: false, sseDenominator: - 1, // used if isOrthographic:false position: new Vector3(), invScale: - 1, pixelSize: 0, // used if isOrthographic:true } ); } // extract scale of group container tempMat2.copy( group.matrixWorld ).invert(); tempVector.setFromMatrixScale( tempMat2 ); const invScale = tempVector.x; if ( Math.abs( Math.max( tempVector.x - tempVector.y, tempVector.x - tempVector.z ) ) > 1e-6 ) { console.warn( 'ThreeTilesRenderer : Non uniform scale used for tile which may cause issues when calculating screen space error.' ); } // store the camera cameraInfo in the 3d tiles root frame for ( let i = 0, l = cameraInfo.length; i < l; i ++ ) { const camera = cameras[ i ]; const info = cameraInfo[ i ]; const frustum = info.frustum; const position = info.position; const resolution = cameraMap.get( camera ); if ( resolution.width === 0 || resolution.height === 0 ) { console.warn( 'TilesRenderer: resolution for camera error calculation is not set.' ); } // Read the calculated projection matrix directly to support custom Camera implementations const projection = camera.projectionMatrix.elements; // The last element of the projection matrix is 1 for orthographic, 0 for perspective info.isOrthographic = projection[ 15 ] === 1; if ( info.isOrthographic ) { // See OrthographicCamera.updateProjectionMatrix and Matrix4.makeOrthographic: // the view width and height are used to populate matrix elements 0 and 5. const w = 2 / projection[ 0 ]; const h = 2 / projection[ 5 ]; info.pixelSize = Math.max( h / resolution.height, w / resolution.width ); } else { // See PerspectiveCamera.updateProjectionMatrix and Matrix4.makePerspective: // the vertical FOV is used to populate matrix element 5. info.sseDenominator = ( 2 / projection[ 5 ] ) / resolution.height; } info.invScale = invScale; // get frustum in group root frame tempMat.copy( group.matrixWorld ); tempMat.premultiply( camera.matrixWorldInverse ); tempMat.premultiply( camera.projectionMatrix ); frustum.setFromProjectionMatrix( tempMat ); // get transform position in group root frame position.set( 0, 0, 0 ); position.applyMatrix4( camera.matrixWorld ); position.applyMatrix4( tempMat2 ); } super.update(); } preprocessNode( tile, parentTile, tileSetDir ) { super.preprocessNode( tile, parentTile, tileSetDir ); const transform = new Matrix4(); if ( tile.transform ) { const transformArr = tile.transform; for ( let i = 0; i < 16; i ++ ) { transform.elements[ i ] = transformArr[ i ]; } } else { transform.identity(); } if ( parentTile ) { transform.premultiply( parentTile.cached.transform ); } const transformInverse = new Matrix4().copy( transform ).invert(); let box = null; let boxTransform = null; let boxTransformInverse = null; if ( 'box' in tile.boundingVolume ) { const data = tile.boundingVolume.box; box = new Box3(); boxTransform = new Matrix4(); boxTransformInverse = new Matrix4(); // get the extents of the bounds in each axis vecX.set( data[ 3 ], data[ 4 ], data[ 5 ] ); vecY.set( data[ 6 ], data[ 7 ], data[ 8 ] ); vecZ.set( data[ 9 ], data[ 10 ], data[ 11 ] ); const scaleX = vecX.length(); const scaleY = vecY.length(); const scaleZ = vecZ.length(); vecX.normalize(); vecY.normalize(); vecZ.normalize(); // handle the case where the box has a dimension of 0 in one axis if ( scaleX === 0 ) { vecX.crossVectors( vecY, vecZ ); } if ( scaleY === 0 ) { vecY.crossVectors( vecX, vecZ ); } if ( scaleZ === 0 ) { vecZ.crossVectors( vecX, vecY ); } // create the oriented frame that the box exists in boxTransform.set( vecX.x, vecY.x, vecZ.x, data[ 0 ], vecX.y, vecY.y, vecZ.y, data[ 1 ], vecX.z, vecY.z, vecZ.z, data[ 2 ], 0, 0, 0, 1 ); boxTransform.premultiply( transform ); boxTransformInverse.copy( boxTransform ).invert(); // scale the box by the extents box.min.set( - scaleX, - scaleY, - scaleZ ); box.max.set( scaleX, scaleY, scaleZ ); } let sphere = null; if ( 'sphere' in tile.boundingVolume ) { const data = tile.boundingVolume.sphere; sphere = new Sphere(); sphere.center.set( data[ 0 ], data[ 1 ], data[ 2 ] ); sphere.radius = data[ 3 ]; sphere.applyMatrix4( transform ); } else if ( 'box' in tile.boundingVolume ) { const data = tile.boundingVolume.box; sphere = new Sphere(); box.getBoundingSphere( sphere ); sphere.center.set( data[ 0 ], data[ 1 ], data[ 2 ] ); sphere.applyMatrix4( transform ); } let region = null; if ( 'region' in tile.boundingVolume ) { const data = tile.boundingVolume.region; const [ west, south, east, north, minHeight, maxHeight ] = data; region = new EllipsoidRegion( WGS84_RADIUS, WGS84_RADIUS, WGS84_HEIGHT, south, north, west, east, minHeight, maxHeight, ); if ( sphere === null ) { sphere = new Sphere(); region.getBoundingSphere( sphere ); } if ( box === null ) { box = new Box3(); boxTransform = new Matrix4(); boxTransformInverse = new Matrix4(); region.getBoundingBox( box, boxTransform ); boxTransformInverse.copy( boxTransform ).invert(); } } tile.cached = { loadIndex: 0, transform, transformInverse, active: false, inFrustum: [], box, boxTransform, boxTransformInverse, sphere, region, scene: null, geometry: null, material: null, }; } parseTile( buffer, tile, extension ) { tile._loadIndex = tile._loadIndex || 0; tile._loadIndex ++; const uri = tile.content.uri; const uriSplits = uri.split( /[\\\/]/g ); uriSplits.pop(); const workingPath = uriSplits.join( '/' ); const fetchOptions = this.fetchOptions; const manager = this.manager; const loadIndex = tile._loadIndex; let promise = null; const upAxis = this.rootTileSet.asset && this.rootTileSet.asset.gltfUpAxis || 'y'; const cached = tile.cached; const cachedTransform = cached.transform; switch ( upAxis.toLowerCase() ) { case 'x': tempMat.makeRotationAxis( Y_AXIS, - Math.PI / 2 ); break; case 'y': tempMat.makeRotationAxis( X_AXIS, Math.PI / 2 ); break; case 'z': tempMat.identity(); break; } const fileType = readMagicBytes( buffer ) || extension; switch ( fileType ) { case 'b3dm': { const loader = new B3DMLoader( manager ); loader.workingPath = workingPath; loader.fetchOptions = fetchOptions; loader.adjustmentTransform.copy( tempMat ); promise = loader .parse( buffer ) .then( res => res.scene ); break; } case 'pnts': { const loader = new PNTSLoader( manager ); loader.workingPath = workingPath; loader.fetchOptions = fetchOptions; promise = loader .parse( buffer ) .then( res => res.scene ); break; } case 'i3dm': { const loader = new I3DMLoader( manager ); loader.workingPath = workingPath; loader.fetchOptions = fetchOptions; loader.adjustmentTransform.copy( tempMat ); promise = loader .parse( buffer ) .then( res => res.scene ); break; } case 'cmpt': { const loader = new CMPTLoader( manager ); loader.workingPath = workingPath; loader.fetchOptions = fetchOptions; loader.adjustmentTransform.copy( tempMat ); promise = loader .parse( buffer ) .then( res => res.scene ); break; } // 3DTILES_content_gltf case 'gltf': case 'glb': const loader = new GLTFExtensionLoader( manager ); loader.workingPath = workingPath; loader.fetchOptions = fetchOptions; promise = loader .parse( buffer ) .then( res => res.scene ); break; default: console.warn( `TilesRenderer: Content type "${ fileType }" not supported.` ); promise = Promise.resolve( null ); break; } return promise.then( scene => { if ( tile._loadIndex !== loadIndex ) { return; } // ensure the matrix is up to date in case the scene has a transform applied scene.updateMatrix(); // apply the local up-axis correction rotation // GLTFLoader seems to never set a transformation on the root scene object so // any transformations applied to it can be assumed to be applied after load // (such as applying RTC_CENTER) meaning they should happen _after_ the z-up // rotation fix which is why "multiply" happens here. if ( fileType === 'glb' || fileType === 'gltf' ) { scene.matrix.multiply( tempMat ); } scene.matrix.premultiply( cachedTransform ); scene.matrix.decompose( scene.position, scene.quaternion, scene.scale ); scene.traverse( c => { c[ INITIAL_FRUSTUM_CULLED ] = c.frustumCulled; } ); updateFrustumCulled( scene, ! this.autoDisableRendererCulling ); cached.scene = scene; // We handle raycasting in a custom way so remove it from here scene.traverse( c => { c.raycast = this._overridenRaycast; } ); const materials = []; const geometry = []; const textures = []; scene.traverse( c => { if ( c.geometry ) { geometry.push( c.geometry ); } if ( c.material ) { const material = c.material; materials.push( c.material ); for ( const key in material ) { const value = material[ key ]; if ( value && value.isTexture ) { textures.push( value ); } } } } ); cached.materials = materials; cached.geometry = geometry; cached.textures = textures; if ( this.onLoadModel ) { this.onLoadModel( scene, tile ); } } ); } disposeTile( tile ) { // This could get called before the tile has finished downloading const cached = tile.cached; if ( cached.scene ) { const materials = cached.materials; const geometry = cached.geometry; const textures = cached.textures; const parent = cached.scene.parent; for ( let i = 0, l = geometry.length; i < l; i ++ ) { geometry[ i ].dispose(); } for ( let i = 0, l = materials.length; i < l; i ++ ) { materials[ i ].dispose(); } for ( let i = 0, l = textures.length; i < l; i ++ ) { const texture = textures[ i ]; texture.dispose(); } if ( parent ) { parent.remove( cached.scene ); } if ( this.onDisposeModel ) { this.onDisposeModel( cached.scene, tile ); } cached.scene = null; cached.materials = null; cached.textures = null; cached.geometry = null; } this.activeTiles.delete( tile ); this.visibleTiles.delete( tile ); tile._loadIndex ++; } setTileVisible( tile, visible ) { const scene = tile.cached.scene; const visibleTiles = this.visibleTiles; const group = this.group; if ( visible ) { group.add( scene ); visibleTiles.add( tile ); scene.updateMatrixWorld( true ); } else { group.remove( scene ); visibleTiles.delete( tile ); } if ( this.onTileVisibilityChange ) { this.onTileVisibilityChange( scene, tile, visible ); } } setTileActive( tile, active ) { const activeTiles = this.activeTiles; if ( active ) { activeTiles.add( tile ); } else { activeTiles.delete( tile ); } } calculateError( tile ) { const cached = tile.cached; const inFrustum = cached.inFrustum; const cameras = this.cameras; const cameraInfo = this.cameraInfo; // TODO: Use the content bounding volume here? // TODO: We should use the largest distance to the tile between // all available bounding volume types. const boundingSphere = cached.sphere; const boundingBox = cached.box; const boxTransformInverse = cached.boxTransformInverse; const transformInverse = cached.transformInverse; const useBox = boundingBox && boxTransformInverse; let maxError = - Infinity; let minDistance = Infinity; for ( let i = 0, l = cameras.length; i < l; i ++ ) { if ( ! inFrustum[ i ] ) { continue; } // transform camera position into local frame of the tile bounding box const info = cameraInfo[ i ]; const invScale = info.invScale; let error; if ( info.isOrthographic ) { const pixelSize = info.pixelSize; error = tile.geometricError / ( pixelSize * invScale ); } else { tempVector.copy( info.position ); let distance; if ( useBox ) { tempVector.applyMatrix4( boxTransformInverse ); distance = boundingBox.distanceToPoint( tempVector ); } else { tempVector.applyMatrix4( transformInverse ); // Sphere#distanceToPoint is negative inside the sphere, whereas Box3#distanceToPoint is // zero inside the box. Clipping the distance to a minimum of zero ensures that both // types of bounding volume behave the same way. distance = Math.max( boundingSphere.distanceToPoint( tempVector ), 0 ); } const scaledDistance = distance * invScale; const sseDenominator = info.sseDenominator; error = tile.geometricError / ( scaledDistance * sseDenominator ); minDistance = Math.min( minDistance, scaledDistance ); } maxError = Math.max( maxError, error ); } tile.__distanceFromCamera = minDistance; tile.__error = maxError; } tileInView( tile ) { // TODO: we should use the more precise bounding volumes here if possible // cache the root-space planes // Use separating axis theorem for frustum and obb const cached = tile.cached; const sphere = cached.sphere; const inFrustum = cached.inFrustum; if ( sphere ) { const cameraInfo = this.cameraInfo; let inView = false; for ( let i = 0, l = cameraInfo.length; i < l; i ++ ) { // Track which camera frustums this tile is in so we can use it // to ignore the error calculations for cameras that can't see it const frustum = cameraInfo[ i ].frustum; if ( frustum.intersectsSphere( sphere ) ) { inView = true; inFrustum[ i ] = true; } else { inFrustum[ i ] = false; } } return inView; } return true; } } class E{constructor(){this._listeners={};}on(e,t,s){this._listeners[e]?this._listeners[e].push({callback:t,isOnce:s}):this._listeners[e]=[{callback:t,isOnce:s}];}off(e,t){if(!t)throw new Error("\u53D6\u6D88\u4E8B\u4EF6\u65F6\u9700\u8981\u4F20\u5165\u539F\u56DE\u8C03\u51FD\u6570");const s=this._listeners[e];if(s&&s.length>0){for(let i=0;i0)for(let i=0;i{e.disposeTile(t);}),e.lruCache.itemSet.clear(),e.lruCache.itemList=[],e.lruCache.callbacks.clear(),e.lruCache=null,e.visibleTiles.clear(),e.activeTiles.clear(),e.downloadQueue.callbacks.clear(),e.downloadQueue.items=[],e.downloadQueue=null,e.parseQueue.callbacks.clear(),e.parseQueue.items=[],e.parseQueue=null,this.clearGroup(this.group),e.tileSets={},e.cameraMap.clear(),e.cameras=[],e.cameraInfo=[],e.group=null;}clearGroup(e){e.traverse(t=>{t.isMesh&&(t.geometry.dispose(),t.material.dispose(),t.material.texture&&t.material.texture.dispose&&t.material.texture.dispose()),delete t.featureTable,delete t.batchTable;}),delete e.tilesRenderer,e.remove(...e.children);}}class L extends E{constructor(e,t){super(),this.animationFrame=-1,this.mouse=new Vector2,this.layer=e;const s=new D(t.url);s.setCamera(this.layer.getCamera()),s.setResolutionFromRenderer(this.layer.getCamera(),this.layer.getRender());const i=t.fetchOptions||{},o=new GLTFLoader(s.manager);i.credentials==="include"&&i.mode==="cors"&&o.setCrossOrigin("use-credentials"),"credentials"in i&&o.setWithCredentials(i.credentials==="include"),i.headers&&o.setRequestHeader(i.headers);const l=new DRACOLoader,h=t.dracoDecoderPath||"https://cdn.jsdelivr.net/npm/three@0.143/examples/js/libs/draco/";if(l.setDecoderPath(h),o.setDRACOLoader(l),s.manager.addHandler(/\.gltf$/i,o),s.onLoadTileSet=n=>{this.emit("loadTileSet",n);},s.onLoadModel=(n,a)=>{this.emit("loadModel",{scene:n,tile:a});},s.onDisposeModel=(n,a)=>{this.emit("disposeModel",{scene:n,tile:a});},s.downloadQueue.maxJobs=6,s.parseQueue.maxJobs=6,this.group=s.group,this.layer.add(this.group),this.tilesRenderer=s,t.position&&this.setPosition(t.position),t.rotation&&this.setRotation(t.rotation),t.translate&&this.setTranslate(t.translate),t.scale&&this.setScale(t.scale),this.animate(),t.debug){const n=document.createElement("div");n.style.position="absolute",n.style.top="0px",n.style.left="0px",n.style.color="white",n.style.width="100%",n.style.textAlign="center",n.style.padding="5px",n.style.pointerEvents="none",n.style.lineHeight="1.5em",document.body.appendChild(n),this.statsContainer=n;}this.bindEvents(t.mouseEvent);}bindEvents(e){if(e){this.raycaster=new Raycaster,this.raycaster.firstHitOnly=!0;const t=this.layer.getMap();this.clickMapFn=v(this.clickMap,this),t.on("click",this.clickMapFn),this.mousemoveMapFn=v(this.mousemoveMap,this),t.on("mousemove",this.mousemoveMapFn),this.rightClickMapFn=v(this.rightClickMap,this),t.on("rightclick",this.rightClickMapFn);}}unbindEvents(){const e=this.layer.getMap();this.clickMapFn&&(e.off("click",this.clickMapFn),this.clickMapFn=null),this.mousemoveMapFn&&(e.off("mousemove",this.mousemoveMapFn),this.mousemoveMapFn=null),this.rightClickMapFn&&(e.off("rightclick",this.rightClickMapFn),this.rightClickMapFn=null),this.tilesRenderer&&(this.tilesRenderer.onLoadTileSet=null,this.tilesRenderer.onLoadModel=null,this.tilesRenderer.onDisposeModel=null);}clickMap(e){const t=this._intersectGltf(e);this.emit("click",t);}mousemoveMap(e){const t=this._intersectGltf(e);this.emit("mousemove",t);}rightClickMap(e){const t=this._intersectGltf(e);this.emit("rightClick",t);}_intersectGltf(e){var t,s;const i=this.layer.getMap().getContainer().getBoundingClientRect(),o=this.mouse;o.x=e.originEvent.clientX-i.x,o.y=e.originEvent.clientY-i.y,o.x=o.x/i.width*2-1,o.y=-(o.y/i.height)*2+1;const l=this.layer.getCamera();(t=this.raycaster)===null||t===void 0||t.setFromCamera(o,l);const h=(s=this.raycaster)===null||s===void 0?void 0:s.intersectObject(this.group,!0);if(h!=null&&h.length){const n=h[0].object,a={},p=this.getBatchTable(n);return p&&p.getKeys().forEach(r=>{a[r]=p.getData(r);}),{object:n,batchData:a}}return null}getBatchTable(e){return e?e.batchTable?e.batchTable:this.getBatchTable(e.parent):null}setPosition(e){const t=this.layer.convertLngLat(e);this.group.position.setX(t[0]),this.group.position.setY(t[1]),this.refresh();}setRotation(e){if(e){const t=Math.PI/180*(e.x||0),s=Math.PI/180*(e.y||0),i=Math.PI/180*(e.z||0);this.group.rotation.set(t,s,i),this.refresh();}}setTranslate(e){e&&(this.group.translateX(e.x),this.group.translateY(e.y),this.group.translateZ(e.z),this.refresh());}setScale(e){let t;typeof e=="number"?t={x:e,y:e,z:e}:t=e,this.group.scale.set(t.x,t.y,t.z),this.refresh();}refresh(){this.layer.update();}show(){this.group.visible=!0,this.refresh();}hide(){this.group.visible=!1,this.refresh();}animate(){this.animationFrame=requestAnimationFrame(()=>{this.update(),this.animate();});}update(){var e;if(this.layer.getCamera().updateMatrixWorld(),(e=this.tilesRenderer)===null||e===void 0||e.update(),this.layer.update(),this.statsContainer){const t=this.tilesRenderer;this.statsContainer.innerHTML=`\u6B63\u5728\u4E0B\u8F7D: ${t.stats.downloading} \u6B63\u5728\u7F16\u8BD1: ${t.stats.parsing} \u5DF2\u663E\u793A: ${t.group.children.length-2}`;}}getGroup(){return this.group}getTilesRenderer(){return this.tilesRenderer}destroy(){var e;cancelAnimationFrame(this.animationFrame),this.unbindEvents(),this.layer.remove(this.group),(e=this.tilesRenderer)===null||e===void 0||e.dispose(),this.group=null,this.layer=null,this.statsContainer&&(this.statsContainer.remove(),this.statsContainer=void 0);}} var script = defineComponent({ name: "ElAmapThreeTiles3d", mixins: [registerMixin], props: { url: { type: String, required: true }, position: { type: Object, required: true }, scale: { type: Object }, rotation: { type: Object }, translate: { type: Object }, dracoDecoderPath: { type: String }, fetchOptions: { type: Object }, mouseEvent: { type: Boolean, default: false }, debug: { type: Boolean, default: false } }, data() { return {}; }, methods: { __initComponent(options) { this.$amapComponent = new L(this.$parentComponent, options); }, destroyComponent() { this.$amapComponent.destroy(); this.$amapComponent = null; this.$parentComponent = null; } }, render() { return null; } }); script.__file = "src/packages/three/Three3Dtiles/ThreeTiles3d.vue"; const ElAmapThreeTiles3d = withInstall(script); var Components = [ ElAmap, ElAmapControlControlBar, ElAmapControlHawkEye, ElAmapControlMapType, ElAmapControlScale, ElAmapControlToolBar, ElAmapSearchBox, ElAmapInfoWindow, ElAmapLayerCanvas, ElAmapLayerCustom, ElAmapLayerFlexible, ElAmapLayerGlCustom, ElAmapLayerHeatMap, ElAmapLayerImage, ElAmapLayerLabels, ElAmapLayerVector, ElAmapLayerBuildings, ElAmapLayerDefault, ElAmapLayerDistrict, ElAmapLayerIndoorMap, ElAmapLayerRoadNet, ElAmapLayerSatellite, ElAmapLayerTile, ElAmapLayerTraffic, ElAmapLayerMapboxVectorTile, ElAmapLayerWms, ElAmapLayerWmts, ElAmapLocaGrid, ElAmapLocaHeatmap, ElAmapLocaHexagon, ElAmapLocaIcon, ElAmapLocaLine, ElAmapLocaLink, ElAmapLoca, ElAmapLocaPoint, ElAmapLocaPolygon, ElAmapLocaPrism, ElAmapLocaPulseLine, ElAmapLocaPulseLink, ElAmapLocaScatter, ElAmapLocaZMarker, ElAmapElasticMarker, ElAmapLabelMarker, ElAmapMarker, ElAmapMarkerCluster, ElAmapMassMarks, ElAmapText, ElAmapBezierCurve, ElAmapCircle, ElAmapEllipse, ElAmapGeojson, ElAmapPolygon, ElAmapPolyline, ElAmapRectangle, ElAmapLayerTiles3d, ElAmapLayerThree, ElAmapThreeGltf, ElAmapControlGeolocation, ElAmapCircleMarker, ElAmapLocaAmbientLight, ElAmapLocaDirectionalLight, ElAmapLocaPointLight, ElAmapLayerVideo, ElAmapLocaLaser, ElAmapThreeVideo, ElAmapThreeLightAmbient, ElAmapThreeLightDirectional, ElAmapThreeLightHemisphere, ElAmapThreeLightPoint, ElAmapThreeLightSpot, ElAmapThreePolygon, ElAmapMouseTool, ElAmapThreeTiles3d ]; var installer = makeInstaller([...Components]); const install = installer.install; export { ElAmap, ElAmapBezierCurve, ElAmapCircle, ElAmapCircleMarker, ElAmapControlControlBar, ElAmapControlGeolocation, ElAmapControlHawkEye, ElAmapControlMapType, ElAmapControlScale, ElAmapControlToolBar, ElAmapElasticMarker, ElAmapEllipse, ElAmapGeojson, ElAmapInfoWindow, ElAmapLabelMarker, ElAmapLayerBuildings, ElAmapLayerCanvas, ElAmapLayerCustom, ElAmapLayerDefault, ElAmapLayerDistrict, ElAmapLayerFlexible, ElAmapLayerGlCustom, ElAmapLayerHeatMap, ElAmapLayerImage, ElAmapLayerIndoorMap, ElAmapLayerLabels, ElAmapLayerMapboxVectorTile, ElAmapLayerRoadNet, ElAmapLayerSatellite, ElAmapLayerThree, ElAmapLayerTile, ElAmapLayerTiles3d, ElAmapLayerTraffic, ElAmapLayerVector, ElAmapLayerVideo, ElAmapLayerWms, ElAmapLayerWmts, ElAmapLoca, ElAmapLocaAmbientLight, ElAmapLocaDirectionalLight, ElAmapLocaGrid, ElAmapLocaHeatmap, ElAmapLocaHexagon, ElAmapLocaIcon, ElAmapLocaLaser, ElAmapLocaLine, ElAmapLocaLink, ElAmapLocaPoint, ElAmapLocaPointLight, ElAmapLocaPolygon, ElAmapLocaPrism, ElAmapLocaPulseLine, ElAmapLocaPulseLink, ElAmapLocaScatter, ElAmapLocaZMarker, ElAmapMarker, ElAmapMarkerCluster, ElAmapMassMarks, ElAmapMouseTool, ElAmapPolygon, ElAmapPolyline, ElAmapRectangle, ElAmapSearchBox, ElAmapText, ElAmapThreeGltf, ElAmapThreeLightAmbient, ElAmapThreeLightDirectional, ElAmapThreeLightHemisphere, ElAmapThreeLightPoint, ElAmapThreeLightSpot, ElAmapThreePolygon, ElAmapThreeTiles3d, ElAmapThreeVideo, installer as default, initAMapApiLoader, install, lazyAMapApiLoaderInstance, makeInstaller, registerMixin };